Chapter 5

Genomes and Phenotypes

5.1 Abstract

Understanding the processes that generate variation between animals and
how this variation is inherited between generations is essential for under-
standing the importance and challenges of estimating genetic values. This
chapter describes the standard quantitative genetic model in which pheno-
type values are generated from genetic, environmental, and other sources of
variation. To this end, DNA molecules, their organisation in genomes, and
their variation are described. This is followed by encoding the DNA varia-
tion for quantitative genetic analyses and a functional relationship with the
phenotype values. While this standing genetic and phenotypic variation is of-
ten substantial, the inheritance of DNA between generations shuffles genetic
variation in parents and generates new combinations through recombination,
segregation, and mutation.

5.2 Introduction

This book is about methods for analysing variation between animals to es-
timate their genetic value. For this estimation, we use statistical models, as
we will show in the following chapters. Before we delve into these statistical
models, it is instructive to overview the biological processes that generate
the data we are analysing. Here, we will also describe models, but these are
data generation models upon which the theory of quantitative and statisti-
cal genetics is built (Falconer and Mackay, 1996; Lynch and Walsh, 1998).
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Although these data generation models are often similar to the statistical
models we use in our data analysis, it is important to note the following
three interrelated points. First, all models are an abstraction of complex
biology, the true model, that generates variation between animals. Second,
simple models can often adequately describe complex phenomena with a
small number of parameters. Third, although a very good attempt is usu-
ally made to match data generation and statistical models, we cannot fully
unravel complex biology. This is so because we typically have only a limited
amount of data, or the data resolution is too coarse to decipher this com-
plexity. Continued advancements in data recording technologies will allow
us to decipher more and more biology in the coming years.

The remainder of this chapter is organised into the following five sections.
First, we continue this introduction and conceptualise variation between ani-
mals, including the definition of traits and underlying genetic, environmental,
and other sources. Second, we describe the molecule that encodes genetic in-
formation, DNA, and its organisation in the genome. We discuss the main
sources of DNA variation and how we encode this variation for quantita-
tive genetic analysis. Third, we delve into a model that generates varia-
tion between animals from genetic and environmental effects. Fourth, we
describe the inheritance of DNA from parents to offspring and how this pro-
cess generates variation in a new generation. Understanding the processes
that generate variation between animals and how this variation is inher-
ited between generations is essential to understand what we estimate with
pedigree-based and genome-based statistical models described in the follow-
ing chapters. Fifth, we point to the different types of traits, multiple traits,
genotype-by-environment interactions, and additive and non-additive genetic
effects.

It is well known that most, if not all, traits vary between animals and that
this variation is due to many effects. But what is a trait? Any characteristic
that you can see or measure on animals may be called a trait. For example,
weight, height, colour, and so on. All the traits that we observe are called
phenotypes of that animal. Derived from the Greek pheno, meaning “to
show”, and type, meaning, well, “type”.

There are many ways to organise traits into various groups. For exam-
ple, milk yield, the number of laid eggs, and body weight are often called
production traits. The number of days between two calvings is an example
of a reproduction trait, and so on. In this book, we will be most interested
in grouping traits by their phenotypic expression or how we record this ex-
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pression. Without being exhaustive, let us look at continuous, ordinal, and
binary traits. For example, milk yield is a continuous trait that we usually
record in kilogrammes, such as 7812.4kg per cow’s lactation. Looking at
the distribution of these continuous traits (Figure 5.1a), we will generally
see a spread of recorded values around the central value with a decaying
frequency towards the tails of this distribution. Another group are ordinal
traits. Ordinal traits represent traits whose expression we count and hence
have distinct categories. The frequency of animals recorded in each category
can vary significantly between different systems. For example, the distribu-
tion of the number of progeny in a litter in pigs (Figure 5.1b) or in sheep
(Figure 5.1c) are both ordinal. Binary traits are an extreme example, with
only two categories, such as healthy or diseased (Figure 5.1d). Ordinal and
binary traits are often called discrete or categorical traits to distinguish them
from continuous traits. Also, sometimes a trait has a continuous expression
of the phenotype, but we record it as a categorical trait. This book focusses
on continuous traits, because most traits have such distributions. It is also
generally recommended that recording is continuous to capture full trait vari-
ation. When this is not the case, we can use the methods described in chapter
15.

What drives this variation in phenotype between animals? You may have
heard of the concept “nature versus nurture”. The phenotype of an animal
is the result of a combination of genes inherited from its parents, known as
the genotype, the environment in which it lives and other factors:

Phenotype = f(Genotype, Environment, Other factors).

We will look at the genotype and its effect on the phenotype in the next
two sections. The environment includes the amount and quality of feed con-
sumed, temperature, humidity, etc. Other factors include sex, the type of
recording device, the data recording technician, the farmer’s knowledge of
animal husbandry, etc. We have loosely mentioned the phenotype, genotype,
environment, and other factors. More specifically, an animal’s recorded phe-
notype value is a function of the effect of the animal’s genotype, the effect
of the environment in which the animal lives and the effect of other factors.
We emphasise the concepts of values and effects because they enable us to
quantify the contribution of different sources to phenotype variation. If we
knew the effect of genotype, environment, and other factors and their func-
tional relationships, we would fully understand the sources of variation in
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Figure 5.1: Examples of distributions for a) cow milk yield per lactation
(continuous trait with mean of 7,000 and standard deviation of 1,000), b)
litter size in pigs (ordinal trait with a mean of 10 and variance of 10), c)
litter size in sheep (ordinal trait with mean of 1.7 and standard deviation
of 0.6, given the small number of categories we can also report 38% singles,
54% twins, and 8% triplets), and d) health status (binary trait encoded as 0
for healthy and 1 for diseased, with a mean of 0.2, standard deviation of 0.4,
and 20% diseased animals) (CC-BY 4.0)
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phenotype values. We never know these effects and their functional relation-
ships. We use collected data and statistical models to estimate these effects
and their functional relationships. Although the collected data that we feed
into the statistical models will vary substantially between animal systems, it
will generally include phenotype values, associated descriptors (such as ani-
mal identification, sex, farm identification, etc.), pedigree, and, increasingly,
genomic data. The following chapters show examples of such datasets.

5.3 Variation in DNA

Variation in the composition of the genetic material of an animal, its geno-
type, is determined by the DNA inherited from its parents. This DNA in-
structs biological functions, such as the growth and reproduction of an an-
imal, in all trillions of cells (~10'*"). Inside each cell is a nucleus with a
complete copy of the inherited DNA. DNA is a long molecule that looks like
a twisted ladder. The rungs of this ladder are smaller molecules called nu-
cleotides or bases. There are four bases: Adenine (A), Cytosine (C), Guanine
(G), and Thymine (T) (Figure 5.2). These bases bind in pairs, forming the
twisted ladder, the double helix. Adenine (A) binds with Thymine (T), while
Cytosine (C) binds with Guanine (G) (Figure 5.2).

The complete collection of DNA molecules in a cell is called a genome.
The structure and size of the genome vary between species. For example,
in cattle, the genome is organised into 30 chromosomes. Cattle are diploid,
meaning that they have two copies of each chromosome, in total 60 DNA
molecules. Each of the copies is inherited from one parent. We call each chro-
mosome copy a haplotype, and the combination of two chromosome copies
a genotype. The total length of the cattle genome is about 3 billion base
pairs (~3x10%). This is the length of one copy of 30 chromosomes. Hence,
each cell in cattle has about 6 billion base pairs. Some genomes are much
smaller. For example, the honeybee genome has only about 250 million base
pairs (~0.25x10%) organised in 16 chromosomes.

Most of the genome is the same across all chromosome copies in a popula-
tion. However, we are more interested in the parts of the genome that differ
between chromosome copies. This variation can be present both within one
animal and between animals. These variable parts of the genome are called
segregating/polymorphic sites or loci. If a locus is segregating, it means that
there is variation in DNA at that position within and between families. In



18 CHAPTER 5. GENOMES AND PHENOTYPES

Figure 5.2: Diagram zooming in from the cell’s nucleus to an animal chro-
mosome and to the unwinding of DNA double helical molecule with its bases
©OpenClipart-Vectors (2013) CCO



5.3. VARIATION IN DNA 19

other words, DNA variation (polymorphism) exists at that position. For
example, some chromosome copies in a population have the A-T base pair
at that locus (say a single base pair A-T), while other chromosome copies
have the G-C base pair. These loci show variation because, at some point
in the past, one of the chromosomes has been copied with an error, with a
mutation. If a mutation occurs in germline (reproductive) cells, it can be
passed from the parents to their progeny.

We refer to the different base pair sequences at a locus as alleles. A
mutation is usually called a derived allele, while the original allele is called
the ancestral allele. In the context of reference genomes, the genome that
other genomes are compared to, we often use the term reference allele, which
denotes the allele present in the reference genome. Alleles that differ from
the reference allele are usually called alternative alleles. The variation at the
single base pair mentioned above is called a Single Nucleotide Polymorphism
(SNP). There are additional types of DNA polymorphism, such as deletions,
insertions, repetitions, and inversions, on a small scale involving a few base
pairs or on a large scale involving chromosome regions or whole chromosomes.
Because the DNA molecule has a direction (that is, it is read from the 3’ end
towards the 5’ end), we can observe four possible SNP alleles: A-T, T-A,
G-C, and C-G (Figure 5.3). Of the billions of DNA base pairs, most studies
have found tens to hundreds of millions of SNPs (from ~10x10% = ~107
to ~100x10% = ~10®) and other types of DNA polymorphisms (Hayes and
Daetwyler, 2019; Halldorsson et al., 2022; Ros-Freixedes et al., 2022). This
suggests that every 100 to 10" base pair in a genome could show polymor-
phism in a population. Many of these loci will have very low frequencies of
mutated alleles.

The two most important technologies for generating genomic data are
sequencing and SNP arrays. Sequencing simply means reading the DNA.
There are two phases in using sequencing. Initially, we must de novo se-
quence the genome of one animal and build the so-called reference genome.
Then, further animal genomes are re-sequenced against the reference genome.
Most modern sequencing techniques involve high molecular weight DNA iso-
lation, cutting the genome into smaller fragments, repeatedly sequencing
these fragments, aligning the sequence reads to the reference genome, and
finally, calling the alleles and genotypes of an animal. The accuracy of the
resulting data depends on the quality of all the steps. For example, good-
quality DNA isolation is critical, as is repeated sequencing of DNA fragments
to capture variation at both chromosome copies and to distinguish sequenc-
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Figure 5.3: Four possible SNP alleles at one base pair in four DNA fragments
taking DNA read direction into account (CC-BY 4.0)
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ing errors from real DNA variation. The advantage of sequencing is that
it captures most of the genomic variation, all the millions of SNP loci, and
some structural variants. Note that some reference genomes do not contain
all variation within a species, so re-sequencing against such a reference misses
that variation. SNP arrays (also called SNP chips) conceptually do the same
thing as sequencing, but they use previously designed array probes to cap-
ture variation at a selected set of SNP markers. Most “standard” SNP arrays
have a density of 60 thousand (60K) markers. In cattle, this gives a marker
every ~50 thousand (50K) base pairs, of which about 500 to 1,000 are ex-
pected to be polymorphic, but they are represented by a single marker. The
selection of SNP markers aims at a uniform spread along chromosomes and
allele frequency spectrum, as well as reliable genotype calling across batches
of animals. The cost of SNP array genotyping is generally lower than that
of sequencing and has a lower DNA isolation quality requirement, but it
captures less DNA variation.

We often focus on biallelic SNPs, those with two alleles. The reason for
this focus is that transition mutations between Adenine (A) and Guanine (G)
and between Cytosine (C) and Thymine (T) are much more common than
transversion mutations between Adenine (A) and Cytosine (C) or Thymine
(T) and between Guanine (G) and Cytosine (C) or Thymine (T). This is
driven by the molecular structure of the bases. Therefore, if we have the
A-T base pair as the ancestral allele, the frequency of the alternative C-G
and T-A base pairs will be lower than that of the G-C base pair (considering
DNA orientation). Ultimately, the frequency of each mutation will depend
on its spread between generations. We often focus on biallelic SNPs to avoid
a mix-up between potential data recording errors and rare mutations. The
accumulation of vast genomic data in recent years will likely broaden this
focus. When calculating with biallelic SNPs, we numerically encode the two
alleles in a computer with numbers: 0 represents the reference (ancestral)
allele, and 1 represents the mutated (derived or alternative) allele. In diploid
species, we can observe three possible genotypes at a biallelic SNP: homozy-
gous for allele 0 (genotype 0/0), heterozygous for allele 0 and 1 (genotypes
0/1 or 1/0), and homozygous for allele 1 (genotype 1/1) (Figure 5.4). Fol-
lowing numerical encoding, the homozygote 0/0 is encoded as 0 + 0 = 0,
heterozygotes 0/1 or 1/0 are encoded as 04+ 1 =140 = 1, and the homozy-
gote 1/1 is encoded as 1 + 1 = 2 (Figure 4). The numerical codes 0, 1, or
2 for the three genotypes mean that an animal has respectively 0, 1, or 2
alternative alleles. These codes are usually called allele dosages.
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Figure 5.4: Three possible genotype combinations at a biallelic SNP with
the corresponding allele dosage encoding of the alleles and genotypes (CC-
BY 4.0)
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We can now write a sequence of biallelic SNPs along a chromosome as a
series of zeroes (0) and ones (1). We will write such sequences of SNP alleles
from one chromosome or chromosome region (haplotypes) in rows. Figure 5.5
shows two haplotypes of an animal across six SNPs and the corresponding
genotype as a sum of the two haplotypes. The top haplotype has three
alternative alleles in total. The bottom haplotype has 4 alternative alleles in
total. Therefore, the genotype has seven alternative alleles in total.

Haplotype 1 0 1 1 0 0 1
Haplotype 2 1 1 1 1 0 0
Genotype 1 2 2 1 0 1

Figure 5.5: Example of allele dosage encoding for two haplotypes across six
SNPs of an animal and the corresponding genotype (CC-BY 4.0)

There are many ways to summarise DNA variation across animals and
across loci. The simplest way is to calculate the frequency of alleles at a
locus. Assume that we have a matrix of genotype allele dosages for biallelic
SNPs where animals are represented in rows and loci in columns. Then the
locus allele frequencies are calculated as the means of the columns divided
by two — each column will give allele frequency p; for the corresponding locus
[. Next, we can calculate the frequency of genotypes at a locus by tabulating
the frequency of three allele dosages: 0, 1, and 2. There are many other ways
to summarise variation in DNA. Statistics used in chapters 11 and 12 are the
average allele dosage at a locus, the expected variance of allele dosages at a
locus, and the correlation between allele dosages at two loci. We can estimate
the expected allele dosage at a locus by multiplying the allele frequency at a
locus by two: 2p;. If allele frequency p; is 0.2, we expect an average genotype
allele dosage of 2 x 0.2 = 0.4 (see SNP2 in Table 5.1). This means that the
frequency of genotypes 0, 1, and 2 will be such that their average will be 0.4.
We can estimate the variance of allele dosages by calculating the variance of
observed allele dosages in our dataset. It is common to compare the observed
and expected genotype variation according to the Hardy-Weinberg equilib-
rium. This equilibrium is achieved primarily by random mating of parents
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and evaluating their progeny before selection. Under such conditions, we
expect that the frequency of alleles in parents and progeny will be the same,
and the frequency of genotypes 2, 1, and 0 will be respectively p?, 2p;q;, and
q?, where p; is the frequency of the alternative allele 1 and ¢ = 1 — p; is
the frequency of the reference allele 0. Following binomial sampling of alleles
under such conditions (this is the mathematical way to describe random mat-
ing), the variance of allele dosages is 2p;q;. This quantity is often referred to
as heterozygosity, the proportion of heterozygotes, as well as genic variance
(expected variance of allele dosages at one locus, that is, one gene, hence the
term genic instead of genotypic or genetic) under Hardy-Weinberg equilib-
rium. Finally, we can calculate the correlation between allele dosages at two
loci to study covariation between different genome regions. This quantity is
referred to as linkage-disequilibrium because a non-zero correlation suggests
that alleles appear together more often than expected by chance. This can
happen when loci are physically linked (placed on the same chromosome) or
are influenced by selection, population stratification, or admixture processes.

Table 5.1: Genotype allele dosages at two loci in five animals and correspond-
ing summary

Animal SNP1 SNP2
1 0 0
2 2 1
3 2 0
4 1 1
5 0 0
Mean 1.00  0.40
Standard deviation 1.00  0.55
Variance (observed) 1.00  0.30
Allele frequency 0.50  0.20
Genic variance (expected) 0.50  0.32
Correlation 0.46

5.4 Variation in phenotype values

How is DNA variation related to variation in phenotype values between an-
imals? We generally do not know which DNA loci affect traits. We know
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that DNA gene regions are translated into RNA molecules, which are further
transcribed into proteins that perform biological functions. Polymorphic loci
in or around genes drive genetic differences between animal phenotype val-
ues. We call such loci causal loci or Quantitative Trait Loci (QTL). Some
traits are affected only by the genotype of an animal. We call such traits
Mendelian. Mendelian traits are commonly affected by only a few DNA loci.
When a trait is affected by one gene (or one locus), we call it monogenic.
When a trait is affected by several genes (or several loci), we call it oligogenic.
Most traits are affected by many DNA loci. We call such traits polygenic.
Some traits, especially polygenic traits, are also affected by the environment
in which animals live. We call such traits complex. This complex situation
is the basis for the “nature versus nurture” and the recognition that the ob-
served phenotype value of an animal is a function of the animal’s genotype,
the effect of the environment where the animal lives, and the effect of other
factors.

How many DNA loci affect polygenic traits? We do not know. But
we can make an educated estimate. There are about 20,000 genes in the
genomes of many species. Let’s assume that each gene affects a polygenic
trait and has at least one SNP. In this case, the number of causal SNP loci
will be about 20,000. This might seem like a large number. However, note
that traits related to biological processes such as growth or lactation are
incredibly complex and involve many, if not most, body functions and hence
many proteins and their upstream genes in one way or another.

While we do not know the form of this phenotype generation function,
nor its effects, we will use Fisher’s quantitative genetics framework to rea-
son about the effects and later estimate them (Fisher, 1918). Fisher (1918)
assumed that the observed phenotype value of an individual (y;) can be par-
titioned into the effect of various factors that capture the deviation of the
phenotype value from the baseline of a population (x), most importantly,
the genetic value of the individual (g;) and the environmental effect (e;),
plus possibly interaction between genotype and environment (g; X ¢;):

Yi=p+ g+ e+ g Xe

An important simplification here is that this phenotype generation func-
tion is assumed to be linear, where we add up the effects of different factors.
Here, we ignore the highly non-linear and interconnecting biochemical path-
ways, metabolic processes, etc. All this biological complexity is swept under
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the “model carpet”. We simply associate changes in phenotype values with
changes in the genetic composition of individuals, which we quantify with
genetic values, while the remainder is assumed to be due to environmental
effects. Such linear models can be seen as a first-order (local) approxima-
tion of the highly complex biological system. This is the simplest possible,
yet informative, approximation. Following the same linear framework, we can
further assume that the total genetic value of an individual (g;) is a sum of the
genetic values of that individual across causal loci (i1, §i2,---sGity-- - Giks
where k is the number of causal loci and g, ; takes as many values as there are
genotypes observed at the locus [) and possibly their epistatic interactions

(gin X gio+...):

9i =0i1 T G2+ ... TGkt Ggi1XGgia+....

Fisher (1918) also assumed possible interactions between alleles within a
locus, which further decomposes genetic values into the additive genetic value
(a;;) and the dominance genetic value (d;;) of an individual at each causal
locus, as well as across causal loci. We leave the topic of additive and non-
additive (dominance and epistasis) genetic effects to Chapter 13. From this
point onwards, we will assume additive allele effects only; therefore, genetic
values g; will be additive genetic values, often called breeding values.

The following example demonstrates the decomposition of genetic value
across loci. Assume that the baseline value of a population is 10 units and
that there is a single causal locus | with an additive effect a;. The effect is
such that substituting the reference allele 0 with the alternative allele 1 in-
creases the phenotype value for 1 unit. Therefore, substituting two reference
alleles will increase the phenotype value for 2 units. With the three possible
genotypes at a biallelic SNP (encoded as z;; = 0,1, and 2), we respectively
expect the following three phenotype values:

E(ylziy =00, =1) = p+ 20 = 10+ 0 x 1 = 10,
E(ylziy=1a=1)=p+x,04=10+1x1=11,and
E(ylrgy=2a4=1)=p+z,0=10+2x1=12.
Observed phenotype values will deviate from these expectations due to
environmental effects. Assuming that environmental effects come from a

normal distribution with mean zero and standard deviation (o) of 0.5 units,
we can expect variation in phenotype values as shown in Figure 5.6.
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Figure 5.6: Example of expected (large full circle) and observed (small empty
circle) phenotype values as a function of three genotypes at a causal biallelic
SNP locus (jittered to improve the display of points) with an allele sub-
stitution effect of 1 unit and normal environmental effects with a standard
deviation of 0.5 units (CC BY 4.0)
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Figure 5.6 shows two sources of variation in phenotype values: genetic
differences and environmental differences between animals. For every animal,
we can write the following phenotype generation model:

Yi=p+gi + €.

Assuming that environmental effects are normally distributed and that
we know the genotype values (under the data generation model), we can
write the model in a probabilistic form as:

yilgi ~ N (1 + gi,07) ,

where we see that the expectation of this data generation process is E (y;|g;) =
+ g; and the variance of this process is Var (y;|g;) = 02, the environmental
variance. Note that if we do not know the genotypes and their effect, that
is, we are looking at phenotype variation across all the genotypes together,
the probabilistic form changes to:

y~ N (noy+07),

where 03 is genetic variance, that is, the variance between the genetic values
of individuals Var (g;) = o;; and 0, +02 = o, is the phenotypic variance, that
is, the variance between the phenotypic values of individuals Var (y;) = 02,
which is driven by genetic and environmental variation.

Until now, we have omitted a description of size, sign, and distribution
of allele substitution effects. While there is a growing body of literature on
this topic, the field is still grappling with the challenge of identifying causal
loci among all loci. Namely, there are tens to hundreds of millions of SNPs
and additional types of polymorphisms. We expect that only a fraction of
these loci is causal (perhaps on the order of hundreds, thousands, or tens of
thousands). Whatever the distribution of allele substitution effects, once we
add up these effects across loci, the resulting distribution of whole-genome
genetic values will tend towards a normal distribution due to the central
limit theorem. We demonstrate this by showing the distribution of a sample
of the population baseline plus genetic values (expected phenotype value) in
Figure 5.7 for the trait affected by one, two, three, or ten biallelic SNPs, all of
which have an allele frequency of 0.5 and are on different chromosomes. We
assumed that the baseline value of the population is 10 units and that each
alternative allele has an effect of 1/k units, where k is the number of causal
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SNPs (this ensures that the scale of genetic values is comparable between
the four examples, but note that this also scales genetic variance).

a) 1 locus b) 2 loci
Variance: 0.5 Variance: 0.25
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Figure 5.7: Distribution of a sample of a population baseline plus genetic
values for a trait that is affected by (a) one, (b) two, (c) three, or (d) ten
biallelic SNP — each sub-plot reports the corresponding variance of genetic
values between individuals, the genetic variance (07) (CC BY 4.0)

As seen in Figure 5.7, the number of distinct genetic values is growing
rapidly with the number of causal loci, and the distribution is rapidly ap-
proaching a continuous normal-like distribution. This is not surprising since
the total possible number of genotype combinations across k biallelic SNP
is 3% 3! = 3 for one SNP, 32 = 9 for two SNPs, 3% = 27 for three SNPs,
and 3'0 = 59,049 for ten SNPs. With five hundred SNPs, the number of
genotype combinations grows to a whopping ~102%®, which is more than the
number of atoms in the universe (~108°). This is one of the reasons why early
quantitative genetics work used the term infinitesimal, as in the infinitesimal
model, to indicate that the contribution of one locus to total genetic variance
is infinitely small.

To demonstrate how we generate genetic and phenotypic values for traits
that are affected by multiple causal SNPs, let us take the example from
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Figure 5.5, assuming a trait has a population baseline of 10 units and is
affected by the six biallelic SNPs with additive allele effects. At these SNPs,
substituting the reference allele 0 with the alternative allele 1 changes the
genetic value for +1 unit at the first SNP, +2 units at the second SNP, —1
unit at the third SNP, 41 unit at the fourth SNP, +1 unit at the fifth SNP,
and —2 units at the sixth SNP. In Figure 5.8 we show how we generate the
genetic value from an animal’s haplotype and genotype allele dosages. At the
top are allele dosages for the animal’s two haplotypes and the corresponding
genotype. At the bottom are values of alleles and corresponding genotypes
alongside the six SNPs and their sums on the right. We obtain these allele
and genotype values by multiplying the allele dosages with the effects and
then summing the values along the SNPs. This animal has one haplotype
with value —1 unit, another haplotype with value +3 units, which gives the
genetic value of +2 units. If we now add the population baseline of 10 units
and assume that the animal experienced a positive environment with an
effect of +2 units and that there was no genotype-by-environment effect or
non-additive genetic effects, then the phenotype value of this animal would
be 10 + 2 + 2 = 14 units.

Haplotye1 | 0 | 1 | 1 | o | o | 1 |
Haplotype 2 ‘ L ‘ L ‘ L ‘ L ‘ 0 ‘ 0 ‘ Allele dosages
Genotype ‘ 1 ‘ 2 ‘ 2 ‘ 1 ‘ 0 ‘ 1 ‘
X

EIEIENEREREY Effects
Haplotype 1 ‘ 0 ‘ +2 ‘ -1 ‘ 0 ‘ 0 ‘ -2 ‘ -1
Haplotype 2 ‘+1 | +2 | -1 ‘ +1 | 0 ‘ 0 ‘ +3 Values
Genotype ’ +1 I +4 l -2 ’ +1 I 0 l -2 ‘ +2

Figure 5.8: Example of generating genetic value of one individual where the
trait is affected by six biallelic SNPs (CC BY 4.0)

For the environmental effects, it is also reasonable to assume that many
sources affect complex traits. We don’t know all these sources and their
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effects, but if there are many, the distribution of their total effect will also
tend towards a normal distribution due to the central limit theorem. The
variance of these total environmental effects is the environmental variance
(02). Figure 5.9 repeats the distribution of a sample of genetic values from
Figure 5.7 for the trait affected by ten SNPs with the addition of environ-
mental effects so that the heritability of phenotype values is 0.3, that is,
h? = 7i/o2 = 0.3, where 0 = 02 + 0 is the variance of phenotype values, the
phenotypic variance.

Variance:
* genetic: 0.05
* environmental: 0.12
* phenotypic: 0.17

. E==u
|

9 10 11 12 13
Phenotypic and genetic value

Figure 5.9: Distribution of a sample of genetic values (dark bars) and pheno-
typic values (light bars) for the trait that is affected by ten biallelic SNP and
environmental effects such that heritability is 0.3 — the plot reports corre-
sponding genetic variance (o), environmental variance (07), and phenotypic

variance (o7) (CC BY 4.0)

5.5 DNA lottery

We will now look at the randomness of DNA inheritance between parents and
progeny, the DNA lottery. We will show how this process drives variation
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and resemblance between the genomes of relatives and their genetic and phe-
notypic values. This variation comes from mitosis, which involves mutation,
and from meiosis, which involves mutation, recombination, and segregation.

Mutations may be the source of variation that most people are familiar
with. Mutations are occasional mistakes made by the DNA replication ma-
chinery each time a cell divides. If these mistakes are made in the germline
(reproductive) cells, these mutations can be inherited. With billions of DNA
bases, it is impressive that mutations occur only at about one mutation per
chromosome in the germline (Goriely, 2016). A newborn animal will have
about n de novo mutations from each parent, where n is the number of chro-
mosomes. This could mean about 60, de novo mutations in cattle. These
de novo mutations are in addition to de novo mutations that parents have
inherited from their parents (and so on from older ancestors) and have trans-
mitted to their progeny. See the next paragraph on how recombination and
segregation affect this transmission. Since most chromosomes have about
10® base pairs, this number of mutations per chromosome means that the
rate of mutations is about 1x1078 per DNA base pair per generation in
the germline of many animals. The somatic mutation rate appears to be
at least one order of magnitude higher (~1x10~7) than the germline mu-
tation rate (Lynch, 2016). With ~100 de novo mutations inherited via the
germline and many somatic cells (~102T), every animal is expected to carry
~10%* mutations. This means that most of the genome has mutated many
times across all cells in a body, but these mutations are spread throughout
the body (Lynch, 2016). Although somatic mutations are not inherited, they
can affect phenotypes such as germline mutations if they occur in key genome
regions. However, most somatic mutations are not spread across the entire
body. Cancer is likely the most prominent condition caused by somatic mu-
tations. The effect of mutations, germline or somatic, can be negative or
positive. Sometimes this effect depends on the environment.

Although mutation is the source of new DNA variation, recombination
and segregation create new combinations from existing DNA in parents and
pass these combinations to offspring. Recombination and segregation occur
during meiosis, the process through which germline cells produce gametes,
such as sperm and ova. Each gamete contains half of the original set of
DNA molecules. Which half a gamete receives is random and is referred to
as Mendelian sampling. Recombination and segregation can generate many
combinations, which enable a continued response to selection from year to
year. However, this newly created variation with each new generation makes
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it challenging to estimate the genetic values of newborn animals. Figure 5.10
shows a diploid cell going through meiosis. For simplicity, we show only one
chromosome pair in a cell, colour each chromosome instance differently, as-
sume that the chromosome is only six base pairs long, and omit the actual
DNA base pairs. Although there are several steps in meiosis, we show only
four. In the first step, each chromosome copy is doubled into two chromatids.
In the second step, crossovers and recombinations occur, where chromatids
can exchange DNA. When DNA is exchanged between paternally and ma-
ternally derived chromatids, we have recombination. Which chromatids and
which parts are exchanged are largely random events. In the third step, the
cell divides into two diploid cells. In the fourth step, each diploid cell splits
and we get four haploid gametes. The gametes are now ready for the final
act of DNA lottery, segregation. Namely, which of the generated gametes
will give rise to an offspring is again down to random events. Note that in
the DNA replication and recombination steps, there is a chance for germline
mutations to occur.

1 Diploid Doubled Recombined 2 Diploid 4 Haploid
cell DNA DNA cells gametes

N
=

Figure 5.10: Meiosis process of one diploid cell with one chromosome pair
producing four haploid gametes (CC BY 4.0)

!
1

To appreciate the amount of DNA variation we can get from combining
existing DNA variation, let us first look at the number of chromosome combi-
nations we can get in gametes from segregation only, without recombination.
With one pair of chromosomes, we can get two combinations of chromosomes
in gametes - [a light one = 1L] (the top gamete in Figure 5.10) and [a dark
one = 1D] (the bottom gamete in Figure 5.10). The acronym “1L” refers to
the first chromosome and its lightly coloured copy. With two pairs of chro-
mosomes, we can get four combinations of chromosomes in gametes - [1L,
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2L], [1L, 2D], [1D, 2L], and [1D, 2D]. With three pairs of chromosomes, we
can get eight chromosome combinations in gametes. With n chromosomes,
we can get 2" chromosome combinations in gametes. For example, cattle
have 30 chromosome pairs, giving 23° = 1,073, 741,824 (more than a billion,
~10%) possible combinations of chromosomes in gametes. This is the number
of possible combinations of chromosomes in gametes in one parent, assuming
no recombination.

As we saw in Figure 5.10, some chromosomes had no recombinations and
some had one. We usually get about one recombination per generated chro-
mosome of ~10® bases, but we can get no recombination or more than one.
Hence, the recombination rate is about 1x10~® per base pair per generation,
like the germline mutation rate. The number and placement of recombina-
tions are largely random events. Although the number of recombinations is
not large, random placement adds many possible combinations of chromo-
somes in gametes on top of segregation.

The seemingly simple process of meiosis can generate a staggering amount
of DNA variation by recombining and segregating the parental chromosomes.
This process drives the genetic relationships between animals. To put this in
the context of relatives, we show a three-generation pedigree in Figure 5.11.
This figure shows two siblings (G and H), their two parents (E and F') and four
grandparents (A, B, C, and D). As before, we show only one chromosome pair
with six loci. We have four diploid grandparents, hence eight chromosome
instances. To simplify the tracking of genetic inheritance within this pedigree,
we coloured the chromosomes and numbered their loci according to grand-
parental origin. Also, we use a convention that the top chromosome is of
paternal origin, and the bottom chromosome is of maternal origin. There
is no such ordering in an actual cell. Do not confuse this “descent-based”
encoding of alleles (and the related concept of identity-by-descent) with the
“state-based” encoding (and the related concept of identity-by-state) that we
have used up to now when we described DNA variation. Behind the descent-
based encoding of alleles with numbers 1, 2, ..., and 8 are DNA base pairs
with the corresponding stated-based encoding of alleles with numbers 0 and
1, respectively, for reference and alternative alleles.

Inspecting Figure 5.11, we can see that an animal always receives 50%
of DNA from each parent. Still, there is variation in which half of the par-
ent’s DNA is received due to recombination and segregation. Due to this
sampling, an animal might not inherit DNA from one of his grandparents
in a particular region of the genome. This means that recombination and
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Figure 5.11: Inheritance of DNA between generations of a pedigree — alleles
are represented by descent-based encoding (CC BY 4.0)

segregation are sampling different ancestral lineages along the genome for
each newborn animal. For example, the animal G did not inherit DNA from
the grandmother A. Across multiple pairs of chromosomes, we expect that
a grandchild inherits 25% of DNA from each grandparent on average. How-
ever, there will be variation around this expectation due to recombination
and segregation. Similarly, we expect that siblings share 50% of DNA on
average, but there is variation around this expectation due to recombination
and segregation.

We can formalise the above observations by relating the genetic value of
an individual g; with the genetic value of its father (sire) gy(;) and its mother

(dam) Im(i):

Gi = Y2950 + 1/29m(i) + 7y,

where p(i) gives the parent of the individual ¢, 1/2g () + 1/2gm(;) is the parent
average, the expected genetic value of an individual given the genetic values
of its parents F (gi|gf(i),gm(i)) = 1/2g44:) + Y/20m@), and 7; is the Mendelian
sampling deviation, the deviation of individuals’ genetic value from the par-
ent average r; = g; — (1/2gf(,-) + 1/2gm(i)). Note that TODO

The above model is sometimes referred to as pedigree regression, where we
regress the genetic value of an individual to the genetic values of its parents
to get the expected value, while deviations from the regression lines are due
to Mendelian sampling. To further connect this formalism with Figure 5.11,
note that the genetic value of an individual is a sum of the genetic values
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of its two chromosome (genome) copies (g;1 and ¢;2). Each chromosome
(genome) copy originates from a parent, which also has two chromosome
(genome) copies and passes a combination of these to its progeny. Hence,
we can split the individual’s genetic value, parent average, and Mendelian
sampling terms per parent source as:

9i = 9i1 T Gi2,
Gi1 = Y2901 + Y2976),2 + Tias
Gi1 = Y29m@)1 + Y20m@),2 + Ti2-

Because the genetic values of individuals are a sum of their genetic values
across the causal loci, we can show the connection between the genetic values
of an individual and its parents along the causal loci as a sum of locus genetic
values for each parental chromosome (genome) (giving the parent average)
and a sum of locus deviations (giving the Mendelian sampling term):

k
9i = Z (gi10 + Gi2i) s

=1
k

gi1 = Z (Yog56),00 + Y2956),20 + Ti1a)
=1
k

gi1 = Z (1/2gm(i),1,l + Y/2Gmi),20 + 7"1',2,1) :
=1

where the summation is across the k causal loci 1,2,...,k, g;,; is the
genetic value of the individual ¢ in the genome set s at the causal locus
[, and r;4; is the corresponding Mendelian sampling deviation. The above
formulation shows how the parent average and Mendelian sampling deviation
of an individual’s genetic value result from DNA inheritance from its parents.

Understanding the variation of genetic values between families (that is,
between family parent averages) and within families (that is, between Mendelian
sampling deviations within families) is important for various breeding op-
erations. Figure 5.12 demonstrates this variation for two half-sib families
originating from crossing parent A with B and parent C with B. Here, we
assume that such crosses can produce many progeny. If this is not possible,
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the figure shows the extent of possible variation between potential progeny.
There are three notable observations in Figure 5.12. First, progeny genetic
values are distributed around their parent average in line with the above-
mentioned theory. Second, there is substantial variation within the family
due to Mendelian sampling. Third, some genetic values of the progeny are be-
low or above parental genetic values, again indicating the extent of Mendelian
sampling. Importantly, this variation has been generated from only six causal
loci on one chromosome. Many more causal loci on multiple chromosomes
will influence many traits, generating even more variation.

Parent A Parent B Parent C
[+1] o] of+1] o[-2] 0o [ of+2]-1] of o]-2]-1 [+1] of-1]+1]+1] o]+2

[ o] of of of o[-2]-2 [+1]+2]-1[+1] o] o]+3 [+1][+2] of+1] of o]+
8=10+(0+-2) 12=10+(-1+3) 16=10+(2+4)

~ . —

6 8 10 12 14 16 18
Baseline + Genetic value

Figure 5.12: Example of genetic variation between and within two half-sib
families due to variation in parental genetic values (parent averages) and
Mendelian sampling — at the top are parental haplotypes with allele values
and associated haplotype and genotype values, while at the bottom are two
distributions of progeny genetic values in the families (dark bars represent
progeny from crossing parent A with B and light bars represent progeny
from crossing parent C with B) with overlaid vertical lines denoting parental
genetic values (full line) and parent averages (dashed line) — all genetic values
have the baseline value of 10 added (CC BY 4.0)

To further appreciate the magnitude of the variation between and within
families, we can assess how much genetic variance is due to variation between
and within families. We will address this topic more extensively in Chapter
3, but here we give the standard result by decomposing the genetic variance
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according to the pedigree regression. In the following, we assume that par-
ents are randomly sampled from a population, not inbred, and unrelated.
Under such conditions, genetic variation in a population is 50% due to vari-
ation between families and 50% due to variation within families. This result
is important because it shows the extent of variation we can expect from
combining parental genomes (=between-family or parent average variation)
and from recombining and segregating parental genomes (=within=family or
Mendelian sampling variation).

Var (g;) = Var (1/29f(i) + 1/2gm(i) + 7“1') )

o2 =Var (Yagsu) + Var (Vegme) + Var (r;)

= 1aVar (gf(i)) + YaVar (gm(i)) + Var(r;),
= Yao? + Yoy + Var (ry)

= 1/203 + 1/203.

Finally, when we combine genetic variation between and within family
with environmental variation (Figure 5.13), we start to appreciate the chal-
lenge of estimating unknown genetic values of individuals from data. That
is, Figure 5.13 shows the variation of a sample of phenotypic values based on
the genetic values of Figure 5.12. From the genetic values of parents equal
to 8, 12, and 16 units, we generated progeny phenotypic values with a range
between 0 and 25 units. And this phenotype variation does not yet include
other factors, such as sex, farm, and other effects, which would increase the
phenotypic variance even more. This book describes methods to estimate ge-
netic values from collected data - from a combination of collected phenotypic,
pedigree, and genomic data.

5.6 Additional points

To close this chapter, we point to the different types of traits, multiple traits,
genotype-by-environment interactions, and biological versus statistical ge-
netic effects. In the introduction of this chapter, we mentioned traits that
do not have a continuous distribution. The genomic and phenotypic data
generation processes presented above can also be used for traits with other
distributions. When we used Fisher’s linear phenotype decomposition, we
implicitly used the normal (Gaussian) distribution, assuming a linear link
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Figure 5.13: Variation of a sample of phenotypic values with heritability of
0.5 between and within two half-sib families relative to the genetic values of
parents (full vertical lines) and corresponding parent average (dashed vertical
lines) - see also Figure 5.12 (CC BY 4.0)
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function between phenotype values and their components. We can relax this
assumption with generalised linear models that work with additional distri-
butions and corresponding link functions. An example of such a model is
shown in Chapter 15.

Furthermore, we have described the data generation model for a single
trait only, but the same framework can also be used for multiple traits. The
key extension for multiple traits is the addition of genetic and environmental
effects for each trait with corresponding variances and covariances among
these effects. When we measure the same trait in different environments, we
can consider the expression of the trait in different environments as multiple
traits with environment-specific genetic effects that represent genotype-by-
environment interactions.

Finally, in this chapter, we focused solely on additive genetic effects. As
described, we do not know the true biological model that generates phenotype
values because of the complex underlying biology. Above, we have described
a conceptual data generation model following Fisher’s linear decomposition
of phenotypic values. In these models, the additive genetic effects capture
most of the genetic variance (Hill et al., 2008). However, these additive
genetic effects are so-called statistical effects — estimated statistically from
the data at hand - and are therefore data dependent. This means that
statistical additive genetic effects likely capture additive genetic variance and
a part of non-additive genetic variance. In chapter 13, we describe models
for estimating additive and non-additive genetic effects.
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