

Implementing genomic selection in livestock species

Julius van der Werf

CRC for Sheep Industry Innovation School of Environmental and Rural Science, UNE, Armidale, NSW

Outline

- 1. Potential benefits of genomic selection in breeding programs
- 2. Can we predict the accuracy of genomic selection?
- 3. What information is needed for accurate predictions?
- 4. Requirements for the reference population how large, how related, how long-lasting, multi-breed?
- 5. Strategies for genotyping

low density chips, high density chips, sequence data?

Genomic Prediction: basic idea

Prediction from DNA \rightarrow genomic breeding values - GBV

 $\mathsf{GBV} + \mathsf{Current} \mathsf{ASBV} \rightarrow \mathsf{Improved} \mathsf{ASBV}$

Merit depends on trait measurability

Compare: Progeny Testing

Each progeny group only informs one sire

Genomic Testing

51% accuracy 0.5-1 yrs old

use information on "relatives" while sire is still young

Genomic Testing

une

Summarizing Genomic Prediction - What information is used?

- Based on very many small genomic- relationships
- Does not require 'direct relatives' to be tested
- Can be based on distant relatives 'some generations away'
-but the number of small relatives needs to be large (thousands)
- Can not predict across breed

Outline: Sheep Genomic Analysis

- What information is used?

– How useful is this information?

- How to use it?

Genomic Selection: Benefit

Overall:

More accurate prediction of genetic merit for breeding objective

Specific:

Traits that are usually difficult to improve difficult or expensive to measure can not be measured early low heritability

Possible Benefits

une

Modeling genomic selection in breeding programs

1. Selection index approach: multiple information, multiple traits

Accuracy component

2. Optimizing selection across age classes

Generation Interval component

3. For specific breeding objectives

Percent increase in rate of genetic gain when using genomic selection

Selection on a single trait

Predicted accuracy of Molecular EBV = 55% (VQTL=30%)

Heritability Trait Measurability 0.10 0.50 Measured < 1 year, males and female 37 6 Measured > 1 year, males and females 64 18 Measured >1 year, females only 109 39 Measured on Correlated Trait, Genetic Correlation = 0.9 48 11 Measured on Correlated Trait, Genetic Correlation = 0.5 143 62

34

Outline

- 1. Potential benefits of genomic selection in breeding programs
- 2. Can we predict the accuracy of genomic selection?
- 3. What information is needed for accurate predictions?
- 4. Requirements for the reference population how large, how related, how long-lasting, multi-breed?
- 5. Strategies for genotyping

low density chips, high density chips, sequence data?

Accuracy of genomic prediction depending on size of reference population Goddard 2009

Using Goddard 2009

une

Accuracy, depending on how Me is approximated

design of reference population

- Relatedness between reference population and selection candidates
- Across breeds or lines?
- Number of sires, nr of progeny per sire, which dams?

Realized accuracy 1

une

Realized accuracy 2

Accuracy of genomic prediction for Post Weaning Weight from a mixed breed reference population

Reference population			GEBV ac G1		curacy
Туре	Size		BL	Merino	
(1) = Merino	1000		-0.02 ^a	0.53 ^b	
(2) = Merino	2000		-0.04 ^a	0.57 ^{bc}	
(3) = Merino	3000		-0.08 ^a	0.59 °	
BLxMerino	1514		0.49 °	0.45 ^a	
BLxMerino + (1)	2514		0.42 ^{bc}	0.56 ^{bc}	
BLxMerino + (2)	3514		0.37 ^b	0.54 ^{bc}	
BLxMerino + (3)	4514		0.36 b	0.56 bc	

Moghaddar, van der Werf and Swan, 2013 AAABG)

Accuracy and Mean Relationship to Ref \rightarrow No Link! Eye Muscle Depth $R^2=0.08$

Accuracy and Mean of Top 10 Relationships \rightarrow Clear Link! $R^2=0.95$

lue

Genomic prediction

 $\begin{bmatrix} X'X & X'X & 0\\ Z'X & Z'Z + G^{11} & G^{12}\\ 0 & G^{21} & G^{22} \end{bmatrix} \begin{bmatrix} b\\ g_1\\ g_2 \end{bmatrix} = \begin{bmatrix} X'y\\ Z'y\\ 0 \end{bmatrix} \qquad \hat{g}_2 = -(G^{22})^{-1}G^{21}\hat{g}_1$

GBLUP

Example: Data on sire 1, sons 2 and 3, 4 unrelated, want to predict 5

A-matrix (pedigree-based)

1	0.5	0.5	0	0.5
0.5	1	0.25	0	0.25
0.5	0.25	1	0	0.25
0	0	0	1	0
0.5	0.25	0.25	0	1

G-matrix (DNA-based)

Genomic regression

BLUP

 $\hat{u}_5 = 0.1136.y_1 + 0.0455.y_2 + 0.0455.y_3$

 $\hat{g}_5 = 0.1135.y_1 + 0.0328.y_2 + 0.0591.y_3 + 0.00519.y_4$

Genomic prediction

$$\begin{bmatrix} X'X & X'X & 0 \\ Z'X & Z'Z + G^{11} & G^{12} \\ 0 & G^{21} & G^{22} \end{bmatrix} \begin{bmatrix} b \\ g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \\ 0 \end{bmatrix} \qquad \hat{g}_2 = -(G^{22})^{-1}G^{21}\hat{g}_1$$

Example: Data on sire 1, sons 2 and 3, 4 unrelated, want to predict 5 Genomic regression

A-matrix (pedigree-based)

1	0.5	0.5	0	0.5
0.5	1	0.25	0	0.25
0.5	0.25	1	0	0.25
0	0	0	1	0
0.5	0.25	0.25	0	1

G-matrix (DNA-based)

1	0.5	0.5	0.02	0.5
0.5	1	0.20	0.015	0.20
0.5	0.20	1	0.025	0.30
0.02	0.015	0.025	1	0.025
0.5	0.20	0.30	0.025	1

BLUP uses: Family Info

GBLUP uses: Family Info Segregation within family Info on 'unrelated'

Sources of information contributing to GBV accuracy

une

Results – Simulation Sam Clark

Method	Close Ped 0 - 0.25 Genom 0.08 – 0.35	Distant 0 - 0.125 0.08 – 0.26	Unrelated 0 - 0.05 0.08 – 0.16	
BLUP- Shallow pedigree	0.39	0.00	0.00	
BLUP- Deep Pedigree	0.42	0.21	0.04	
gBLUP	0.57	0.41	0.34	
Additional accuracy from family info Additional accuracy from family info for Ne=100, N=1750, h ² =0.3				

Ac	curacy Rea	(INF)Sam Clark		
	Close rela	ted sires	Distantly	related sires
Method	Empirical Acc actual correlation with ASBV	Predicted Acc correlation derived from gBLUP	Empirical Acc	Predicted Acc
BLUP-S	?	?	0.00	0.00
BLUP-D	0.62	0.37	0.02	0.05
gBLUP	0.65	0.41	0.27	0.19

Genomic prediction FAQ

- How well can we predict distantly related individuals?
 - Ok if reference population is large enough
 - Can NOT predict across breed Daetwyler et al., 2011
- How quick does the genomic prediction erode?
 - Fast if based on relationships, slower if based on 'distant relatives
- Do we need relatives?
 - Relatives give more accuracy, but not everyone can have them
- How large does a reference population need to be?
 - Design based as if prediction is based on 'unrelated'

Reference Pop: How many are needed?

 $%V_A$ explained by GBV

Breed	merino	WS, PD	BL
Ne	1000	250	100
Size of reference pop'n	30,000	10,000	5,000
Progeny measured per year ¹	3750	1250	625
h2=0.1	0.33	0.34	0.35
h2=0.3	0.51	0.53	0.54
h2=0.5	0.60	0.62	0.63
Predicted benefit in dG	40%	20%	?

≃h²

assuming the reference population is 'refreshed' every 8 years

Reference Pop: How many are needed?

 $%V_A$ explained by GBV

Breed merino WS, PD BL

Size of reference pop'n	12,000	4,000	2,000
Progeny measured per year ¹	1500	500	250
h2=0.1	0.22	0.23	0.23
h2=0.3	0.36	0.37	0.38
h2=0.5	0.44	0.46	0.47
Predicted benefit in dG	20%	10%	?

 $\cong \frac{1}{2} h^2$

assuming the reference population is 'refreshed' every 8 years

Outline

- 1. Potential benefits of genomic selection in breeding programs
- 2. Can we predict the accuracy of genomic selection?
- 3. What information is needed for accurate predictions?
- 4. Requirements for the reference population how large, how related, how long-lasting, multi-breed?
- 5. Strategies for genotyping

low density chips, high density chips, sequence data?

Implication

- To predict a selection candidate
 - It needs to have relatives in reference populations
 - We can afford a lower degree of relationship than with BLUP
 - » Can predict several generations away
 - Need large reference population

Optimal Genotyping Strategies

- If genotyping is expensive
 - Genotype males only
 - Genotype only 'best' males
 - multi-stage selection
 - But enough to be able to select!

University of New England

Acknowledgements

DPI Vic: UNE:

AGBU: Sheep CRC: Sheep Genetics/MLA: Hans Daetwyler, Ben Hayes Nasir Moghaddar, Sam Clark, John Hickey, Brian Kinghorn, Cedric Gondro Andrew Swan, Daniel Brown Ken Geenty, Klint Gore, James Rowe Rob Banks, Alex Ball, Sam Gill

Thanks

