This document will demonstrate the quantitative genetic of heterosis and show heterosis in an example maize simulation.

Quantitative genetics of heterosis

The below simulation will show different types of heterosis presented in the Labroo et. al. figure.

# Selfing removes half of inbred midparent heterosis
meanG(F2_self) - (meanG(A_inbred)+meanG(B_inbred))/2
  Trait1 
5.977354 

Maize example

The below script simulates a maize population using parameters determined by after tuning. It will also show the correlation between per se and testcross performance.

cor(GCA$GCAm[,2], pheno(B))
         [,1]
[1,] 0.756952
LS0tCnRpdGxlOiAiUXVhbnRpdGF0aXZlIEdlbmV0aWNzOiBEb21pbmFuY2UgRWZmZWN0cywgUGFydCAyIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpUaGlzIGRvY3VtZW50IHdpbGwgZGVtb25zdHJhdGUgdGhlIHF1YW50aXRhdGl2ZSBnZW5ldGljIG9mIGhldGVyb3NpcyBhbmQgc2hvdyBoZXRlcm9zaXMgaW4gYW4gZXhhbXBsZSBtYWl6ZSBzaW11bGF0aW9uLgoKIyMgUXVhbnRpdGF0aXZlIGdlbmV0aWNzIG9mIGhldGVyb3NpcwoKVGhlIGJlbG93IHNpbXVsYXRpb24gd2lsbCBzaG93IGRpZmZlcmVudCB0eXBlcyBvZiBoZXRlcm9zaXMgcHJlc2VudGVkIGluIHRoZSBMYWJyb28gZXQuIGFsLiBmaWd1cmUuCgpgYGB7cn0KbGlicmFyeShBbHBoYVNpbVIpCgojIEFkZGluZyBhIHNwbGl0IGluIGNvYWxlc2NlbnQgc2ltdWxhdGlvbiB0byBtb2RlbCAyIHBvcHVsYXRpb25zIHRoYXQKIyBkaXZlcmdlIDEwMCBnZW5lcmF0aW9ucyBhZ28KZm91bmRlclBvcCA9IHJ1bk1hY3MobkluZD0yMDAsIG5DaHI9MTAsIHNlZ1NpdGVzPTEwMDAsIAogICAgICAgICAgICAgICAgICAgICBzcGxpdD0xMDApCgpTUCA9IFNpbVBhcmFtJAogIG5ldyhmb3VuZGVyUG9wWzE6MTAwXSkkCiAgYWRkVHJhaXRBRCgxMDAwLCBtZWFuREQ9MC4yLCB2YXJERD0wLjEpCgojIFNwbGl0dGluZyB0aGUgdHdvIHBvcHVsYXRpb25zIGluIGZvdW5kZXJQb3AgaW50byB0d28gc2VwYXJhdGUgcG9wdWxhdGlvbnMKQSA9IG5ld1BvcChmb3VuZGVyUG9wWzE6MTAwXSkKQiA9IG5ld1BvcChmb3VuZGVyUG9wWzEwMToyMDBdKQoKIyBDcmVhdGluZyBmdWxseSBpbmJyZWQgdmVyc2lvbnMgb2YgdGhlIHR3byBwb3B1bGF0aW9ucwpBX2luYnJlZCA9IG1ha2VESChBKQpCX2luYnJlZCA9IG1ha2VESChCKQoKIyBDcmVhdGluZyBhbiBGMSBoeWJyaWRzIGJldHdlZW4gcG9wdWxhdGlvbnMgQSBhbmQgQgpGMSA9IGh5YnJpZENyb3NzKEEsIEIpCgojIENyZWF0aW5nIEYxIGh5YnJpZHMgdXNpbmcgdGhlIGluYnJlZCBwb3B1bGF0aW9ucwpGMV9pbmJyZWQgPSBoeWJyaWRDcm9zcyhBX2luYnJlZCwgQl9pbmJyZWQpCgojIENyZWF0aW5nIGFuIEYyIHBvcHVsYXRpb24gYnkgcmFuZG9tIG1hdGluZyB0aGUgRjFzCkYyID0gcmFuZENyb3NzKEYxLCBuQ3Jvc3Nlcz0xMDAwMCkKCiMgRXhhbWluZSB0aGUgbWVhbnMgb2YgdGhlIGluaXRpYWwgcG9wdWxhdGlvbnMKbWVhbkcoQSkKbWVhbkcoQikKCiMgRXhhbWluZyB0aGUgbWVhbnMgb2YgdGhlIGluYnJlZCBwb3B1bGF0aW9ucwptZWFuRyhBX2luYnJlZCkKbWVhbkcoQl9pbmJyZWQpCgojIEV4YW1pbmUgdGhlIG1lYW5zIG9mIHRoZSBGMSBwb3B1bGF0aW9ucwojIFRoZXkgc2hvdWxkIGJlIGFwcHJveGltYXRlbHkgZXF1aXZhbGVudAptZWFuRyhGMSkKbWVhbkcoRjFfaW5icmVkKQoKIyBFeGFtaW5pbmcgbWVhbiBvZiBGMgptZWFuRyhGMikKCiMgUGFubWljdGljIE1pZHBhcmVudCBIZXRlcm9zaXMKbWVhbkcoRjEpIC0gKG1lYW5HKEEpK21lYW5HKEIpKS8yCgojIEluYnJlZCBNaWRwYXJlbnQgSGV0ZXJvc2lzCm1lYW5HKEYxKSAtIChtZWFuRyhBX2luYnJlZCkrbWVhbkcoQl9pbmJyZWQpKS8yCgojIEJhc2VsaW5lIEhldGVyb3NpcwoobWVhbkcoQSkrbWVhbkcoQikpLzIgLSAobWVhbkcoQV9pbmJyZWQpK21lYW5HKEJfaW5icmVkKSkvMgoKIyBGMiBIZXRlcm9zaXMgKGFib3V0IGhhbGYgb2YgcGFubWljdGljIG1pZHBhcmVudCBoZXRlcm9zaXMpCm1lYW5HKEYyKSAtIChtZWFuRyhBKSttZWFuRyhCKSkvMgoKCiMjIEV4dHJhIG5vdCBpbiBoZXRlcm9zaXMgZmlndXJlCgojIENyZWF0ZSBGMiBieSBzZWxmaW5nIEYxCkYyX3NlbGYgPSBzZWxmKEYxKQoKIyBTZWxmaW5nIHJlbW92ZXMgaGFsZiBvZiBpbmJyZWQgbWlkcGFyZW50IGhldGVyb3NpcwptZWFuRyhGMl9zZWxmKSAtIChtZWFuRyhBX2luYnJlZCkrbWVhbkcoQl9pbmJyZWQpKS8yCgpgYGAKCgojIyBNYWl6ZSBleGFtcGxlCgpUaGUgYmVsb3cgc2NyaXB0IHNpbXVsYXRlcyBhIG1haXplIHBvcHVsYXRpb24gdXNpbmcgcGFyYW1ldGVycyBkZXRlcm1pbmVkIGJ5IGFmdGVyIHR1bmluZy4gSXQgd2lsbCBhbHNvIHNob3cgdGhlIGNvcnJlbGF0aW9uIGJldHdlZW4gcGVyIHNlIGFuZCB0ZXN0Y3Jvc3MgcGVyZm9ybWFuY2UuCgpgYGB7cn0KZm91bmRlclBvcCA9IHJ1bk1hY3MobkluZD0yMDAsIG5DaHI9MTAsIHNlZ1NpdGVzPTMwMCwgCiAgICAgICAgICAgICAgICAgICAgIHNwbGl0PTEwMCwgc3BlY2llcz0iTUFJWkUiLCBpbmJyZWQ9VFJVRSkKClNQID0gU2ltUGFyYW0kCiAgbmV3KGZvdW5kZXJQb3BbMToxMDBdKSQKICBhZGRUcmFpdEFEKDMwMCwgCiAgICAgICAgICAgICBtZWFuPTcwLCAjIEJ1c2hlbHMgcGVyIGFjcmUgCiAgICAgICAgICAgICB2YXI9MjAsICMgSW5icmVkIHZhcmlhbmNlCiAgICAgICAgICAgICBtZWFuREQ9MC45MiwgCiAgICAgICAgICAgICB2YXJERD0wLjMpJAogIHNldFZhckUoSDI9MSkKCiMgQ3JlYXRlIGluYnJlZCBwb3B1bGF0aW9ucwpBID0gbmV3UG9wKGZvdW5kZXJQb3BbMToxMDBdKQpCID0gbmV3UG9wKGZvdW5kZXJQb3BbMTAxOjIwMF0pCgojIENyZWF0ZSBhbGwgcG9zc2libGUgaHlicmlkcwpGMSA9IGh5YnJpZENyb3NzKEEsIEIpCgojIEV4YW1pbmUgbWVhbnMgb2YgcG9wdWxhdGlvbnMKbWVhbkcoQSkKbWVhbkcoQikKbWVhbkcoRjEpCgojIEV4YW1pbmUgdmFyaWFuY2VzCnZhckcoQSkKdmFyRyhCKQp2YXJHKEYxKQoKIyBDYWxjdWxhdGluZyBHQ0EgdXNpbmcgYnVpbHQtaW4gZnVuY3Rpb25zIGFuZCBtZWFzdXJpbmcKIyBHQ0EgLSBwZXIgc2UgY29ycmVsYXRpb24KR0NBID0gY2FsY0dDQShGMSwgdXNlPSJndiIpCgpoZWFkKEdDQSRHQ0FmKQoKY29yKEdDQSRHQ0FmWywyXSwgZ3YoQSkpCgpjb3IoR0NBJEdDQW1bLDJdLCBndihCKSkKCiMgVGVzdGNyb3NzIHdpdGggMSB0ZXN0ZXIKCkEgPSBzZXRQaGVub0dDQShBLCB0ZXN0ZXJzPUJbMV0pCkIgPSBzZXRQaGVub0dDQShCLCB0ZXN0ZXI9QVsxXSkKCmNvcihHQ0EkR0NBZlssMl0sIHBoZW5vKEEpKQpjb3IoR0NBJEdDQW1bLDJdLCBwaGVubyhCKSkKCiMgVGVzdGNyb3NzIHdpdGggMyB0ZXN0ZXJzCgpBID0gc2V0UGhlbm9HQ0EoQSwgdGVzdGVycz1CWzE6M10pCkIgPSBzZXRQaGVub0dDQShCLCB0ZXN0ZXI9QVsxOjNdKQoKY29yKEdDQSRHQ0FmWywyXSwgcGhlbm8oQSkpCmNvcihHQ0EkR0NBbVssMl0sIHBoZW5vKEIpKQpgYGAKCg==