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The Promise of Genomic Selection 

 Reduce requirement to get phenotypes on 

selection candidates and on close relatives 

in order to estimate EBV 

      Traditional EBV

    

Estimates of marker effects 

from training population 
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How to build a Reference Population  

for a Closed Breeding Population? 
 

 Accuracy of GEBV is greater if 

• More individuals are genotyped and phenotyped 

• Heritability of phenotype is higher  

 genotype individuals that have high EBV accuracy  

     + use deregressed EBV 

• Selection candidates are more related to training data 

    include parental generation in training 
 

• How important is it to achieve a ‘target’ accuracy of 

genomics right from the start? 

• You’re going to need to retrain anyway? 

• Build-up training data during GS implementation 

 

 



To Retrain or Not to Retrain 
 

Results from Stochastic Simulation 

Hong-hua Zhao, Jennifer Young,  

David Habier, Rohan Fernando, Jack Dekkers 
(unpublished) 



Response from Genomic Selection  -  Simulation 

Generation 
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Strategies BLUP-1  = PBLUP – last phenotypes collected in G1001 

  BLUP-all= PBLUP – continuous phenotyping 

  GS-1        = Bayes-B GS – without retraining – no P after 

G1001 

  GS-all     = Bayes-B GS – with retraining 
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Genomic Selection Training in a 

Layer Breeding Population Wolc et al. GSE, 2011 

Accuracies averaged over 16 traits 

 

 Size of training and validation data 
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Training data:  

Vali- 

dation 

data 

size 

 

# geno-

typed 

 

# with 

own 

record 

# progeny 

with 

genotyped 

parents 

Early 

<1 777 295 2443 322 

2 1215 618 4892 295 

3 1628 913 7562 357 

4 2108 1273 9319 274 

5 2708 1563 11486 262 
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<1 777 295 2443 322 
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3 357 

4 274 

5 262 
Train on data prior 

to generation 1 

Need for Retraining 
Wolc et al. (GSE, 2011) 

 



How to build a Reference Population  

for a Closed Breeding Population? 
 

 Accuracy of GEBV is greater if 

• More individuals are genotyped and phenotyped 

• Heritability of phenotype is higher  

 genotype individuals that have high EBV accuracy  

     + use deregressed EBV 

• Selection candidates are more related to training data 

    include parental generation in training 
 

• How important is it to achieve a ‘target’ accuracy of 

genomics right from the start? 

• You’re going to need to retrain anyway? 

• Build-up training data during GS implementation 

 

 



Strategy for Implementation of 

Genomic Selection within a breed/line 

(for Pigs & Poultry?) 

1. Genotype >3 generations of parents with HD panel 

• Use for initial training 
 

2. Genotype selection candidates with ELD panel 

• Impute HD genotypes and compute G-EBV for selection 
 

3. Re-genotype selected sires (and dams) with HD panel 
 

4. Retrain with new data on LD/HD-genotyped animals 

 



Reference Population for ‘New Traits’ 
when # phenotypes is limited and genotyping is not 

Genotype individuals with phenotype, rather than parents 
Grevenhof, Bijma, van Arendonk GSE 2012 

	

Individuals 

genotyped 

Progeny 

group size 

when 

parents 

only are 

genotyped 

NE = 100, L = 30, and h2
 = 0.3. 



Bastiaansen et al GSE ‘12 

Deep vs. Shallow 

Reference pop. 
 

N=500 in reference 

-In 1 generation    

-  or across 5 gens. 
 

 

Accuracy of EBV 

averaged over 30 

replicates 
 

No Retraining 
 

Low uneq = low # QTL (30) 

unequal variance  
 

Low eq.    = low # QTL (30)  

equal variance  
 

High uneq = high # QTL (300) 

unequal variance  
 

High eq.    = high # QTL (300)  

equal variance  

 

Shallow has 

advantage only in 

first generation 
 

Reference population: Deep            Shallow  

Bayes 



Which individuals should be entered into 

central test stations? 
 

 Potential bull dams? Konig and Swalve JDS 2009 

 

   Limited gain in 

   accuracy EBV of  

   bulldams with  

   addition of 

   own record  
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Low density genotyping and 

Imputation 

Jack Dekkers 
 

Animal Breeding & Genetics 
Department of Animal Science 

Iowa State University 

 

  



Implementing GS  

in Pig/Poultry Programs 
 

Problem 
High cost of genotyping value of an individual 

 

Very large numbers of selection candidates 
 
 

Impossible to implement genomic selection based on high 
density genotyping in cost efficient manner 

Solution  
  Combination of strategic genotyping and imputation 

 



Information used for imputation 

• LD across the population 

– To impute from medium density (>10,000 SNP) to 
high density – up to sequence 

• Linkage within families 

– To impute from very low density (<1000 SNP) to 
high density 



Imputation using population-wide LD 

                                    Haplotypes           . 

HD-genotype     ACAAGGATTCCGAT 

HD-genotype     GCTATCATGCCTAT 

 

LD-genotype     --T---A----T-- 
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Imputation using population-wide LD 
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LD-genotype   GCTATCATGCCTAT 

 



Information used for imputation 

• LD across the population 

– To impute from medium density (>10,000 SNP) to 
high density – up to sequence 

• Linkage within families – as explained before 

– To impute from very low density (<1000 SNP) to 
high density 

 

 



Requirements: 
•Ordered/phased HD SNP genotypes of parents 

•Imputation of HD SNP genotypes on progeny 

Progeny 
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Imputation based on Linkage Information 
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Accuracy of G-EBV based on High- vs 
Low-Density SNP genotyping  

                         Simulation (Habier et al. 2009 Genetics) 



Imputation results in HyLine 

data  

Neil O’Sullivan, Janet Fulton, Petek Settar and Jesus Arango  
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Hy-Line data 

• 8 generations of HD sires and dams 

• Selection candidates : 544 individuals 
     from generation 9 

 
• High Density genotypes - 4,893 segregating SNPs on  

      chromosome 1 
 

• Low Density genotypes – Simulated panel of 73  
           ~equally spaced SNPs  
 (equivalent to ~400 SNP across the genome) 

 



Accuracy of imputed genotypes in generation 9 with 8 generations of sires 
and various generations of dams HD genotyped, and the remaining 

generations of dams Low Density genotyped. 

Imputation with multiple generations of  
Low Density genotyped females 



Genomic Selection using Low-Density 

SNPs 
 

Conclusions 

GS can be implemented by 

genotyping selection candidates 

for <400 SNPs spread across the genome 

• Loss in accuracy limited: < 5 %  - if parents re-genotyped HD 

           - sufficient to genotype only sires 

• Cost effectiveness depends on cost  
     of Low-    vs.      High-density genotyping 

         $20  ??  $150 

• Loss in accuracy ~ independent of # QTL and # traits 

• LD-genotyped individuals can also be used for training 

• Allows imputing to higher densities / sequence from founders 


