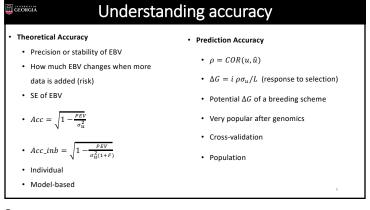
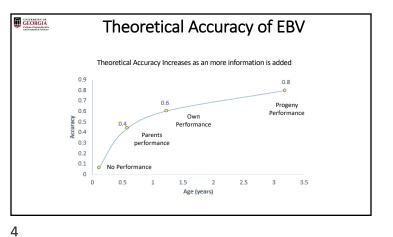
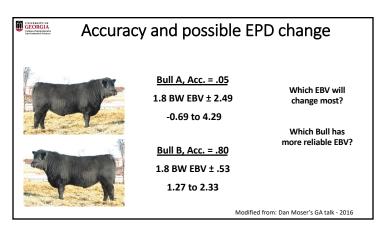


How to validate genomic predictions?


Comparison between genomic and non-genomic models

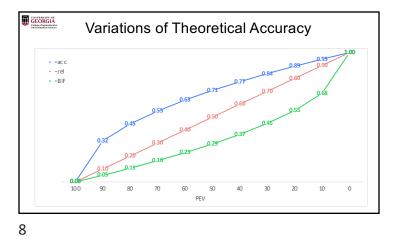

Daniela Lourenco BLUPF90 TEAM – 02/2023

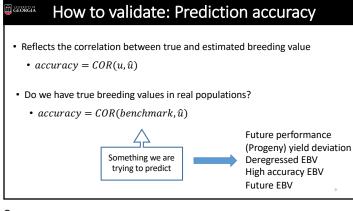
1

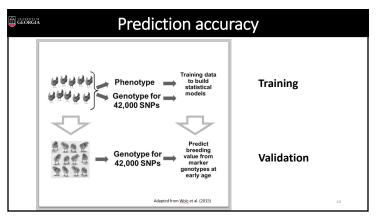


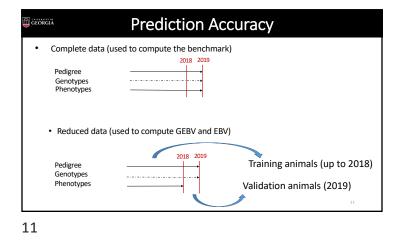
2

Accuracy and possible EBV change					
	BW EBV of 1.8	ACC	Possible Change	Possible change = interval of 95% = EBV ± 1.96×SE	
	Bull A	.05	2.49		
	Bull B	.80	.53		
			Modified from: D	an Moser's GA talk - 2016	

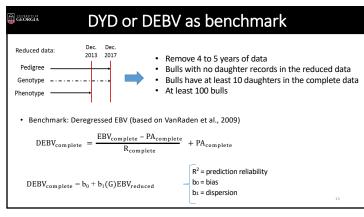


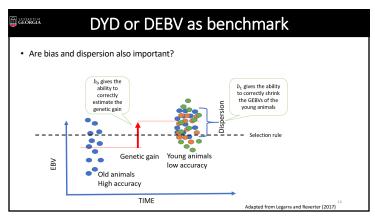


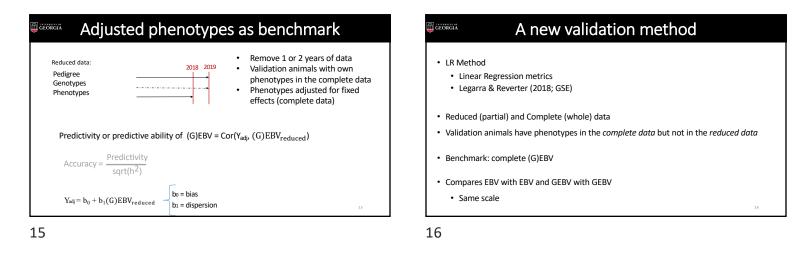

 • Several: $Accuracy = \sqrt{1 - \frac{PEV}{\sigma_u^2(1+F)}}$ Henderson (1975) Derivations under selection or not


 • Beef cattle: BIF $Accuracy = 1 - \sqrt{\frac{PEV}{\sigma_u^2(1+F)}}$ Lower values Approaches 1 very slowly Willham (~1985)

 • Dairy cattle: $reliability = 1 - \frac{PEV}{\sigma_u^2(1+F)}$ Lower values Approaches 1 more slowly Fraction of σ_u^2 accounted for by EBV VanRaden et al. (~1989)







Which benchmai	rk to use?	
COR(benchmark,û)		
Trait measured on	Benchmark	
progeny	daughter yield deviation / deregressed proof	
	COR(benchmark,û) Trait measured on	Trait measured on Benchmark broggow daughter yield deviation /

LR validation
• Accuracy $Accuracy = \sqrt{\frac{cov(\hat{\mathbf{u}}_{c}, \hat{\mathbf{u}}_{r})}{(1 + F - 2f)\sigma_{u,so}^{2}}} \text{or} Accuracy = \sqrt{\frac{cov(\hat{\mathbf{u}}_{c}, \hat{\mathbf{u}}_{r})}{(1 - F)\sigma_{u}^{2}}}$
• Dispersion $\hat{u}_c = b_0 + b_1 \hat{u}_r$ • Bias $\mu_{cr} = \overline{\hat{u}_r} - \overline{\hat{u}_c}$
• Consistency between subsequent evaluations $cor_{c,r} = cor(\hat{u}_c, \hat{u}_r)$
Estimator of the ratio of accuracies using the "reduced" or the "complete" data