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Chapter 13 
The animal model and selection 

Julius van der Werf 
 

Introduction 
The important genetic properties of the BLUP and the animal model are due to the use of the Numerator 
Relationships Matrix  (NRM), i.e. is the matrix with additive genetic relationships between animals.  This 
matrix was originally used by Henderson to account for covariances between random effects, and 
therefore to use information from relatives in estimation of breeding value. However, important 
quantitative genetic properties such as accounting for selection over generations and accounting for 
inbreeding were revealed later. The essence is that the relationship matrix contains all information about 
the flow of genes through the population. It also allows an explicit dissection of genetic variation due to 
having different sires and/or dams, or due to differences from Mendelian sampling 
 This chapter will discuss some more genetic properties of BLUP EBV’s, especially in relation to the 
NRM. 
 

  
Usually, statistical models assume random sampling of random effects, as otherwise, predictions and 
estimates of variance components would be biased by selection. So how can we use BLUP procedures 
for estimating breeding values, based on data where the whole purpose is to use highly selected 
individuals? And not only will we collect records on selected animals, also the variance among a group 
of individuals changes drastically after selection, and genetic variances in populations is reduced as a 
result of selection. Since these changes are significant and immediate, it is important that the models that 
we use for genetic evaluation and for prediction of response have the ability to account for such 
selection. Fortunately they do, provided that the 
genetic model called ‘infinitesimal model’ is valid. 
This section describes how BLUP and REML 
can account for selection in mixed models. First 
we recall the simple BLUP example to show how 
a breeding value is estimated conditional on its 
parental mean: 
 
Recalling the BLUP example: 
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and the equation for animal 6: 
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Therefore, the breeding value of animal 6 is estimated as a deviation of her phenotypic record from the 
expected mean and from her dams breeding value. The expected mean is the sum of all fixed effects plus 
the family mean. Since animal 6 has only one parent known, we take the deviation from one parent only 
(half sib family mean) and the weighting factor is the regression of the within half sib family deviation on 
the within half sib family breeding value. 
The variance of the within half sib breeding value is 0.75 times the genetic variance. The weight is 
therefore equal to the following regression coefficient 
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We can do the same thing for animal 5: 
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The breeding value of animal 5 is also estimated as a deviation of her phenotypic record from the 
expected mean and from the mean of his parents’ breeding values. The expected mean is again the sum 
of all fixed effects plus the family mean. Since animal 5 has both parents known, we take the deviation 
from the full sib family mean and the weighting factor is the regression of the within full sib family 
deviation on the within full sib family breeding value. 
The variance of the within full sib breeding value is 0.5 times the genetic variance. The weight is therefore 
equal to the following regression coefficient 
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Writing out the equation for animal 2 who is a parents with progeny: 
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Hence we see that the breeding value for animal 2 is estimated from her own record as deviation from 
the fixed effects (we have no family mean since she has no parents known), and from the estimated 
breeding values of her progeny.  
Notice that the breeding values are corrected for the other parent (i.e. there’s a correction for the mate), 
if the mate is known. In this case, the EBV of animal 5 is corrected for the contribution of his sire.  
The weights for animal 2 are not very easy to recognize, but they are the same as selection index 
weights. We can check this by simplifying a bit the example, and ignore animal 5 as a progeny. 
If animal 2 had only one progeny (animal 6), than her BLUP equation would look like 
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but we saw earlier how the breeding value of animal 6 is estimated, therefore: 
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and the two weights can be found exactly by selection index to estimate the breeding value of an animal 
based on her own and her progeny’s phenotypic record using a heritability of 0.5. This again shows that 
BLUP uses the same weights as selection index. The difference is that the means (fixed effects) are more 
properly corrected for. 
 
BLUP accounts also for possible genetic differences. It takes deviations from expected genetic means, 
and the EBV is regressed towards the expected genetic mean. This expected genetic mean is in most 
cases the family mean. This is an illustration of a important properties of BLUP:  
 
- It corrects for selection.  

Since the better parents have usually (more) offspring, we expect that the average breeding value goes up in 
later generations (in case of selection).  

- The genetic trend is estimated from the average EBVs over time, i.e. the EBVs are plotted against 
the birth year of the animals. 

-  
Breeding values are estimated as a deviation of  the phenotypic record from the expected mean and 
from the mean of his parents’ breeding values. Hence, they are estimated conditional on the parental 
breeding values. The regression coefficient is based on the within family variance (genetic over total).  
For one parent known this is ¾VA/(VE+ ¾ VA), and for two parents known this is ½ VA/(VE+ ½ VA). 
Offspring within families will be estimated unbiasedly against each other, as long as all, and not a selected 
group of offspring gets evaluated. The family mean will be estimated from parents EBV, and this will be 
unbiased in its turn based on the same argument. The parents are likely better than their family mates 
(otherwise they wouldn’t be selected) and this will be expressed in their EBV as they will be positively 
deviating within their family. Hence, by using pedigree information and all information that has been used 
to base selection decisions on, all animals will obtain unbiased estimates of BV as long as parents are 
unbiased. This argument can be carried back to the base animals; those with no parents known. Since 
there is no pedigree information from base animals, we will have to assume that they are sampled from 
the same homogeneous base population (as we will regress their phenotype back to this mean). If base 
animals are really from different subpopulations, possibly with different genetic means, we should regress 
their performances back to the appropriate mean. This can be achieved by assigning them to their 
appropriate genetic group. 
 
 
Genetic trend 
Presumably, in effective breeding programs, the average genetic merit of the traits selected for changes in 
a desired direction. BLUP accounts also for possible genetic differences as it takes deviations from 
expected genetic means, and the EBV is regressed towards the expected genetic mean. This expected 
genetic mean is in most cases the family mean.  
 
This is an illustration of a important properties of BLUP:  
 
- It corrects for selection.  

Since the better parents have usually (more) offspring, we expect that the average breeding value goes up in 
later generations (in case of selection).  
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- The genetic trend is estimated from the 
average EBVs over time, i.e. the EBVs 
are plotted against the birth year of the 
animals.  

 
- There is a correction  a correction for 

assortative mating 
 
 
- BLUP allow comparison of individuals 

across age classes (as it accounts for 
trend) This allows optimal selection of th 
best animals, irrespective of their age class, and practically 
this means that selection based on BLUP EBV optimizes 
generation interval in breeding programs. If genetic trends 
are higher, relatively more young animals will be selected. 
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As an illustration, compare the EBV with and without accounting for relationships across years 
Offspring 1 and 2 are from sire 1 and offspring 3 is from sire 2. A heritability of 0,25 is assumed here. 
The simple example not only illustrates the estimation of genetic trend, it also shows how BLUP 
separates between genetic and non-genetic trends. 
1) No relationships across years: EBV's within a year sum to zero.  
Year effect is overestimated 
 
 
 
 
 
 
 
 
 
 
2)BLUP with relationships across years: EBV's in subsequent year are above zero.  
Year effect estimate now only reflects 
environmental trend.  
 
 
 
 
 
 
 
 
 

year sire 1  sire 2 sire 3
1 300 350 300 250

13  0 -13

offspr. 1offspr. 2 offspr. 3

2 333 365 325 310
8 -2 -6

year sire 1  sire 2 sire 3
1 300 350 300 250

14 -2 -13

offspr. 1offspr. 2 offspr. 3

2 329 365 325 310
13 5 -4



13: The Animal Model and Selection 

13-7       
 

 

BLUP accounting for changes of variance due to selection 
 
It has been shown that variance in a population change drastically after one round of selection. Since this 
change is large and immediate, it is important that the models that we use for genetic evaluation and for 
prediction of response account for the Bulmer effect. This section describes how BLUP and REML 
account for the Bulmer effect using the mixed model.   

The genetic model assumed for showing these properties is (again) the infinitesimal model, i.e. 
the only changes in genetic variance due to selection are due the gametic disequilibrium and inbreeding, 
but not to change of gene frequencies. This assumption is reasonable when short-term responses are 
considered (Bulmer 1971). 
 Kennedy and Sorensen (1988) have given an excellent explanation of the genetic properties of 
the mixed model, and showed that the mixed model accounts for changes of genetic variance after 
selection. They refer to Henderson’s (1975) paper on properties of BLUP under a selection model, 
where he used an argument of Pearson (1903) to show that the mixed model equations yield BLUP in 
case of selection, given that all the data used in making selection decisions are included in the analysis. 
Pearson’s result gives the variance of a variable x after selection on a correlated variable y as 
 

=−−−=−−= −−− 22222222222 ))1(1(),cov())/(1(),cov( xxyxyysyxsx kyxyx σσσσσσσσσ      (1-r2k) 2
xσ   

 
where r is the correlation between x and y and k is the proportional reduction in phenotypic variance in 
the selected group. Using Pearson’s result, we can write the genetic variance in a selected group (after 
mass selection) as (1-h2k) 2

Aσ , since the correlation between additive genetic value and phenotype is 
equal to h (the square root of the heritability). Using this formula and assuming equal selection intensities 
gives the genetic variance in the progeny of selected parents as (1-½h2k) 2

Aσ , a result also found by 
Bulmer (1971).  

Kennedy and Sorensen (1988) point out that Henderson (1975) has shown that BLUP correctly 
accounts for selection because Pearson’s rules for conditional variances apply. That is, if the base 
population is unselected, and the next generation descends from the best parents of the previous 
generation, than both generations can be evaluated in an unbiased fashion. Although the 2nd generation 
animals are not random animals (but from selected parents), they are unselected within their families. In 
statistical terms, the distribution (i.e. mean as well as variance) of the second generation conditional on 
the first generation is not affected by selection. In quantitative genetic terminology, this conditional 
variance is equal to the within family variance, or the Mendelian sampling variance. The parental 
contributions are evaluated unbiasedly if their contemporaries that they were selected from are in the 
model 
 
 In an earlier chapter we have written A as TDT’ where T describes the flow of genes over the 
generations and D described the variance of the part of the breeding value of each animal that is not 
explained by its ancestors. The breeding values can be written as a = Tφ, i.e. they are a linear 
combination of values in φ, which are not affected by selection. The matrix T describes how a given 
breeding value is a linear function of effects of ancestors that each was not affected by selection. This 
assumes that unknown ancestors not in the model (not in a) were unselected. For our example, T was 
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Therefore, as long as the base population is unselected, and the Mendelian sampling terms are not 
affected by selection, as is the case with an infinitesimal model, then var(a)= A 2

Aσ , even though selection 
may have operated in subsequent generations, and the effects of linkage disequilibrium and inbreeding 
are accommodated (Kennedy and Sorensen, 1988). 

An example might illustrate that Pearson’s rules for conditional variance lead to the same results 
as Bulmer (1971).  The example is (slightly) adapted from Henderson (1982). 
Consider a model y = a + e, being phenotype explained by additive genetic and environmental effects. 
Heritability is 0.30. In the genetic part of the model we can replace the additive genetic value by the 
value of the 2 gametes: yi = gi

p + gi
m + e.  

Now consider 2 sires and we are interested in selecting one of them (based on its phenotype) 
The variance of the gametic effects before selection is: 
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Now suppose we select on the phenotypes. After selection among the 2, the variance of the phenotypes 

after selection is (based on order statistics) equal to var(ys)= Vs= 







6817.03183.0
3183.06817.0

. 

Using Pearson’s rule, the variance among the gametes after selection is equal to 
 
 Gs  = G-cov(g,y).var(y) -1.(var(y)-var(ys))var(y)-1cov(y,g)= 
 = G – BV-1(V-VsV-1B   where B = cov(y,g) 
 

= 



















−

−
−

1428.0072.0072.0072.

0072.01428.0072.0072.
0072.0072.1428.0072.
0072.0072.0072.1428.

 

 
Note that in this result, the covariance between gametes on the same animals is negative after selection. 
Furthermore, the variance of breeding values is var(ai) = var(gi

p) + var(gi
m) +2cov(gi

p,gi
m)= 

.1428+.1428+2*(-.0072)=0.2712. This agrees with the variance reduction expected from Bulmer’s 
formula. For selecting 1 out of 2, i= .564 and x=0, therefore  k= 0.318. The variance of ai after 
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selection on phenotype is (1-h2k) 2
Aσ =(1-.3*.318)*.3 = 0.271. The additive genetic variance in the 

progeny (ap) of this selected animal (giving only the paternal gamete, to mate with an unselected maternal 
gamete) is var(ap) = var(gi

p) + var(gi
m) = 0.2928. Hence, 50% of the loss in genetic variance due to 

selection is recovered in the next generation.   

Which variance should be used in BLUP? 
 
In the previous we showed that the ‘base population’ variance is not the same as the variance in later 
generations. The genetic variance in a given generation can be divided in a part coming from variation 
between base parents and a part resulting from Mendelian sampling. This causes a somewhat 
complicated dilemma: what is the relevant genetic variance in a selection program. Is it the variance of 
the base population, or the variance at the current generation? The answer is that both are relevant. The 
base population variance remains important, because the Mendelian Sampling component of the 
variance (within FS family variance) remains to be 50% of the base population variance. The sire 
variance as well as the dam variance (i.e. the between family variance) are significantly reduced in a 
selection program. Estimates of genetic variance based on between family variance components are 
therefore not appropriate for populations under selection. Instead, and animal model is used, and 
variance components are estimated with REML. In principle, if all genetic relationships are included 
back to the base population, and if all data is used in the analysis that was included in the selection 
decisions, REML will provide estimates of the base populations variance (Sorensen and Kennedy, 
1984). It should be noted that including relationships does not only account for gametic disequilibrium 
due to selection, buy also for reduction of variance due to inbreeding and the buildup of covariances of 
related animals.  Of course a debate exists on what is the base population (how many generations do we 
need to go back), and we should realize that practically it is usually not possible to include relationships 
and data since the start of selection. The conclusion is that genetic variances that are estimated can be 
expected to be somehow biased by selection, generally more if more of the selection history is omitted 
from the analysis (Van der Werf and De Boer, 1990).  
 
References 
Bulmer, M.G. 1971. The effect of selection on genetic variability. American Nat. 105:201. 
Bulmer, M.G. 1980. The mathematical theory of quantitative genetics. Clarendon Press. Oxford. 
Henderson, C.R. 1975. Best Linear Unbiased estimation and prediction under a selection model. Biometrics 31:423-447. 
Henderson, C.R. 1976. A simple method for computing the inverse of a numerator relationship matrix used in prediction of 

breeding values. Biometrics 32:69-83. 
Kennedy, B.W. and D. Sorensen. 1988. Proc. of the Conference on Quantitative Genetics.   
Meuwissen, T.H.E. and Luo.Z. 1992. Computing inbreeding coefficients in large populations. Genet. Select. Evol. 24:305-313 
Mrode, R.A. 1996. Linear models for the prediction of animal breeding values. CAB Int. 
Kennedy B.W. and D. Sorensen. 1987. Properties of mixed model methods for prediction of genetic merit. In: Proc. Of the second. 

Int. Confer. On Quant. Genet. Eds. Weir, B.S. et al. Sinauer Publ. Sunderland, Mass.  
Quaas, R.L.,1976  Computing the diagonal elements and inverse of a large numerator Relationship Matrix. Biometrics 32:949-953 
Quaas, R.L.,1988  Additive genetic model with groups and relationships. J.Dairy Sci. 71:1338-1345.  
Sorensen, D.A., and B.W. Kennedy. 1984. Estimation of genetic variance from selected and unselected populations. J. Anim. Sci. 59:1213. 
Van der Werf, J.H.J., and I.J.M. de Boer. 1990. Estimation of additive genetic variance when base populations are selected. J. 

Animal Sci. 68: 3124-3132. 
 
 
Exercise 1 
 
 Given are pedigree and records on the following 8 animals  
 



13: The Animal Model and Selection 

13-10       
 

 

 animal  sires   dam weight    
           1     0 0 10 
           2     0 0 9 
          3    0 0 8 
          4     0 0 7 
 5     1 2 9 
           6     1 2 10 
 7     3 4 8 
 8     5 6 11 
 
Set up the inverse of the direct inverse additive genetic relationship matrix 
Also construct the different matrices to build the NRM (A-matrix). Make P, T, D and L. 
 
− Calculate BLUP EBV’s for these animals (only account for the mean). 
− Determine the average EBV for each generation 
− Check that for animal 8, the EBV is estimated as: 
 

)ˆˆˆ()ˆˆ(ˆ 2
1

2
1

2
1

8 damsiredamsire aaybaaa −−−++= µ  
 
− Work out the value for b from the MME 
− Work out the value of b theoretically 
 

Exercise 2:   Relationship matrix accounting for selection 

Consider the following data set, with 9 animals having yearling weight records 

year  animal   sires   dam weight    

      1     1     0 0 270 
      1     2     0 0 300 
      1     3    0 0 320 
      1     4     0 0 310 
      2     5     3 4 300 
      2     6     3 4 307.5 
      2     7     3 4 315 
      3     8     7 0 303 
      3     9     7 0 307; 
Estimate breeding values (use h2=0.25) for the 9 animals. 
 
For this, edit data in STBLUP.XLS, and run this program in excel.  
 
 Compare then the following models: 
- no consideration of pedigree or generation effects (put all fixed effect codes to 1 
- without consideration of pedigree, but account for selection differences by grouping animals by generation 

(as fixed effects) 
- use only male pedigree (dams unknown), as well as groups 
- use all known pedigree as well as groups 


