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This document contains worked answers. Please work from the questions-only document in
the first instance!

The data

Soay sheep are a neolithic breed of sheep that have been unmanaged in the St Kilda (Hebrides, Scotland)
archipelago since prehistoric times. Since 1985, an individual-based study has collected life history, pedigree,
morphological, phenological and parasitological data on the Soay sheep population in Village Bay on Hirta,
St Kilda. The example dataset contain records of selected phenotypes and fitness measures for female Soay
lambs with normal horns from selected cohorts that had relatively high first year survival. The phenotypic
traits are all morphological measures for mass (MASS, kg), right hind metatarsal length (HINDLEG, mm) and
horn length (HORNLEN, mm) measured in August of the first year of life (age: approximately 4 months).
Fitness (component) measures are first year survival (SURV) coded as whether or not an individual survived
its first winter (1: survived, 0: died), and total lifetime reproductive success (LRS), calculated as the number
of live births recorded for each ewe throughout her life.

Here is code that might be useful for reading from the data file, assuming that it is in your working directory:
d<-read.table("./soay_ewe_lamb_selection_data.csv",sep=',',header=TRUE)

str(d)

## 'data.frame': 213 obs. of 6 variables:
## $ ID : int 2378 2110 2181 2248 2293 2311 2314 2323 2339 2351 ...
## $ MASS : num 15 10.2 11.4 14.3 12.2 15.7 14.4 16.6 16 13.5 ...
## $ HINDLEG: int 168 144 161 167 165 171 165 176 169 156 ...
## $ HORNLEN: int 101 65 81 19 92 106 100 120 72 85 ...
## $ SURV : int 1 1 1 1 1 1 1 1 1 1 ...
## $ LRS : int 3 0 0 0 0 1 0 15 5 2 ...

Before setting off on selection analyses, you might want to explore the data a bit. Have a brief look at the
means and variability of each trait. Histograms might be useful.

Univariate selection

(1) What is the mean mass in the unselected population, and among those individuals that
survive their first year?
# mean before selection
mean(d$MASS)

## [1] 12.34742
# mean after selection (alternative, but equivalent calculations)
mean(d$MASS[which(d$SURV==1)])

## [1] 12.73918
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weighted.mean(d$MASS,d$SURV)

## [1] 12.73918
with(subset(d,SURV==1),mean(MASS))

## [1] 12.73918

(2) What is the selection differential for mass acting through first year survival?
S_mass<-mean(d$MASS[which(d$SURV==1)]) - mean(d$MASS)
S_mass

## [1] 0.3917634

(3) Convert the selection differential that you just calculated into mean-standardised and
variance-standardised differentials.
# mean-standardised
S_mass/mean(d$MASS)

## [1] 0.03172837
# variance-standardised
S_mass/sd(d$MASS)

## [1] 0.1790815

(4) In the previous question, you could have worked out what operation (e.g., multiplication,
division), with the mean and standard deviation of mass, was necessary to apply to the selection
differential, in order to make the re-scalings. Alternatively, you could have re-scaled the
phenotype and then re-calculated the selection differentials on those re-scaled phenotypes.
Whichever you didn’t do above, do it now to verify your initial calculation.
# re-scale phenotype
d$MASS_mean<-d$MASS/mean(d$MASS)
d$MASS_sd<-d$MASS/sd(d$MASS)

# the mean- and unit variance-standardised differentials
weighted.mean(d$MASS_mean,d$SURV)-mean(d$MASS_mean)

## [1] 0.03172837
weighted.mean(d$MASS_sd,d$SURV)-mean(d$MASS_sd)

## [1] 0.1790815

(5) What is the selection gradient for mass, acting through first year survival (do the calculation
without implementing a linear regression, i.e., without using the lm() function).
beta_mass<-S_mass/var(d$MASS)
beta_mass

## [1] 0.08186105

(6) Check that your calculation of the selection differential for mass (via first year survival)
agrees with the OLS-based method (i.e., from Lande and Arnold 1983).
d$w_s<-d$SURV/mean(d$SURV)
summary(lm(w_s~MASS,data=d))$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.01554034 0.18270634 -0.0850564 9.322972e-01
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## MASS 0.08224718 0.01457126 5.6444812 5.302175e-08

(7) What are the units of the selection gradient that you just calculated?

The units are kgˆ{-1} (for the model above). If you variance-standardised (which has somehow come to be
considered a feature of the L&A analysis, if not part of the definition of selection gradients themselves, which
is unfortunate), then the units would be σ−1

z

(8) Calculate the selection differential and gradient for hind leg length (also acting through
first year survival)?
S_leglen<-mean(d$HINDLEG[which(d$SURV==1)]) - mean(d$HINDLEG)
S_leglen

## [1] 1.518244
beta_leglen<-S_leglen/var(d$HINDLEG)
beta_leglen

## [1] 0.01752382

(9) Which is stronger, selection of hind leg length or mass?

If we want to think of the strength of selection in terms of the steepness of the fitness function, we will need
to answer the question using selection gradients. There is no sense in comparing mm and kg, so we will want
to use one of the standardisations:
# mean and variance standardised selection gradients for mass
beta_mass*mean(d$MASS)

## [1] 1.010773
beta_mass*sd(d$MASS)

## [1] 0.1790815
#mean and variance standardised selection gradients for leg length
beta_leglen*mean(d$HINDLEG)

## [1] 2.762347
beta_leglen*sd(d$HINDLEG)

## [1] 0.1631117

So, which is stronger? The answer is ambiguous. The variance standardised selection gradients say that over
the range of phenotype expressed in the population, expected fitness changes by about the same amount.
But a variance standardised gradient doesn’t really parse out the effect of steepness of the fitness function
from the variability of the trait. So, I think that mean standardisation is preferable here. A 1% increase in
hind leg length corresponds to almost three times as much increase in fitness as does a 1% increase in mass.
So, for the strength of selection, where by “strength” we mean the slope fo the fitness function, I think we
can conclude that selection is stronger for leg length, at least insofarr as we might want a measure that is
independent of the variability in the population.

However, we might want to think about the strength of selection in terms of how much the mean phenotype
changes. This is a notion of the strength of selection to which both degree of trait variability, and the
steepness of the trait-fitness function contribute. This is fine (well, it is wrong if you go making conclusions
about the steepness of the fitness function based on such, which people do all the time). Here are the selection
differentials, in both standardisations:
# mean and variance standardised selection differentials for mass
S_mass/mean(d$MASS)
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## [1] 0.03172837
S_mass/sd(d$MASS)

## [1] 0.1790815
# mean and variance standardised selection differentials for leg length
S_leglen<-weighted.mean(d$HINDLEG,d$SURV)-mean(d$HINDLEG)
S_leglen/mean(d$HINDLEG)

## [1] 0.009631462
S_leglen/sd(d$HINDLEG)

## [1] 0.1631117

You should recognise these calculations (for mass, anyhow) from question 9. Note also that, for univariate
selection, the values of the selection gradient and differential coincide, so those should agree with the ones in
the first part of the answer.

Variance standardisation indicates that the shift in the mean, in relation to the range of variability for each
trait before selection, is similar. However, selection changes the mean of mass by about 3% of its pre-selection
value, whereas it only changes the mean of hind leg length by about 1%.

A final way of thinking about the strength, that draws both on the amount of variation and the steepness of
the fitness function, is to think about the amount of variation in fitness resulting jointly from phenotypic
variation and fitness function steepness. This quantity (as the SD of relative fitness that can be associated
with the trait) comes from the variance standardised measures (for either gradients or differentials, in a
univariate analysis). According to this notion of the strength of selection, selection is similar for mass and
hind leg length.

Have a good think about the strengths of selection before reading this blurb. The reason why the comparison
about the strength of selection is so interesting for leg length and mass is that the two traits have very
different variability, in relation to their means. It all comes down to having a feel for the traits, in this case,
some knowledge of their means and variances. Thinking about the strength of selection is hard, but it may
have been harder than necessary if you didn’t take the instruction to explore the data seriously. Here are
some key things that could help:
# variance of each trait
var(d$MASS)

## [1] 4.785713
var(d$HINDLEG)

## [1] 86.63885
# standard deviations
sd(d$MASS)

## [1] 2.187627
sd(d$HINDLEG)

## [1] 9.307999
# means
mean(d$MASS)

## [1] 12.34742
mean(d$HINDLEG)

## [1] 157.6338
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# coefficients of variation
sd(d$MASS)/mean(d$MASS)

## [1] 0.1771728
sd(d$HINDLEG)/mean(d$HINDLEG)

## [1] 0.05904824

Histograms of the two traits, roughly manipulated to be more helpful about both the mean and the variability:
par(c(1,2))

## NULL
hist(d$MASS,xlim=c(0,20))

Histogram of d$MASS
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hist(d$HINDLEG,xlim=c(0,200))
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Histogram of d$HINDLEG
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(10) How much does first year viability selection change the variance of mass and leg length?
delta_v_mass<-var(d$MASS[which(d$SURV==1)])-var(d$MASS)
delta_v_mass

## [1] -0.4050804
delta_v_leglen<-var(d$HINDLEG[which(d$SURV==1)])-var(d$HINDLEG)
delta_v_leglen

## [1] -10.80328

(11) How much does first year viability selection change the variance of mass and leg length,
over and above the effect of strictly directional selection to change the variance?
C_mass <- var(d$MASS[which(d$SURV==1)])-var(d$MASS) + S_mass^2
C_mass

## [1] -0.2516018
C_leglen <- var(d$HINDLEG[which(d$SURV==1)])-var(d$HINDLEG) + S_leglen^2
C_leglen

## [1] -8.498218

Multivariate selection

(12) Calculate the multivariate selection gradients of body mass, hind leg length, and horn
length, acting through first winter viability.

I didn’t specify directional or quadratic. So here it is with just directional, and with directional and quadratic
gradients
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m1<-lm(w_s~MASS+HINDLEG+HORNLEN,data=d)
summary(m1)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.386031420 0.770316002 -0.5011338 0.616804323
## MASS 0.086983651 0.029191168 2.9797934 0.003225998
## HINDLEG 0.004259164 0.006665630 0.6389739 0.523539539
## HORNLEN -0.004339948 0.001653272 -2.6250664 0.009303315
cent<-function(x){x-mean(x)}
d$MASS_c<-cent(d$MASS)
d$HINDLEG_c<-cent(d$HINDLEG)
d$HORNLEN_c<-cent(d$HORNLEN)

m2<-lm(w_s~MASS_c+HINDLEG_c+HORNLEN_c+I(0.5*MASS_c^2)+I(0.5*HINDLEG_c^2)+I(0.5*HORNLEN_c^2)+
I(MASS_c*HINDLEG_c)+I(MASS_c*HORNLEN_c)+I(HINDLEG_c*HORNLEN_c),data=d)

# directional gradients
summary(m2)$coefficients[2:4,]

## Estimate Std. Error t value Pr(>|t|)
## MASS_c 0.075806858 0.030392651 2.494250 0.013420501
## HINDLEG_c 0.008239526 0.007002768 1.176610 0.240729089
## HORNLEN_c -0.005734195 0.002122237 -2.701958 0.007476474
# quadratic gradients
summary(m2)$coefficients[5:7,]

## Estimate Std. Error t value Pr(>|t|)
## I(0.5 * MASS_c^2) -0.073115871 0.0376441092 -1.942292 0.05348521
## I(0.5 * HINDLEG_c^2) -0.003813827 0.0018639663 -2.046082 0.04203760
## I(0.5 * HORNLEN_c^2) -0.000111997 0.0001034885 -1.082217 0.28044005
# correlational gradients
summary(m2)$coefficients[8:10,]

## Estimate Std. Error t value Pr(>|t|)
## I(MASS_c * HINDLEG_c) 0.0145131652 0.0071695511 2.0242781 0.04425177
## I(MASS_c * HORNLEN_c) 0.0032937124 0.0019045594 1.7293829 0.08526073
## I(HINDLEG_c * HORNLEN_c) -0.0003415577 0.0004199518 -0.8133261 0.41698401

(13) Do our conclusions about the strength of directional selection on mass and leg length
change when we consider the direct component of selection, rather than the overall association?
# a slight leg up on getting the vectors of the mean and sds that you'll need (hint, hint)
z<-d[,c("MASS","HINDLEG","HORNLEN")]
mu<-apply(d[,c("MASS","HINDLEG","HORNLEN")],2,mean)
sigma<-apply(d[,c("MASS","HINDLEG","HORNLEN")],2,sd)

beta<-coef(m1)[2:4]

# mean standardisation
beta*mu

## MASS HINDLEG HORNLEN
## 1.0740235 0.6713882 -0.3593803
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# variance standardisation
beta*sigma

## MASS HINDLEG HORNLEN
## 0.1902878 0.0396443 -0.0939258

So, direct selection of mass and hind leg length is roughly in magnitude in the sense of the steepness of the
fitness function, with a 1% increase in fitness with a 1% increase in mass, and abotu a 0.67% increase in
fitness for a 1% increase in hind leg length. However, because of the much lower variability of hind leg length,
relative to mass, direct selection of mass is responsible for much more variation in fitness than is hing leg
length.

(14) [Advanced] Say you wanted to use a GLM to characterise the function relating mass,
hind leg length, and horn length to fitness, and you particularly wanted to then recover the
selection gradient estimate that belong to that specific model. Say your model was a binomial
GLM, like this:
glm_lambs<-glm(SURV~MASS+HINDLEG+HORNLEN,data=d,family="binomial")
summary(glm_lambs)$coefficients

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.89665169 4.38857578 -1.3436367 0.179065880
## MASS 0.58621352 0.18654017 3.1425592 0.001674778
## HINDLEG 0.02339123 0.03820471 0.6122604 0.540365476
## HORNLEN -0.03863961 0.01428608 -2.7047035 0.006836539

And the expected fitness of all indivdiuals (according to the GLM), and the corresponding mean fitness of
the popualtion would be calculated like this:
inv.logit<-function(x){exp(x)/(1+exp(x))}
exp_fit<-inv.logit(predict(glm_lambs,newdata=data.frame(MASS=d$MASS

,HINDLEG=d$HINDLEG,HORNLEN=d$HORNLEN)))
barW<-mean(exp_fit)

Depending on your R skills, you might realise that passing the newdata argument to the predict() function
is unnecessary, as predict() uses the original data by default. But I did this for a reason. If you wanted to
calculate the mean fitness of an hypothetical population where all individuals were just a bit heavier than
they really were, you could do this:
h<-0.01 # a small numer of KG (or of mm for that matter),

# relative to the range in the population

bar_W1<-mean(inv.logit(predict(glm_lambs,newdata=data.frame(MASS=d$MASS+h,
HINDLEG=d$HINDLEG,HORNLEN=d$HORNLEN))))

I’ll leave it at that. Good luck!
# selection gradient for mass
(bar_W1-barW)/h/barW

## [1] 0.09435126
# selection gradient for hind leg length
bar_W1<-mean(inv.logit(predict(glm_lambs,newdata=data.frame(MASS=d$MASS,

HINDLEG=d$HINDLEG+h,HORNLEN=d$HORNLEN))))
(bar_W1-barW)/h/barW

## [1] 0.003769365
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# selection gradient for horn length
bar_W1<-mean(inv.logit(predict(glm_lambs,newdata=data.frame(MASS=d$MASS,

HINDLEG=d$HINDLEG,HORNLEN=d$HORNLEN+h))))
(bar_W1-barW)/h/barW

## [1] -0.00622738

I think that you’ll find that these compare very well with the OLS estimates we calculated previously.

(15) [Advanced] I claimed that multiple regression is unbiased by corrleations among predictor
variables. But I only backed this up in the lecture with a single numerical example. Here is
my code again, but with a third predictor variable as a bonus:
library(mvtnorm)
P<-matrix(c(1,0.8,-0.2,0.8,1,-0.2,-0.2,-0.2,1),3,3)
b<-c(0.5,-0.5,0.2)
n<-50
x<-rmvnorm(n,rep(0,3),P)
y<-rnorm(n,x%*%b,1)
summary(lm(y~x[,1]+x[,2]+x[,3]))$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04589998 0.1509850 0.3040035 0.76249617
## x[, 1] 0.64426955 0.2791564 2.3079158 0.02555288
## x[, 2] -0.80395086 0.2685959 -2.9931614 0.00443052
## x[, 3] 0.31537718 0.1646082 1.9159260 0.06160158

Those are not so close to the true values as on my slides. This is because I cranked the sample size way up
(on the slides, that is) to make my point in one go. But you might be curious what the situation is for more
modest sample size.

Wrap up my example into a simulation that can be run many times, and confirm (or refute) for parameter
values of your own choosing whether (a) OLS estimates of linear effects are unbiased (i.e., whether E[β̂] = β),
and (b) whether standard errors of OLS regression are rendered incorrect by collinearity (determine the
standard error of the estimator is reflective of the standard deviation of the esimates across multiple runs
with the same underlying reality).
n.sim<-1000
# array with three dimensions: (1) replicates,
# (2) estimate vs SE, and (3) the three predictors
res<-array(dim=c(n.sim,2,3))
for(i in 1:n.sim){

# code as provided above, except saving results rather than printing to the console
x<-rmvnorm(n,rep(0,3),P)
y<-rnorm(n,x%*%b,1)
co<-summary(lm(y~x[,1]+x[,2]+x[,3]))$coefficients
res[i,1,]<-co[2:4,1] # estimates
res[i,2,]<-co[2:4,2] # ses

}

# if unbased, these should be equal
b

## [1] 0.5 -0.5 0.2
apply(res[,1,],2,mean)
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## [1] 0.4962368 -0.4951974 0.2059607
# if SEs are correct, these should be equal
apply(res[,1,],2,sd)

## [1] 0.2637956 0.2662823 0.1512096
apply(res[,2,],2,mean)

## [1] 0.2474220 0.2478731 0.1512431

That might have seemed a distraction from selection analysis, but I’m pretty confident that it is counter to a
lot of biostatistics teaching, and it is important to be confident (or to know the where the limits are) of the
methods you are using, whether for selection analysis or otherwise!

(15) [Advanced] It’s not about multivariate selection anymore (in principle; you can build a
univariate or a multivairate analysis into your answer for this question), but if you’ve gotten
this far, you’re probably finding it pretty fun. Biostatistics orthodoxy has it that regressing
a response variable that will have highly non-normal residuals is criminally naive. Actually,
OLS requires absolutely no assumption about the distribution of residuals to yield unbiased
estimates of linear effects. Do a simulation to determine how well the OLS regression approach
of Lande and Arnold recovers selection gradients, when fitness is non-normal (it might be
convenient to take advantage of the fact that β = b when E[W ] ∝ ea+bz) in order to simulate
non-normal fitness residuals, say from a Poisson distribution under GLM assumptions, which
being able to fix the true value of β to whatever value you fancy.
n.sim<-1000
sim.res<-array(dim=c(n.sim,2)) # track the estimate and its SE
a<-0 # controls mean fitness, and also the degree of non-normality and heteroscedacity
b<-0.5 # beta will be equal to this
n<-40 # a rather small selection study
for(i in 1:n.sim){

z<-rnorm(n,0,1)
W<-rpois(n,exp(a+b*z))
sim.res[i,]<-summary(lm(I(W/mean(W))~z))$coefficients[2,1:2]

}
# bias (unbiased if these are equal)
b

## [1] 0.5
mean(sim.res[,1])

## [1] 0.4903994
# adequacy of SEs (good if these are equal)
sd(sim.res[,1])

## [1] 0.1632124
mean(sim.res[,2])

## [1] 0.1564985

The calculation of SEs for OLS regression also makes no assumption about normality of residuals, but does
require that they have equal variance across values of the predictor (z in our case). These are not equal under
our poisson model. But a broken assumption does not a catastrophe make, and OLS is not massively subject
to catastrophe.

As a last-ditch effort to save the notion about assuming normal residuals, people confront me with the fact
that normal residuals are required for null hypothesis statistical testing and for constructing confidence
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intervals. This is strictly true, but from the central limit theorem only matters at very small sample size. For
the simulation as I’ve done it with a very modest sample size, how to basic wald-type confidence intervals
hold up? This requires working out how often the method for constructing the confidence interval contains
the true value:
est<-sim.res[,1]
se<-sim.res[,2]
table(b>(est-1.96*se) & b<(est+1.96*se))/n.sim

##
## FALSE TRUE
## 0.056 0.944

If the devil offers you a deal that every statistical analysis you do for the rest of your life will be this wrong,
but no more wrong, I suggest you take it.

Elaborations

(16) Calculate the directional selection differentials and gradients for the two episodes I used
(first year viability selection, and subsequent lifetime selection of survivors), and use the
Arnold-Wade-Kalisz mechanics for the partition of total selection into episodes to combine
them to recover total selection.
# from above, S and beta for viability episode
S_mass

## [1] 0.3917634
beta_mass

## [1] 0.08186105
# S and beta for subsequent lifetime selection among survivors
s<-subset(d,d$SURV==1)
S_mass_b<-weighted.mean(s$MASS,s$LRS)-mean(s$MASS)
S_mass_b

## [1] 0.4851291
beta_mass_b<-S_mass_b/var(s$MASS)
beta_mass_b

## [1] 0.1107441

. . . now the additive partition of S and the weighted sum for β
# the additive partition of S
S_mass+S_mass_b

## [1] 0.8768925
# the weighted partition of beta
beta_mass + var(s$MASS)/var(d$MASS)*beta_mass_b

## [1] 0.1832313

Here arre the total gradients, which will serve as a check that the right system of combining S and β over
episodes was achieved:
weighted.mean(d$MASS,d$LRS)-mean(d$MASS)
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## [1] 0.8768925
(weighted.mean(d$MASS,d$LRS)-mean(d$MASS))/var(d$MASS)

## [1] 0.1832313

(17a) Estimate the matrix of quadratic (including correlational) viability selection gradients
for mass, leg length, and horn length in Soay ewe lambs. (You may or may not have already
done this for question 12, though you may want to re-do it with variance standardisation, so
it will match the lecture.)
vstand<-function(x){(x-mean(x))/sd(x)}
d$MASS_vstand<-vstand(d$MASS)
d$HINDLEG_vstand<-vstand(d$HINDLEG)
d$HORNLEN_vstand<-vstand(d$HORNLEN)

m2<-lm(w_s~MASS_vstand+HINDLEG_vstand+HORNLEN_vstand
+I(0.5*MASS_vstand^2)+I(0.5*HINDLEG_vstand^2)+I(0.5*HORNLEN_vstand^2)
+I(MASS_vstand*HINDLEG_vstand)+I(MASS_vstand*HORNLEN_vstand)

+I(HINDLEG_vstand*HORNLEN_vstand),data=d)

# directional gradients
summary(m2)$coefficients[2:4,]

## Estimate Std. Error t value Pr(>|t|)
## MASS_vstand 0.1658371 0.06648779 2.494250 0.013420501
## HINDLEG_vstand 0.0766935 0.06518176 1.176610 0.240729089
## HORNLEN_vstand -0.1241003 0.04592976 -2.701958 0.007476474
# quadratic gradients
summary(m2)$coefficients[5:7,]

## Estimate Std. Error t value Pr(>|t|)
## I(0.5 * MASS_vstand^2) -0.34991155 0.18015389 -1.942292 0.05348521
## I(0.5 * HINDLEG_vstand^2) -0.33042563 0.16149190 -2.046082 0.04203760
## I(0.5 * HORNLEN_vstand^2) -0.05245746 0.04847223 -1.082217 0.28044005
# correlational gradients
summary(m2)$coefficients[8:10,]

## Estimate Std. Error t value
## I(MASS_vstand * HINDLEG_vstand) 0.29552334 0.14598950 2.0242781
## I(MASS_vstand * HORNLEN_vstand) 0.15594066 0.09017127 1.7293829
## I(HINDLEG_vstand * HORNLEN_vstand) -0.06880514 0.08459723 -0.8133261
## Pr(>|t|)
## I(MASS_vstand * HINDLEG_vstand) 0.04425177
## I(MASS_vstand * HORNLEN_vstand) 0.08526073
## I(HINDLEG_vstand * HORNLEN_vstand) 0.41698401

(17b) [tricky] Visualise the two major axes of quadratic selection. It is quite a bit of work to
do this in R. First, we need to construct the gamma matrix:
gamma<-diag(coef(m2)[5:7])
gamma[lower.tri(gamma)]<-coef(m2)[8:10]
gamma[upper.tri(gamma)]<-coef(m2)[8:10]
gamma

## [,1] [,2] [,3]
## [1,] -0.3499115 0.29552334 0.15594066
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## [2,] 0.2955233 -0.33042563 -0.06880514
## [3,] 0.1559407 -0.06880514 -0.05245746

Now, we need to get the eigenvalues:
e<-eigen(gamma)
e

## eigen() decomposition
## $values
## [1] 0.03159236 -0.08723544 -0.67715156
##
## $vectors
## [,1] [,2] [,3]
## [1,] -0.5523408 -0.4338085 0.7118496
## [2,] -0.3033101 -0.6908158 -0.6563356
## [3,] -0.7764809 0.5784321 -0.2499873

eigen() orders according to most positive to most negative eigenvalues. We want to order according to
absolute values of eigenvalues
o<-order(abs(e$values),decreasing=TRUE)
o

## [1] 3 2 1
e$values<-e$values[o]
e$vectors<-e$vectors[,o]
e

## eigen() decomposition
## $values
## [1] -0.67715156 -0.08723544 0.03159236
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0.7118496 -0.4338085 -0.5523408
## [2,] -0.6563356 -0.6908158 -0.3033101
## [3,] -0.2499873 0.5784321 -0.7764809

Now, we need a range of values over which to plot contours. Lets go from -3 to +3 on both axes
x<-seq(-3,3,length.out=25)
x<-expand.grid(ga1=x,ga2=x)

Now we need the quadratic component of the fitness surface, calculated for all these combinations of values
x$w<-coef(m2)[1] + e$values[1]*0.5*x$ga1^2 + e$values[2]*0.5*x$ga2^2

contour(matrix(x$w,25,25),xaxt='n',yaxt='n'
,xlab=expression(paste("first major axis of ",gamma))
,ylab=expression(paste("second major axis of ",gamma)))

axis(side=1,seq(0,1,length.out=7),-3:3)
axis(side=2,seq(0,1,length.out=7),-3:3)
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You
might want to check out help(contour). It is particularly important to know which way the matrix is being
filled (by columns, by default, and that this maps on to the use of expand.grid() to set up the combinations
of predictor variable values, and the intended labels for the x and y axes. It is easy to get your axes reversed,
and it could happen at any of these three stages.)

(18) Say an ecophysiologist (I fear probably not a terribly competent one, but we’ll run with
it) told you that mass is almost entirely causally determined by skeletal size (for which we
have a good proxy in hind leg length), and that skeletal size and mass are both likely to have
direct effects on fitness. This might suggest a path model to you wherein hind leg → mass,
hind leg → survival & mass → survival. Calculate the direct and extended sense viability
selection gradients of hind leg length and mass, and compare these to the direct selection
gradients (Lande’s β).

This requires two regression models to calculate the parameters of the path model. The first one is of the two
effects on fitness:
path1<-lm(w_s~HINDLEG_vstand+MASS_vstand,data=d)
summary(path1)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.00000000 0.03185444 31.3927947 2.963847e-81
## HINDLEG_vstand 0.03443935 0.06287576 0.5477364 5.844546e-01
## MASS_vstand 0.15025792 0.06287576 2.3897589 1.774345e-02

and the next is of the effect of leg length on mass
path2<-lm(MASS_vstand~HINDLEG_vstand,data=d)
summary(path2)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.884339e-16 0.03487751 5.402733e-15 1.000000e+00
## HINDLEG_vstand 8.614640e-01 0.03495967 2.464165e+01 5.103391e-64

The effects in the first model are the direct effects on fitness, or in other words, β
beta<-coef(path1)[2:3]
beta

14



M.B. Morrissey Armidale Selection Practicals 15

## HINDLEG_vstand MASS_vstand
## 0.03443935 0.15025792

The developmental entanglements among traits are simple in this model, being only the effect of skeletal size
on mass:
b<-matrix(c(0,coef(path2)[2],0,0),2,2,byrow=TRUE)
b

## [,1] [,2]
## [1,] 0 0.861464
## [2,] 0 0.000000

The total effects of traits on one another are
phi<-solve(diag(2)-b)
phi

## [,1] [,2]
## [1,] 1 0.861464
## [2,] 0 1.000000

And finally, the extended selection gradients for structural size and mass are
phi%*%beta

## [,1]
## [1,] 0.1638811
## [2,] 0.1502579

We can check that we got the linear algebra all organised right by checking against the solution according to
path rules. The only need for path analysis is to note that the extended sense selection gradient is its direct
effet on fitness, plus the product of its effect on mass and mass’ direct effect on fitness
beta[1]+b[1,2]*beta[2]

## HINDLEG_vstand
## 0.1638811

which agrees.

(19) The file soay_ram_lamb_selection_data.csv contains analogous data for males – what fun!
Calculate directional viability selection gradients for mass, hind leg length, and horn length.
Compare these with the corresponding selection gradients for females. Consider how these
selection gradients are represented under Cheng and Houle’s formula for expressing sex-specific
selection as concondant and antagonsitic selection gradient vectors.

Read in the data
dm<-read.table("./soay_ram_lamb_selection_data.csv",header=TRUE,sep=',')

Fit a multivariate selection model. It need not be a full quadratic model, and also the standardisation doesn’t
necessarily have to be to the variance. However, we have a fitted model m2 in memory for the females, so for
the purpose of this illustrative example, I’m just making the male model analogous to that female model.
vstand<-function(x){(x-mean(x))/sd(x)}
dm$MASS_vstand<-vstand(dm$MASS)
dm$HINDLEG_vstand<-vstand(dm$HINDLEG)
dm$HORNLEN_vstand<-vstand(dm$HORNLEN)
dm$w_s<-dm$SURV/mean(dm$SURV)

15
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m2m<-lm(w_s~MASS_vstand+HINDLEG_vstand+HORNLEN_vstand
+I(0.5*MASS_vstand^2)+I(0.5*HINDLEG_vstand^2)+I(0.5*HORNLEN_vstand^2)
+I(MASS_vstand*HINDLEG_vstand)+I(MASS_vstand*HORNLEN_vstand)

+I(HINDLEG_vstand*HORNLEN_vstand),data=dm)

# directional gradients
summary(m2m)$coefficients[2:4,]

## Estimate Std. Error t value Pr(>|t|)
## MASS_vstand -0.08459836 0.02778804 -3.044416 2.429808e-03
## HINDLEG_vstand 0.13414362 0.03053551 4.393037 1.313912e-05
## HORNLEN_vstand -0.05174994 0.03037205 -1.703867 8.890535e-02
# quadratic gradients
summary(m2m)$coefficients[5:7,]

## Estimate Std. Error t value Pr(>|t|)
## I(0.5 * MASS_vstand^2) -0.13095372 0.06244628 -2.0970621 0.03639123
## I(0.5 * HINDLEG_vstand^2) -0.02273767 0.04518461 -0.5032172 0.61498970
## I(0.5 * HORNLEN_vstand^2) 0.04211005 0.05785524 0.7278520 0.46697810
# correlational gradients
summary(m2m)$coefficients[8:10,]

## Estimate Std. Error t value
## I(MASS_vstand * HINDLEG_vstand) 0.022778631 0.03125171 0.72887623
## I(MASS_vstand * HORNLEN_vstand) 0.023050685 0.03157415 0.73004924
## I(HINDLEG_vstand * HORNLEN_vstand) 0.002995542 0.03446870 0.08690615
## Pr(>|t|)
## I(MASS_vstand * HINDLEG_vstand) 0.4663517
## I(MASS_vstand * HORNLEN_vstand) 0.4656349
## I(HINDLEG_vstand * HORNLEN_vstand) 0.9307741

So the selection gradient estimtes with SEs (both from full quadratic models, but only considerting directional
selection) are:
beta_m<-coef(m2m)[2:4]
beta_f<-coef(m2)[2:4]
beta_m

## MASS_vstand HINDLEG_vstand HORNLEN_vstand
## -0.08459836 0.13414362 -0.05174994
beta_f

## MASS_vstand HINDLEG_vstand HORNLEN_vstand
## 0.1658371 0.0766935 -0.1241003

The transformation of these into concordant and antagonsitic selection vectors for the three traits is (from
lecture 4)

βac =
[
βa

βc

]
= Qmf→ac

[
βm

βf

]
where

= Qmf→ac

[
I I
I −I

]
so, in R:
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# make Q matrix and check it is right
Q<-diag(6)
Q[1:3,4:6]<-Q[4:6,1:3]<-diag(3)
Q[4:6,4:6]<--diag(3)
Q

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 0 1 0 0
## [2,] 0 1 0 0 1 0
## [3,] 0 0 1 0 0 1
## [4,] 1 0 0 -1 0 0
## [5,] 0 1 0 0 -1 0
## [6,] 0 0 1 0 0 -1
# transform sex-specific selection gradient matrices
Q %*% matrix(c(beta_m,beta_f),6,1)

## [,1]
## [1,] 0.08123878
## [2,] 0.21083712
## [3,] -0.17585024
## [4,] -0.25043551
## [5,] 0.05745012
## [6,] 0.07235035

So, direct selection on mass has a very large antagonistic component, while selection is generally concordant
on the other two trraits.

(20) [Advanced] Fit a GLM of the relationship between lamb August mass of Soay ewes that
survive their first winter. In combination with a GLM of viability selection (maybe simplify
the one from question 14 down to using just mass as a predictor), make a model of lifetime
selection of August lamb mass that is sensitive to the statistial distributions of survival and
subsequent total reproductive success.

Fit the two GLMs (I think a quasipoisson GLM is sensible, but this shouldn’t be too critical):
glm_s<-glm(SURV~MASS+I(MASS^2),family='binomial',data=d)
glm_lrs<-glm(LRS~MASS+I(MASS^2),family='quasipoisson',data=s)

Visualise the two GLMs:
par(mfrow=c(1,2))
x<-seq(min(d$MASS),max(d$MASS),length.out=50)
plot(d$MASS,d$SURV,col="gray",xlab="mass (kg)",ylab="survival")
p1<-predict(glm_s,data.frame(MASS=x),se.fit=TRUE)
lines(x,inv.logit(p1$fit))
lines(x,inv.logit(p1$fit+1.96*p1$se.fit),lty="dashed")
lines(x,inv.logit(p1$fit-1.96*p1$se.fit),lty="dashed")
plot(s$MASS,s$LRS,col="gray",xlab="mass (kg) of survivors",ylab="subsequent fitness")
p2<-predict(glm_lrs,data.frame(MASS=x),se.fit=TRUE)
lines(x,exp(p2$fit))
lines(x,exp(p2$fit+1.96*p2$se.fit),lty="dashed")
lines(x,exp(p2$fit-1.96*p2$se.fit),lty="dashed")
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Here is a function that returns expected values of fitness components and total fitness, for any set of individual
phenotypes, assuming that the fitted GLM objects glm_s and glm_lrs are in memory:
mean_fitnesses<-function(z){

W1<-inv.logit(predict(glm_s,data.frame(MASS=z)))
W2<-exp(predict(glm_lrs,data.frame(MASS=z)))
Wt<-W1*W2
return(c(mean(W1),mean(W2),mean(Wt)))

}

This function makes it easy to apply the average derivative method
barW<-mean_fitnesses(d$MASS)
h<-0.01
barW1<-mean_fitnesses(d$MASS+h)
beta<-(barW1-barW)/h/barW
beta

## [1] 0.08048248 0.11987324 0.20125248

The selection gradient for the second episode, calculated this way, has a slightly nuanced interpretation. The
selection coefficients that we estimated before (directly from the data) were based only on data from survivors
of the first episode of (viability) selection. While the function relating mass to subsequent fitness that is used
herre is also necerssarily estimated only from survivors, we took the gradient over the full distribution of
mass, before the first episode of viability selection. Consequently, these selection gradients are additive.

Making estimates (these estimates of β) are great, but it is a bit unsatisfying unless you can put some kind
of statements about statistical uncertainty to them. I would bootstrap such an analysis like this:
n.boot<-1000
boot.res<-array(dim=c(n.boot,3))
h<-0.01

for(i in 1:n.boot){
boot.d<-d[sample(1:(dim(d)[1]),dim(d)[1],replace=TRUE),]
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glm_s<-glm(SURV~MASS+I(MASS^2),family='binomial',data=boot.d)
boot.s<-subset(boot.d,boot.d$SURV==1)
glm_lrs<-glm(LRS~MASS+I(MASS^2),family='quasipoisson',data=boot.s)
barW<-mean_fitnesses(boot.d$MASS)
barW1<-mean_fitnesses(boot.d$MASS+h)
boot.res[i,]<-(barW1-barW)/h/barW

}

The standard deviation of the bootstrap estimates of β serve as the estimates of the standard errors of the
selection gradients:
beta

## [1] 0.08048248 0.11987324 0.20125248
apply(boot.res,2,sd)

## [1] 0.01611793 0.04667534 0.04918917
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