Molecular Breeding Values for MAS or GS

Jack Dekkers

Accuracy of Genomic Predictions After Goddard et al. (2011, JABG 128);

 notation after Dekkers (2007, JABG 124)

Accuracy of \hat{Q} as a predictor of $G=r_{M B V}=q \mathbf{r}_{\hat{Q}}$
Model for phenotype: $\mathrm{P}=\mathrm{G}+\mathrm{E} \quad$ Trait heritability $=\mathrm{h}^{2}$
Model for $\mathrm{BV}: \quad \mathrm{G}=\mathrm{Q}+\mathrm{R}$
$\mathrm{G}=$ total BV
$\mathrm{Q}=$ genetic effects captured by marker(s)
$\mathrm{R}=$ residual polygenic effects
$\sigma_{\mathrm{G}}^{2}=\sigma_{\mathrm{Q}}^{2}+\sigma_{\mathrm{R}}^{2} \quad \sigma_{\mathrm{Q}}^{2}=\mathrm{r}^{2}{ }_{\mathrm{M}-\mathrm{QTL}} * 2 \mathrm{pq} \alpha^{2}$ for single marker in LD ($=\mathrm{r}^{2}{ }_{\mathrm{M} \text {-QTL }}$) with 1 QTL
$\mathrm{q}^{2}=\sigma_{\mathrm{Q}}^{2} / \sigma_{\mathrm{G}}^{2} \quad=$ proportion of genetic variance captured by markers
(i.e. with infinite training size)

- depends on marker-QTL

LD/linkage/relationships
$q^{2}=M /\left(M_{e}+M\right) \quad$ for GS with many QTL and markers and QTL have similar properties (MAF). q^{2} is often lower.
with $\quad \mathrm{M}_{\mathrm{e}}=2 \mathrm{~N}_{\mathrm{e}} \mathrm{Lk} / \ln \left(\mathrm{N}_{\mathrm{e}} \mathrm{L}\right) \quad$ or $=2 \mathrm{~N}_{\mathrm{e}} \mathrm{Lk} / \ln \left(2 \mathrm{~N}_{\mathrm{e}}\right)$
$\mathrm{M}=$ number of markers
$M_{e}=$ effective number of independent chromosome
segments segregating in the population
$\mathrm{N}_{\mathrm{e}}=$ effective population size
$\mathrm{L}=$ average length of a chromosome in Morgan
$\mathrm{k}=$ number of chromosomes
$\hat{\mathrm{Q}}=$ Molecular Breeding Value (MBV)
$=$ estimate of Q based on "training data"
$\mathrm{Q}=\hat{\mathrm{Q}}+\mathrm{e} \quad \mathrm{e}=$ prediction error
$\mathbf{r}_{\hat{\mathbf{Q}}}=\operatorname{Corr}(\hat{\mathrm{Q}}, \mathrm{Q})=$ Accuracy with which Q is estimated by markers
$\mathbf{r}_{\hat{\mathbf{Q}}}^{2}=\theta /(1+\theta) \quad$ for genomic selection with many small QTL
with $\quad \theta=\mathrm{Tq}^{2} \mathrm{~h}^{2} / \mathrm{M}_{\mathrm{e}} \quad$ (Goddard et al. 2011 JABG)
Note: $q^{2} h^{2}=$ marker-based h^{2}
Accuracy of \hat{Q} as a predictor of $G=r_{M B V}=q \mathbf{r}_{\hat{Q}}$

$$
\mathbf{r}_{\text {MBV }}{ }^{2}=\lambda h^{2} /\left(\lambda h^{2}+1\right) \text { with } \lambda=T / M_{e} \text { with } \mathrm{M}_{\mathrm{e}}=2 \mathrm{~N}_{\mathrm{e}} \mathrm{Lk}
$$

Assumes complete genome coverage $\left(\mathrm{q}^{2}=1\right)$

Correction when $T \gg M_{e} \quad r_{M B V}^{2}$ corrected $=r_{M B V}^{2}\left(1+r_{M B V}^{4} M_{e} / 2 T\right)$
Accounts for reduction in residual variance with accurate prediction.

See spreadsheet GS_accuracy.xls

Additional issues (based in part on Goddard et al. 2011):

- Which N_{e} to use? Current or historical? Blend of current/historic N_{e}

$$
\text { (} \sim 340 \text { for Holstein - Goddard personal comm.) }
$$

N_{e} at $t=1 / 2 c$ generations in the past can be estimated from average LD $\left(r^{2}\right)$ between SNPs that are c cM apart (Hayes et al. 2003) based on:

$$
E\left(r_{c}^{2}\right)=\frac{1}{1+4 N_{e, t} c} \quad \Rightarrow \quad \hat{N}_{e, t}=\frac{1}{4 c}\left(\frac{1}{r_{c}^{2}}-1\right)
$$

- Predictive equations using $\mathbf{M}_{\mathbf{e}}$ assume many QTL with small effects.
- May underestimate accuracy from variable selection method when QTL of large effect segregate
- Predicted accuracies apply to an average individual.
- Accuracies will be higher for individuals that are more closely related to the training individuals.
- Presence of population structure affects accuracies (Daetwyler et al. 2012. JAS)
- \mathbf{M}_{e} needs to reflect the structure of the population
- $\mathbf{M}_{\mathbf{e}}$ smaller if the population is more closely related
- Goddard et al. (2011) provide equations to estimate $\mathbf{M}_{\mathbf{e}}$ from the observed relationship matrix.
- $\mathbf{M}_{\mathbf{e}}$ needs to reflect the relationship of target population with training population
- $\mathbf{M}_{\mathbf{e}}$ larger when predicting across breeds
- Accuracies scale ~equally with M_{e} and $\mathrm{T} \rightarrow$ Combinations with constant $\mathrm{T} / \mathrm{M}_{\mathrm{e}}$ have approximately equal accuracy
\rightarrow for stochastic simulation of smaller genomes, training population sizes need to be scaled accordingly (Meuwissen 2009).
\rightarrow if for a simulated genome of 10 chromosomes of 1 Morgan each (instead of 30 chromosomes of 1 Morgan), accuracy $=0.7$ with $\mathrm{T}=2,000$
$\rightarrow \mathrm{T}$ needs to be $3 * 2,000=6,000$ for a full genome.

References:

Goddard M.E. 2009. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136, 245-257.
Goddard M.E., Hayes B.J., Meuwissen T.H. 2011. Using the genomic relationship matrix to predict the accuracy of genomic selection. J Anim Breed Genet. 128:409-421.
Hayes B.J., Visscher P.M., Goddard M.E. 2009. Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res 91: 47-60.
Meuwissen, T. H. E. 2009. Accuracy of breeding values of 'unrelated' individuals predicted by dense SNP genotyping. Genet. Sel. Evol. 41:35.
Meuwissen, Hayes and Goddard. 2013. Accelerating improvement of livestock with genomic selection. Annu. Rev. Anim. Biosci. 1:221-237.

Incorporation MBV in Index Calculations of Total EBV (GEBV)

Lande and Thompson (1990, Genetics) index: $\quad I_{i}=b_{Q} \hat{Q}_{i}+b_{P} P_{i}$
$\hat{Q}_{i}=$ MBV for individual i, = individual's EBV based on markers alone
$P_{i}=$ individual's phenotype
$\mathrm{r}_{\mathrm{MBV}}=\mathrm{q} \mathrm{r}_{\hat{\mathrm{Q}}}=$ accuracy of MBV as a predictor of total BV G
$\mathrm{q}^{2}=\sigma_{Q}^{2} / \sigma_{G}^{2}=$ proportion of genetic variance captured by markers (with inf. train size)
Assuming unbiased MBV (regression of $\mathrm{G}($ or P$)$ on $\mathrm{MBV}=1$; if not then divide MBV by $\mathrm{b}_{\mathrm{P}, \mathrm{MBV}}$
to make it $=1$)

- $\operatorname{Variance}$ of $\mathrm{MBV}=\operatorname{Var}(\hat{Q})=r_{M B V}^{2} \sigma_{G}^{2}$
- $\operatorname{Cov}(\hat{Q}, \mathrm{P})=\operatorname{Cov}(\hat{Q}, \mathrm{G}) \quad=r_{M B V}^{2} \sigma_{G}^{2}$

Table 1. Example calculation of MBV and index of phenotype and MBV with 3 SNPs with allele substitution effect estimates (allele A vs. B) of $+10,+5$, and -10 for for SNPs 1, 2, 3. The SNPs jointly explain 50% of the genetic variance for a trait with heritability 0.5 . Resulting index weights on MBV and phenotype are $2 / 3$ and $1 / 3$, respectively.

	QTL 1		QTL 2		QTL 3				Index Animal
	venotype	Value	Genotype		Value	Genotype Value	MBV	Phenotype	value
1	AA	10	AA	5	AA	-10	5	35	15.0
2	AA	10	AA	5	BB	10	25	-10	13.3
3	AB	0	BB	-5	AB	0	-5	-15	-8.3
4	AB	0	BB	-5	AA	-10	-15	15	-5.0
5	BB	-10	AA	5	AB	0	-5	25	5.0

$$
\text { GEBV }=I_{i}=b_{Q} \hat{Q}_{i}+b_{P} P_{i} \quad \text { Derive optimal index weights by sel. index theory: }
$$

$$
\left[\begin{array}{l}
b_{Q} \\
b_{P}
\end{array}\right]=\mathbf{P}^{-1} \mathbf{G}=\left[\begin{array}{cc}
r_{M B V}^{2} \sigma_{G}^{2} & r_{M B V}^{2} \sigma_{G}^{2} \\
r_{M B V}^{2} \sigma_{G}^{2} & \sigma_{P}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
r_{M B V}^{2} \sigma_{G}^{2} \\
\sigma_{G}^{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1-h^{2}}{1-r_{M B V}^{2} h^{2}} \\
h^{2} \frac{\left(1-r_{M B V}^{2}\right)}{1-r_{M B V}^{2} h^{2}}
\end{array}\right]
$$

Thus, the relative weight on the MBV relative to phenotype is: $\frac{b_{Q}}{b_{P}}=\frac{1 / h^{2}-1}{1-r_{M B V}^{2}}$

Table 2. Index weight on molecular score relative to phenotype (b_{Q} / b_{P}) for different heritabilities and accuracy of MBV.

Heritability	Squared accuracy of MBV $\left(r_{M B V}^{2}\right)$				
$\left(h^{2}\right)$	0.10	0.25	0.50	0.75	1.00
0.10	10	12	18	36	Total weight
0.25	3.33	4	6	12	Total weight
0.50	1.11	1.33	2	4	Total weight
0.75	0.37	0.44	0.67	1.33	Total weight
1.00	0	0	0	0	Either

The Lande and Thompson (1990) formulation of the index can be extended to situations where phenotypes of relatives are used:

$$
\mathrm{GEBV}=I=\mathbf{b}^{\prime} \mathbf{X}=\left[\mathbf{b}_{\mathbf{Q}}^{\prime}, \mathbf{b}_{\mathbf{P}}^{\prime}\right]\left[\begin{array}{l}
\mathbf{X}_{\mathbf{Q}} \\
\mathbf{X}_{\mathbf{P}}
\end{array}\right]
$$

$\mathbf{X}_{\mathrm{Q}}=$ vector with marker-based EBV on the individual itself and/or its relatives $\mathbf{X}_{\mathrm{P}}=$ vector with phenotypic records on the individual itself and/or its relatives

$$
\mathbf{b}=\left[\begin{array}{c}
\mathbf{b}_{\mathrm{Q}} \\
\mathbf{b}_{\mathrm{P}}
\end{array}\right]=\mathbf{P}^{-1} \mathbf{G}=\left[\begin{array}{cc}
\operatorname{Var}\left(\mathbf{X}_{\mathrm{Q}}\right) & \operatorname{Cov}\left(\mathbf{X}_{\mathrm{Q}}, \mathbf{X}_{\mathrm{P}}^{\prime}\right) \\
\operatorname{Cov}\left(\mathbf{X}_{\mathrm{P}}, \mathbf{X}_{\mathrm{Q}}^{\prime}\right) & \operatorname{Var}\left(\mathbf{X}_{\mathrm{P}}\right)
\end{array}\right]^{-1}\left[\begin{array}{c}
\operatorname{Cov}\left(\mathbf{X}_{\mathrm{Q}}, \mathrm{G}\right) \\
\operatorname{Cov}\left(\mathbf{X}_{\mathrm{P}}, \mathrm{G}\right)
\end{array}\right]
$$

Elements ij of all matrices and vectors that involve $\mathbf{X}_{\mathrm{Q}}=\mathrm{a}_{\mathrm{ij}} r_{M B V}^{2} \sigma_{\mathrm{G}}^{2} \quad \mathrm{a}_{\mathrm{ij}}=$ genetic relationship

These methods can also be extended to include data on multiple traits and multiple trait breeding goals (see Lande and Thompson 1990).

$$
\text { Accuracy of GEBV }=\mathbf{r}_{\text {GEBV }}=\sqrt{\frac{\mathbf{b}^{\prime} \mathbf{G}}{\sigma_{G}^{2}}}
$$

It is useful to note that the index GEBV $=I_{i}=b_{Q} \hat{Q}_{i}+b_{P} P_{i} \quad$ can be reparameterized into an equivalent index of MBV and the phenotype adjusted for the MBV as follows:

$$
\mathrm{GEBV}=I_{i}^{\prime}=b_{Q}^{\prime} \hat{Q}_{i}+b_{P}^{\prime} P_{i}^{\prime} \quad \text { with } \quad P_{i}^{\prime}=P_{i}-\hat{Q}_{i}
$$

Residual heritability $=$ heritability of phenotype adjusted for the MBV:

$$
\begin{gathered}
h_{P^{\prime}}^{2}=\frac{\sigma_{G}^{2}-r_{M B V}^{2} \sigma_{G}^{2}}{\sigma_{P}^{2}-r_{M B V}^{2} \sigma_{G}^{2}}=\frac{h^{2}\left(1-r_{M B V}^{2}\right)}{1-r_{M B V}^{2} h^{2}} \\
{\left[\begin{array}{c}
b_{Q}^{\prime} \\
b_{P}^{\prime}
\end{array}\right]=\mathbf{P}^{-1} \mathbf{G}=\left[\begin{array}{cc}
r_{M B V}^{2} \sigma_{G}^{2} & 0 \\
0 & \sigma_{P}^{2}-r_{M B V}^{2} \sigma_{G}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
r_{M B V}^{2} \sigma_{G}^{2} \\
\sigma_{G}^{2}-r_{M B V}^{2} \sigma_{G}^{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
h_{P^{\prime}}^{2}
\end{array}\right]}
\end{gathered}
$$

Thus, the resulting index is: $\quad I_{i}^{\prime}=\hat{G}_{i}=\hat{Q}_{i}+h_{P}^{2} P_{i}^{\prime}$

Advantage of index I^{\prime} over index I is that its index weights remain constant over generations as the variance of MBV changes (with changing marker frequencies)

Note: $h_{P}^{2} P_{i}^{\prime}=$ individual's EBV for polygenes, \hat{Q}_{i}, based on own phenotype adjusted for the QTL.

This index can be expanded to BLUP EBV from a model that includes QTL or markers as a fixed or random effect.
Such models result in estimates of molecular scores, \hat{Q}_{i}, and EBV for residual genetic effects, \hat{R}_{i}, with accuracy $\mathrm{r}_{\hat{R}}$.

Index weights for combining these two estimates, realizing that the variance of Residual EBV is equal to $r_{\hat{R}}^{2} \sigma_{R}^{2}$, where $\sigma_{R}^{2}=h_{P^{\prime}}^{2}\left(\sigma_{P}^{2}-r_{M B V}^{2} \sigma_{G}^{2}\right)$ is the polygenic variance, can be derived as:

$$
\left[\begin{array}{c}
b_{Q}^{\prime} \\
b_{P}^{\prime}
\end{array}\right]=\mathbf{P}^{-1} \mathbf{G}=\left[\begin{array}{cc}
r_{M B V}^{2} \sigma_{G}^{2} & 0 \\
0 & \mathrm{r}_{\hat{R}}^{2} \sigma_{R}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
r_{M B V}^{2} \sigma_{G}^{2} \\
\mathrm{r}_{\hat{R}}^{2} \sigma_{R}^{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Thus the GEBV is: $\quad I_{i}^{\prime}=\hat{G}_{i}=\hat{Q}_{i}+\hat{R}_{i}$

Predicting Response to Marker-Assisted or Genomic Selection

Standard selection index theory can be used to predict responses to selection on GEBV, assuming multi-variate normality.
Consider the previously derived selection index of MBV and own phenotype:

$$
\begin{aligned}
& \text { GEBV }=I_{i}=b_{Q} \hat{Q}_{i}+b_{P} P_{i} \\
& \qquad\left[\begin{array}{c}
b_{Q} \\
b_{P}
\end{array}\right]=\mathbf{P}^{-1} \mathbf{G}=\left[\begin{array}{cc}
r_{M B V}^{2} \sigma_{G}^{2} & r_{M B V}^{2} \sigma_{G}^{2} \\
r_{M B V}^{2} \sigma_{G}^{2} & \sigma_{P}^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
r_{M B V}^{2} \sigma_{G}^{2} \\
\sigma_{G}^{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1-h^{2}}{1-r_{M B V}^{2} h^{2}} \\
h^{2} \frac{\left(1-r_{M B V}^{2}\right)}{1-r_{M B V}^{2} h^{2}}
\end{array}\right]
\end{aligned}
$$

The accuracy of this index and response to selection can be derived by standard selection index theory as:

$$
\begin{aligned}
r_{G E B V} & =\sqrt{\frac{\mathbf{b}^{\prime} \mathbf{G}}{\sigma_{\mathbf{G}}^{2}}}=\sqrt{\left[\frac{1-h^{2}}{1-r_{M B V}^{2} h^{2}} h^{2} \frac{\left(1-r_{M B V}^{2}\right)}{1-r_{M B V}^{2} h^{2}}\right]\left[\begin{array}{c}
r_{M B V}^{2} \\
1
\end{array}\right]} \\
& =\sqrt{\frac{r_{M B V}^{2}-2 r_{M B V}^{2} h^{2}+h^{2}}{1-r_{M B V}^{2} h^{2}}}=\sqrt{r_{M B V}^{2}+h^{2} \frac{\left(1-r_{M B V}^{2}\right)^{2}}{1-r_{M B V}^{2} h^{2}}}
\end{aligned}
$$

Similarly for the alternate index parameterization:
and

$$
\begin{aligned}
& \mathrm{GEBV}^{\prime}=I_{i}^{\prime}=b_{Q}^{\prime} \hat{Q}_{i}+b_{P}^{\prime} P_{i}^{\prime} \\
& r_{G E B V^{\prime}}=\sqrt{\frac{\mathbf{b}^{\prime} \mathbf{G}}{\sigma_{\mathbf{G}}^{2}}}=\sqrt{\left[\begin{array}{ll}
1 & h_{P^{\prime}}^{2}
\end{array}\right]\left[\begin{array}{c}
r_{M B V}^{2} \\
1-r_{M B V}^{2}
\end{array}\right]}=\sqrt{r_{M B V}^{2}+h_{P^{\prime}}^{2}\left(1-r_{M B V}^{2}\right)}
\end{aligned}
$$

Using $h_{P^{\prime}}^{2}=\frac{h^{2}\left(1-r_{M B V}^{2}\right)}{1-r_{M B V}^{2} h^{2}}$ it can be shown that $r_{G E B V}=r_{G E B V}$, i.e. the two indexes are equivalent
Assuming equal selection in males and females, with selection intensity i, response to selection can be predicted as:

$$
R_{\mathrm{MAS}}=i r_{G E B V} \sigma_{g}
$$

Response to phenotypic selection without QTL information is: $\quad R_{\mathrm{P}}=i h \sigma_{g}$
Thus, the efficiency of selection using marker information, defined as response to MAS relative to response without marker information, is given by:

$$
E=\frac{R_{\mathrm{MAS}}}{R_{\mathrm{p}}}=\frac{r_{G E B V}}{h}=\sqrt{\frac{r_{M B V}^{2}}{h^{2}}+\frac{\left(1-r_{M B V}^{2}\right)^{2}}{1-r_{M B V}^{2} h^{2}}}
$$

An equivalent equation can be derived using the alternate index I^{\prime} :

$$
E=\frac{R_{\mathrm{MAS}}}{R_{\mathrm{P}}}=\frac{r_{G E B V^{\prime}}}{h}=\frac{1}{h} \sqrt{r_{M B V}^{2}+h_{P^{\prime}}^{2}\left(1-r_{M B V}^{2}\right)}
$$

Modelling MBV as a Correlated Trait

When based on multiple regions/markers, marker-based EBV behave as a Mendelian inherited polygenic trait with heritability $=1$:

$$
\begin{aligned}
& \mathrm{MBV}=\hat{\mathrm{Q}}=\sum_{\mathrm{j}}\left(\hat{\mathrm{~g}}_{\mathrm{j}}^{\text {pat }}+\hat{\mathrm{g}}_{\mathrm{j}}^{\text {mat }}\right) \\
& \hat{\mathrm{g}}_{\mathrm{j}}^{\text {pat }} \text { and } \hat{\mathrm{g}}_{\mathrm{j}}^{\text {mat }}=\text { BLUP estimate of the effects of the paternal and } \\
& \text { maternal marker allele or haplotype for interval } \mathrm{j} .
\end{aligned}
$$

\rightarrow marker-based EBV represent estimates that can be viewed and modeled as a genetic trait that can be observed on individuals without error \rightarrow heritability $=1$.

This allows standard selection index software to be used to model genomic selection (e.g. SelAction), including modelling the Bulmer effect and methods for prediction of inbreeding.

Marker-based EBV, \hat{Q}, are estimates of genetic effects Q .

$$
\mathrm{Q}=\hat{\mathrm{Q}}+\mathrm{e} \quad \mathrm{e}=\text { prediction error }
$$

$\mathrm{r}_{\hat{\mathrm{Q}}}=$ accuracy of $\hat{\mathrm{Q}}$ as a predictor $\mathrm{Q},=$ correlation between Q and $\hat{\mathrm{Q}}$.

Then, the correlation of \hat{Q} with G, i.e. the accuracy of the $M B V$ is equal to $r_{M B V}=q r_{\hat{Q}}$

$$
=\text { accuracy of the marker-based EBV as a predictor of the total genetic value } \mathrm{G}
$$

Define marker-based EBV, $\hat{\mathrm{Q}}$, as a correlated trait with $\mathrm{h}^{2}=1$, along with the regular trait. Correlations required for selection index calculations (e.g., based on path diagram):

$$
\begin{array}{ll}
\text { Genetic correlation between traits: } & \mathrm{r}_{\mathrm{G} \hat{Q}}=\mathrm{qr}_{\hat{\mathrm{Q}}}=\mathrm{r}_{\mathrm{MBV}} \\
\text { Phenotypic correlation between traits: } & \mathrm{r}_{\mathrm{PQ} \hat{Q}}=\mathrm{hqr}_{\hat{\mathrm{Q}}}=\mathrm{hr}_{\mathrm{MBV}} \\
\text { Phenotypic and genetic st.dev of MBV } & =\mathrm{r}_{\mathrm{MBV}} \sigma_{\mathrm{G}}
\end{array}
$$

Use of these parameters results in variances and covariances that are identical to the elements in matrix \mathbf{P} and vector \mathbf{G} of the Lande \& Thompson (1990) index.

$$
\text { E.g.: } \quad \operatorname{Cov}\left(\hat{\mathrm{Q}}_{\mathrm{i}}, \mathrm{P}_{\mathrm{j}}\right)=\operatorname{Cov}\left(\hat{\mathrm{Q}}_{\mathrm{i}}, \mathrm{G}_{\mathrm{j}}\right)=\mathrm{a}_{\mathrm{ij}} \operatorname{Cov}(\hat{\mathrm{Q}}, \mathrm{G})=\mathrm{a}_{\mathrm{ij}} \mathrm{r}_{\mathrm{G} \hat{\mathrm{Q}}} \sigma_{\mathrm{G}} \mathrm{r}_{\mathrm{MBV}} \sigma_{\mathrm{G}}=\mathrm{a}_{\mathrm{ij}} \mathrm{r}_{\mathrm{MBV}}^{2} \sigma_{\mathrm{G}}^{2}
$$

Extension to multiple traits

$\rho_{\mathrm{G}_{12}}, \rho_{\mathrm{R}_{12}}$, and $\rho_{\mathrm{Q}_{12}}=$ genetic correlations traits 1 and 2 for the genetic components $\mathrm{G}, \mathrm{R}, \mathrm{Q}$.

$\mathrm{r}_{\mathrm{P}_{\mathrm{i}} \hat{\mathrm{Q}}_{\mathrm{j}}}=\mathrm{h}_{\mathrm{i}} \mathrm{r}_{\mathrm{G}_{\mathrm{i}} \hat{\mathrm{Q}}_{\mathrm{j}}}=\mathrm{h}_{\mathrm{i}} \mathrm{q}_{\mathrm{i}} \mathrm{r}_{\hat{Q}_{\mathrm{j}}} \rho_{\mathrm{Q}_{12}}$

With random allocation of markers $(\mathrm{GS}) \mathrm{E}\left(\mathrm{q}_{1}^{2}\right)=\mathrm{E}\left(\mathrm{q}_{2}^{2}\right)=\mathrm{q}^{2}$ and $\mathrm{E}\left(\rho_{\mathrm{R}_{12}}\right)=\mathrm{E}\left(\rho_{\mathrm{Q}_{12}}\right)=\rho_{\mathrm{G}_{12}}$

$$
\rightarrow \mathrm{r}_{\hat{\mathrm{Q}}_{1} \hat{\mathrm{Q}}_{2}}=\frac{\operatorname{Cov}\left(\hat{\mathrm{Q}}_{1}, \hat{\mathrm{Q}}_{2}\right)}{\sqrt{\operatorname{Var}\left(\hat{\mathrm{Q}}_{1}\right) \operatorname{Var}\left(\hat{\mathrm{Q}}_{2}\right)}}=\frac{\mathrm{r}_{\mathrm{Q}_{1}}^{2} \mathrm{r}_{\hat{\mathrm{Q}}_{2}}^{2} \rho_{\mathrm{Q}_{12}}}{\mathrm{r}_{\hat{\mathrm{Q}}_{1}} \mathrm{r}_{\hat{\mathrm{Q}}_{2}}}=\mathrm{r}_{\hat{\mathrm{Q}}_{1}} \mathrm{r}_{\hat{\mathrm{Q}}_{2}} \rho_{\mathrm{Q}_{12}}=\mathrm{r}_{\hat{\mathrm{Q}}_{1}} \mathrm{r}_{\hat{\mathrm{Q}}_{2}} \rho_{\mathrm{G}_{12}}
$$

Table 1. Genetic parameters ${ }^{1}$ for 4 traits considered for derivation of selection criteria: phenotype for trait $\left(\mathrm{P}_{1}\right)$ and trait $2\left(\mathrm{P}_{2}\right)$, and MBV for trait $1\left(\hat{\mathrm{Q}}_{1}\right)$ and trait $2\left(\hat{\mathrm{Q}}_{2}\right)$.

	P_{1}	P_{2}	\hat{Q}_{1}	$\hat{\mathrm{Q}}_{2}$
$\begin{aligned} & \mathrm{P}_{1} \\ & \mathrm{P}_{2} \end{aligned}$	$\begin{gathered} \mathrm{h}_{1}^{2} \\ \rho_{\mathrm{G}_{12}} \\ \hline \end{gathered}$	$\begin{gathered} \rho_{\mathrm{P}_{12}} \\ \mathrm{~h}_{2}^{2} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{h}_{1} \mathrm{q}_{1} \mathrm{r}_{\hat{\mathrm{Q}}_{1}}={ }^{2} \mathrm{~h}_{1} \mathrm{r}_{\mathrm{MBV}_{1}} \\ \mathrm{~h}_{2} \mathrm{q}_{2} \mathrm{r}_{\mathrm{Q}_{1}} \rho_{\mathrm{Q}_{12}}=\mathrm{h}_{2} \mathrm{r}_{\mathrm{MBV} V_{1}} \rho_{\mathrm{G}_{\mathrm{L}_{2}}} \end{gathered}$	$\begin{gathered} \mathrm{h}_{1} \mathrm{q}_{1} \mathrm{r}_{\hat{\mathrm{Q}}_{2}} \rho_{\mathrm{Q}_{12}}=\mathrm{h}_{1} \mathrm{r}_{\mathrm{MBV}} \rho_{\mathrm{G}_{12}} \\ \mathrm{~h}_{2} \mathrm{q}_{2} \mathrm{r}_{\hat{\mathrm{Q}}_{2}}=\mathrm{h}_{2} r_{M B V 2} \end{gathered}$
$\hat{\mathrm{Q}}_{1}$ $\hat{\mathrm{Q}}_{2}$	$\begin{aligned} \mathrm{q}_{1} \mathrm{r}_{\hat{\mathrm{Q}}_{1}} & =\mathrm{r}_{\mathrm{MBV}_{1}} \\ \mathrm{q}_{1} \mathrm{r}_{\mathrm{Q}_{2}} \rho_{\mathrm{Q}_{12}} & =\mathrm{r}_{\mathrm{MBV}_{2}} \rho_{\mathrm{G}_{12}} \end{aligned}$	$\begin{gathered} \mathrm{q}_{2} \mathrm{r}_{\mathrm{Q}_{1}} \rho_{\mathrm{Q}_{12}}=\mathrm{r}_{\mathrm{MBV}_{1}} \rho_{\mathrm{G}_{\mathrm{L}}} \\ \mathrm{q}_{2} \mathrm{r}_{\hat{\mathrm{Q}}_{2}}=\mathrm{r}_{\mathrm{MBV}_{2}} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{r}_{\mathrm{Q}_{1} \mathrm{r}_{\hat{\mathrm{O}}_{2}},} \rho_{\mathrm{Q}_{12}}=\mathrm{r}_{\hat{\mathrm{Q}}_{1} \mathrm{r}_{\mathrm{Q}_{2}}} \rho_{\mathrm{G}_{\mathrm{G}_{12}}} \end{gathered}$	$\begin{gathered} \mathrm{r}_{\hat{\mathrm{Q}}_{1} \mathrm{r}_{2}^{2}} \rho_{\mathrm{Q}_{12}}=\mathrm{r}_{\hat{\mathrm{Q}}_{1} \mathrm{r}_{\mathrm{Q}_{2}}} \rho_{\mathrm{G}_{\mathrm{G}_{2}}} \\ 1 \end{gathered}$

${ }^{1} \mathrm{~h}_{\mathrm{i}}^{2}=$ heritability of phenotype for trait i
$\mathrm{q}_{\mathrm{i}}^{2}=$ proportion of genetic variance associated with markers for trait i
$r_{\hat{Q}_{i}}=$ accuracy of \hat{Q}_{i} as a predictor of marker-associated genetic effects, Q_{i}.
$r_{M B V_{i}}=$ accuracy of \hat{Q}_{i} as a predictor of the total genetic value, G_{i}
$\rho_{\mathrm{G}_{12}}=$ genetic correlation between traits 1 and 2
$\rho_{\mathrm{P} 12}=$ phenotypic correlation between traits 1 and 2
$\rho_{\mathrm{Q}_{12}}=$ correlation between Q_{1} and Q_{2}
$\rho_{\mathrm{R}_{12}}=$ correlation between residual genetic effects for traits $1\left(\mathrm{R}_{1}\right)$ and $2\left(\mathrm{R}_{2}\right)$
${ }^{2}$ Results after the equality signs assume $\mathrm{q}_{1}=\mathrm{q}_{2}$ and $\rho_{\mathrm{G}_{12}}=\rho_{\mathrm{Q}_{12}}=\rho_{\mathrm{R}_{12}}$, and use $\mathrm{q}_{\mathrm{i}} \mathrm{r}_{\hat{Q}_{\mathrm{i}}}=\mathrm{r}_{\mathrm{MBV}_{\mathrm{i}}}$

$$
\rho_{\mathrm{G}_{12}}=\mathrm{q}_{1} \mathrm{q}_{2} \rho_{\mathrm{Q}_{12}}+\sqrt{1-\mathrm{q}_{1}^{2}} \sqrt{1-\mathrm{q}_{2}^{2}} \rho_{\mathrm{R}_{12}} \quad \rho_{\mathrm{P}_{12}}=\mathrm{h}_{1} \mathrm{~h}_{2}\left(\mathrm{q}_{1} \mathrm{q}_{2} \rho_{\mathrm{Q}_{12}}+\sqrt{1-\mathrm{q}_{1}^{2}} \sqrt{1-\mathrm{q}_{2}^{2}} \rho_{\mathrm{R}_{12}}\right)
$$

Examples of Modelling MAS/GS using SelAction by Modelling MBV as Correlated Traits
 (Dekkers, 2007, JABG 124)

Each generation, 20 males were selected. Each male was mated to three selected females, which each producing eight offspring (four male, four female). Heritability of the trait was 0.1 or 0.4 and selection was on BLUP EBV based on phenotypic and/or marker data.

Table 2. Genetic parameters for selection on a breeding goal of two traits $\left(\mathrm{P}_{1}\right.$ and $\left.\mathrm{P}_{2}\right)$ with and without marker information and resulting responses to selection in individual traits and the breeding goal $(\Delta \mathrm{H})$ and rates of inbreeding $(\Delta \mathrm{F})$. Marker-based EBV ($\hat{\mathrm{Q}}_{1}$ and $\hat{\mathrm{Q}}_{2}$) have accuracies of 0.8 , based on markers explaining 62.4% of the genetic variance.

Correlations 1	P_{1}	P_{2}	$\hat{\mathrm{Q}}_{1}$	$\hat{\mathrm{Q}}_{2}$	
P_{1}	-	-0.5	0.438	-0.131	
P_{2}	-0.3	--	-0.076	0.253	
$\hat{\mathrm{Q}}_{1}$	0.8	-0.24	--	-0.243	
$\hat{\mathrm{Q}}_{2}$	-0.24	0.8	-0.243	--	
Heritability	0.3	0.1	1	1	
Phenotypic SD	1	1	0.8	0.8	
Economic value	1	1	0	0	
Response to selection					$\Delta \mathrm{H}$
Phenotype only	0.408	0.041	0.394	0.052	0.448
Markers only	0.418	0.068	0.655	0.167	0.486
Combined	0.469	0.074	0.582	0.148	0.543

[^0]
Impact of the Bulmer effect with Genomic Selection

(after Grevenhof, Bijma, van Arendonk GSE 2012, 44:26)
General equation for impact of selection on variable w on:

- covariance between variables x and $y: \quad \sigma_{x y}^{*}=\sigma_{x y}-k \sigma_{x y}^{*} \frac{\sigma_{w x} \sigma_{w y}}{\sigma_{w}^{2}}$
- variance of variable w :

$$
\sigma_{w}^{* 2}=(1-k) \sigma_{w}^{2}
$$

- variance of correlated variable x :

$$
\sigma_{x}^{* 2}=\left(1-k r_{w x}^{2}\right) \sigma_{x}^{2}
$$

Genomic Selection $=$ select on $w=\mathbf{M B V}=$ trait with $\mathbf{h}^{\mathbf{2}}=\mathbf{1}$ (equal male/female selection)
Variance MBV candidates generation $\mathrm{t}=\quad \sigma_{\mathrm{MBV}, \mathrm{t}}^{2}=\mathrm{r}_{\mathrm{MBV}, \mathrm{t}}^{2} \sigma_{\mathrm{G}, \mathrm{t}}^{2}$
Variance MBV selected parents gener $\mathrm{t}=\sigma_{\mathrm{MBV}, \mathrm{t}}^{* 2}=(1-k) \sigma_{\mathrm{MBV}, \mathrm{t}}^{2}$
Variance MBV next generation $\mathrm{t}+1=\quad \sigma_{\mathrm{MBV}, \mathrm{t}+1}^{2}=.5(1-k) \sigma_{\mathrm{MBV}, \mathrm{t}}^{2}+.5 \sigma_{\mathrm{MBV}, 0}^{2}$
Genetic variance selected parents gener $\mathrm{t}=\sigma_{g, \mathrm{t}}^{* 2}=\left(1-r_{\mathrm{MBV}, \mathrm{t}}^{2} k\right) \sigma_{g, \mathrm{t}}^{2}$
Genetic variance next generation $\mathrm{t}+1=\quad \sigma_{g, \mathrm{t}+1}^{2}=0.5\left(1-r_{\mathrm{MBV}, \mathrm{t}}^{2} k\right) \sigma_{g, \mathrm{t}}^{2}+.5 \sigma_{g, 0}^{2}$

At equilibrium/Limit:

$$
\sigma_{\mathrm{MBV}, \mathrm{~L}}^{2}=\sigma_{\mathrm{MBV}, 0}^{2} /(1+k) \quad \text { from } \sigma_{\mathrm{MBV}, \mathrm{t}+1}^{2}=\sigma_{\mathrm{MBV}, \mathrm{t}}^{2}
$$

Response to GS $=i \sigma_{\mathrm{MBV}}: \quad R_{(L)} / R_{(0)}=\sigma_{\mathrm{MBV}, \mathrm{L}} / \sigma_{\mathrm{MBV}, 0}=\frac{1}{\sqrt{1+k}}$
Note: same as BLUP selection
Genetic variance

$$
\begin{aligned}
\sigma_{g, L}^{2} & =\quad \sigma_{M B V, L}^{2}+\mathrm{PEV} \\
& =\left[r_{M B V, 0}^{2} \sigma_{M B V, 0}^{2} /(1+k)\right]+\left(1-r_{M B V, 0}^{2}\right) \sigma_{g, 0}^{2} \\
& =\sigma_{M B V, 0}^{2}\left(1-k r_{M B V, 0}^{2}\right) /(1+k)
\end{aligned}
$$

$$
\mathrm{PEV}_{\mathrm{L}}=\mathrm{PEV}_{0}
$$

Accuracy-squared

$$
\begin{aligned}
& \left(1-r_{M B V, L}^{2}\right) \sigma_{g, L}^{2}=\left(1-r_{M B V, 0}^{2}\right) \sigma_{g, 0}^{2} \\
r_{M B V, L}^{2}= & 1-\left[\left(1-r_{M B V, 0}^{2}\right) \sigma_{g, 0}^{2} / \sigma_{g, L}^{2}\right]
\end{aligned}
$$

Table 1 Comparison of the Bulmer-effect for mass selection and genomic selection

Selection methoda	h^{2}	$r_{g g_{0}}$	Equilibrium genetic variance	Equilibrium accuracy	$\Delta \%$ b
Mass selection	0.25	0.5	0.21	0.47	-14%
Genomic selection	0.25	0.5	0.22	0.39	-27%
Mass selection	0.10	0.32	0.093	0.306	-7%
Mass selection	0.50	0.71	0.367	0.651	-21%
Mass selection	-	any value	-	-	-27%

${ }^{a}$ Comparison of the Bulmer-effect for mass selection and genomic selection with different heritabilities $\left(h^{2}\right)$ and accuracies of $\mathrm{EBV}\left({ }_{r g g_{0}}\right)$; phenotypic variance equals 1 ; selected proportion equals $5 \% ;{ }^{b} \Delta \%$ is the relative difference between the initial response and the Bulmer-equilibrium response.

Note:

GS \rightarrow greater Bulmer reduction in response than mass selection GS targets a proportion of the genetic variation with full accuracy Mass selection targets the full genetic variation with limited accuracy

GS \rightarrow Bulmer reduction in response unaffected by accuracy

- same as BLUP selection \rightarrow no need to account for Bulmer effect when comparing GS to BLUP selection with equal intensity

Mixture distribution approach to predicting response to marker-assisted

 selection (after Dekkers and van Arendonk, 1998, Theor. Appl. Genet.)Selection index approach to accuracy and response prediction assumes multivariate normality. Selection on major gene requires use of mixture distributions.

$$
\text { Select on: } \quad \mathrm{GEBV}^{\prime}=I_{i}^{\prime}=\hat{Q}_{i}+\hat{R}_{i}
$$

\hat{Q}_{i} takes on discrete values, depending on genotype at the major gene. Thus, the distribution of GEBV is a mixture of normal distributions.
$I_{i}^{\prime} \sim \operatorname{Normal}\left(\hat{Q}_{i}, \operatorname{Var}\left(\hat{R}_{i}\right)\right)$
\rightarrow Truncation selection across 3
distributions for biallelic major gene.

$$
I_{i}^{\prime}=b_{Q}^{\prime} \hat{Q}_{i}+\hat{R}_{i}
$$

$\hat{Q}_{i}=$ EBV for QTL with two alleles
$\rightarrow 4$ genotypes (when distinguishing parental origin)

Summary of notation used for selection on a QTL with two alleles (B and b) in generation

Ge no- ty- pe	No	Genotype frequency	Mean polygenic breeding value	Mean genetic value	Mean BV, deviated from genotype Bb^{3}	Prop. selec- ted in sex j	Inde x wts	B gamete produc- tion, fraction	Selec- tion diffe- rential
BB	1	$p_{s} p_{d}$	$\overline{\mathrm{u}}_{1}=A_{s B}+A_{d B}$	$a+\overline{\mathrm{u}}_{1}$	$\alpha+\overline{\mathrm{u}}_{1}-\overline{\mathrm{u}}_{2}$	$f_{j 1}$	$b_{j 1}$	1	$i_{j 1} \sigma_{j}$
Bb	2	$p_{s}\left(1-p_{d}\right)$	$\overline{\mathrm{u}}_{2}=A_{s B}+A_{d b}$	$d+\overline{\mathrm{u}}_{2}$	0	$f_{j 2}$	0	$1 / 2$	$i_{j 2} \sigma_{j}$
bB	3	$\left(1-p_{s}\right) p_{d}$	$\overline{\mathrm{u}}_{3}=A_{s b}+A_{d B}$	$d+\overline{\mathrm{u}}_{3}$	$\overline{\mathrm{u}}_{3}-\overline{\mathrm{u}}_{2}$	$f_{j 3}$	$b_{j 3}$	$1 / 2$	$i_{j 3} \sigma_{j}$
bb	4	$\left(1-p_{s}\right)\left(1-p_{d}\right)$	$\overline{\mathrm{u}}_{4}=A_{s b}+A_{d b}$	$-a+\overline{\mathrm{u}}_{4}$	$-\alpha+\overline{\mathrm{u}}_{3}-\overline{\mathrm{u}}_{2}$	$f_{j 4}$	$b_{j 4}$	0	$i_{j 4} \sigma_{j}$

p_{s} and $p_{d}=$ frequencies of allele B among selected sires and dams that are used to produce the next generation.
$\overline{\mathrm{u}}_{m}=$ mean polygenic breeding value of individuals of genotype m in current generation,
$A_{j B}$ and $A_{j b}=$ mean polygenic values of gametes from sex j that carry allele B or b and were used to produce the current generation.
$\alpha=a+\left(1-p_{s}-p_{d}\right) d=$ standard QTL allele substitution effect in current generation
σ_{j} is the SD of estimates of polygenic breeding values for sex j;
$i_{j i}=$ selection intensity for individuals of sex j and genotype i.
Mean total genotypic value of the population in current generation $=$

$$
\bar{g}=\left(p_{s}+p_{d}-1\right) a+\left(p_{s}+p_{d}-2 p_{s} p_{d}\right) d+p_{s} A_{s B}+\left(1-p_{s}\right) A_{s b}+p_{d} A_{d B}+\left(1-p_{d}\right) A_{d b}
$$

Selection Model with QTL Information

Optimal truncation point across 4 distributions determined by multrunc
\rightarrow frequency in gametes of selected parents: $p_{j}{ }^{*}=\left[p_{s} p_{d} f_{j 1}+1 / 2 p_{s}\left(1-p_{d}\right) f_{j 2}+1 / 2\left(1-p_{s}\right) p_{d} f_{j 3}\right] / F_{j}$
F_{j} is the total proportion selected for $\operatorname{sex} j$.
Expected mean polygenic breeding values of B and b gametes that form the next generation by sex of parent:

$$
\begin{aligned}
& A_{j B}{ }^{*}=1 / 2\left[f_{j 1} p_{s} p_{d}\left(\overline{\mathrm{u}}_{1}+i_{j 1} \sigma_{j}\right)+1 / 2 f_{j 2} p_{s}\left(1-p_{d}\right)\left(\overline{\mathbf{u}}_{2}+i_{j 2} \sigma_{j}\right)+1 / 2 f_{j 3}\left(1-p_{s}\right) p_{d}\left(\overline{\mathrm{u}}_{3}+i_{j 3} \sigma_{j}\right)\right] / F_{j} p_{j}^{*} \\
& A_{j b}^{*}=1 / 2\left[1 / 2 f_{2} p_{s}\left(1-p_{d}\right)\left(\overline{\mathrm{u}}_{2}+i_{j 2} \sigma_{\mathrm{j}}\right)+1 / 2 f_{j 3}\left(1-p_{s}\right) p_{d}\left(\overline{\mathbf{u}}_{3}+i_{j 3} \sigma_{j}\right)+f_{j 4}\left(1-p_{s}\right)\left(1-p_{d}\right)\left(\overline{\mathrm{u}}_{4}+i_{j 4} \sigma_{j}\right)\right] / F_{j}\left(1-p_{j}^{*}\right)
\end{aligned}
$$

Enables modeling changes in frequency and polygenes for any index of QTL and polygenic EBV

$$
I_{i}^{\prime}=b_{Q}^{\prime} \hat{Q}_{i}+\hat{R}_{i}
$$

- Standard index MAS :
- Optimal index MAS (see later):
- Regular selection:
$b_{Q}^{\prime}=1$
b_{Q}^{\prime} optimized
$b_{Q}^{\prime}=r_{j}^{2}$

[^0]: ${ }^{1}$ Phenotypic correlations above the diagonal; genetic correlations below the diagonal

