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Chapter 14 

Genetic Grouping 
Julius van der Werf 

 
Accounting for genetic group effects   
 
A model for genetic evaluation needs to account for genetic groups when the animals in the data set 
come from widely divergent sources. The mixed model assumes that the breeding values to be 
estimated come from a homogeneous population (E(u) = 0), and all have the same expected mean, 
that is for the animals with unknown parents (the expectation of animals with parents known is equal 
to the parental average EBV). Animals without parents are called ‘base animals’, and if they are not 
from a homogeneous population, genetic groups are needed to distinguish between different genetic 
levels of base animals.  
Notice that the relationships matrix takes care of all genetic differences due to selection since the 
base population. For example, in analyzing data of a selection experiment with a high and low line, 
but both stemming from the same base population, genetic groups are not needed as long as pedigree 
and data since the start of selection is included in the analysis. Genetic groups are therefore needed 
for those cases where we can’t explain genetic differences between animals by pedigree and data. 
This is typically the case if animals arise from different breeds or populations. 
 
Consider Finnsheep (F, average litter size about 3) mixed in with Merinos (M, lucky to get one).  
Litter size is a lowly heritable trait, and so any genetic evaluation ignoring breed will regress all EBV's 
to close to the average - clearly wrong, as the breed effect on litter size is strong and reliable. 
The solution is to fit animal source as a fixed effect.  With ongoing breeding, individual animals can be 
a mixture of sources - but this is not a problem.  Here is an example of entries in the X matrix for the 
F(inn) and M(erino) fixed effects: 
 

Type of animal F effect M effect 
Finn 1 0 
Merino 0 1 
F x M ½ 1/2 
M x (FxM) ¼ 3/4 

 
Examples of genetic groupings are: 

- breed origin 
- animals imported – by country of origin 
- animals’ birth year  

 
The EBV of an animal is now the sum of it’s EBV (random effect) estimate within the group, with 
added to that the genetic group effect. For example, if the fixed effect estimate of F is +0.7 
compared to M, animals fully belonging to the Finn breed get 0.7 added to their  random within breed 
breeding value, so that EBV’s of Finns and Merino’s can be directly compared.   
Additive genetic models with groups: Modified equations 
 
The outline with genetic groups as fixed effects as outlined above is straightforward if all animals 
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belonged only to one genetic group. However, often they belong to two or more genetic groups, 
since the parents can be from different origin. In a crossbreeding context, an animal can have a 
Merino dam, and his sire can be a cross of Border Leicester * Poll Dorset.  
Quaas (1988) has presented the basic structure of additive genetic relationships within a population. 
Based on this structure, rules for creating the relationships matrix were derived. This theory can be 
extended to the situation of having different means for different groups of base animals, leading to a 
coherent and operationally simple approach to the problem of genetic  grouping in animal evaluations. 
  
The problem to be dealt with is that not all base animals have equal means or, in other words, equal 
expectation. Realize that usually in mixed models the expectations of the random effects is equal to 0. 
When breeding values of animals do not have the same expectation, e.g. because animals are from 
different breeds, the problem can be solved by incorporating genetic groups in the model.  
 
 Hence, instead of the model   y=Xb + Zu + e,  
 
we used the model     y= Xb + ZQg + Za + e.  
 
The vector g refers to fixed group effects and the vector a referred to random animal effects within 
genetic groups. The matrix Q relates animals to groups and ZQ relates records to groups.  
The estimated breeding value is 
       û = Q ĝ  + â,  
 
and the mixed model is well defined again because the expectation of the vector of random effects is 
equal to 0. In fact, records are linked to fixed group effects, and random effects are predicted after 
correction for fixed groups. 
The expectation is Ea= 0 and var(a)= Aσ2

a, and the vector of breeding values for animals across 
groups is û = Q ĝ  + â. Because in this model g is just a common fixed effect, the mixed model 
equations would be: 
  

These equations are in principle correct in the sense that it takes into account that all animals are in 
different ways related to the genetic groups. In practice such equation would cause problems, unless 
a systematic way is found to create the Q matrix. This was solved by Quaas by 1) writing the above 
equations in another way which he calls 'modified equations' and 2) by realizing that modified 
equations can be set up by simple rules. 
 
The modified equations are derived by pre-multiplying the coefficient matrix and the right hand side in 
(2) by 
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These modified equations have a number of advantages. Firstly, the off-diagonal blocks of groups by 
fixed effects are zero, as is the right hand side for groups. Secondly, the solutions to the animals 
within groups are giving across group breeding values (u rather than a). This has an important 
numerical advantage in solving mixed model equations. However, the main breakthrough of these 
modified equations is the insight it gives into a flexible way to define genetic groups. From the 
equations, you can see that the grouping equations look very similar to equations of animals with no 
data. The only coefficients are related to the relationship matrix. This was noted by Quaas (1988) 
and he discovered that this is a key to defining genetic groups for all animals. As we see in the next 
section, the genetic groups are like ancestors and every animal will have a relationships through such 
an ancestor through its pedigree. This gives a ‘natural way’ to define group effects (the Q matrix), 
something that could otherwise become very tedious, as we see next. 
 
Assigning animals to genetic groups  
 
Groups can then be defined e.g. according to the breed and/or the birth year of the base animal. The 
problem with such a model would be to define the incidence matrix for groups, i.e. how observations 
on animals are related to groups. For example, an animal could have ancestors (base animals) from 
different breeds and these ancestors could be born in different years. The breeding value (and the 
record) of such an animal would then be linked for say 0.25 to the mean of breed 1 in year 1998 and 
for 0.25 to breed 2 in year 2002, and for 0.50 to breed 2 in year 2004. Because we basically want 
to derive the contribution of each group relevant to the genetic make up of each animal that we want 
to evaluate, it would be an advantage if we could make use of rules for defining these coefficients 
systematically, similar to the systematic way of ancestors contributing to an animal through the 
pedigree. From the relationship of a certain animal to the groups we want to derive the relationship of 
its progeny to these groups. The procedure developed by Quaas (1988) shows such a systematical 
approach in a very elegant way.  
Base animals, for whom in principle we can not determine their pedigree, will have to be assigned to 
genetic groups, according to their suspected origin. In the grouping strategy proposed by Quaas, not 
the base animals themselves ar assigned to groups, but they are assigned unknown ‘dummy’ parents, 
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who ar assigned to groups. Such dummy parents are indicated as phantom parents. For example, an 
average milking cow could have assigned a “phantom” sire to the group “sires born between 1985 
and 1990”, whereas its dam would be assigned to “cows born in 1992”.  If we assign all such 
phantom parents to a genetic group, equal to their expectations, than descendents are linked to 
genetic groups through the pedigree. In fact, we can treat phantom parents as normal part of the 
pedigree (i.e. using Henderson’s rules fro the coefficients). This creates a very flexible framework to 
assign animals to genetic groups. 
 
The model is written as: 

where Pb relates the animals to the unknown parents and P relates the known animals as in 1. 
Furthermore, the expectation of unknown parents is E(ub) = Qbg, where g is a vector with genetic 
group effects and Qb assigns base animals to genetic groups. The expectation of u, i.e. the vector of 
breeding values of known animals, is then:  
 
 E(u)= (I-P)-1PbE(ub) =  (I-P)-1PbQbg= Qg  (Quaas, 1988).  
 
Quaas shows with numerical examples that the matrix Q exactly relates the breeding values of all 
known animals to the genetic group effects. Hence, if there are n animals and p genetic groups, than 
Q is a n x p matrix and the (i,j)th element of Q reflects the fraction of the genes of animal i are 
originating from group j. Hence, genetic groups are like ancestors. As with ‘real pedigree’, it is not 
necessary to work out all relationships in a pedigree. Only direct relationships are taken into account, 
and other relationship are automatically implied, was we have see with rules for building A-inverse. 
Similarly, we do not need to worry about genetic groups of animals that have parents known, as their 
expected genetic mean is determined by the parent average. Only animals with one or two unknown 
parents need an assignment to a genetic group, or better, the missing parents needs be placed in a 
group where it most likely belongs to 
 
 Rules for genetic grouping are derived from the same rules as those for building the (inverse) 
relationship matrix. If parents are known, we proceed as before, with the normal rules for the 
relationship matrix. If one or two parents are unknown, we define a genetic group for that unknown 
parent and treat that genetic group as an ancestor. The only difference with a real ancestor is that 
genetic groups are fixed effect whereas real ancestors are treated as random  
 
The rules to create grouping equations are summarized as 
 
§ Assign phantom parents to base animals  

(if only one parent known, assign another phantom parent 
§ Determine for each phantom parent to which genetic group it belongs 
§ Build the mixed model equations using the pedigree, including phantom parents 

The matrix A-1 is obtained by the usual rules for obtaining the inverse of the relationship 
matrix.  A list of pedigrees, consisting of only actual animals, but with unknown ancestors 
assigned to groups is set up.  For the ith animal, calculate the inverse (bi) of the variance of 
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Mendelian sampling as: 
 

bi = 4/(2 + number of parents of animal i assigned to groups) 
 
Then add: 
 
bi to the (i,i) element of A-1 
 
-bi/2 to the (i,s), (i,d), (s,i) and (d,i) elements of A-1 
 
bi/4 to the (s,s), (s,d), (d,s) and (d,d) elements of A-1 

 
Note that when both parents are known, none has to be assigned to groups and bi = 2. The 
coefficients added are then 2, -1 and ½, i.e. the usual coefficients for the NRm for 2 parents known. 
If only one parent is known, bi= 4/3 and the coefficients are 4/3, -2/3 and 1/3, i.e. again the same as 
the case for NRM with one parent known. If no parents are known, both need assignment to groups 
and bi = 1. The elements added are 1, -½ and 1/4 . 
The logic is that if two parents are known, half of the variance of the breeding value has already been 
explained, leading to a coefficient of 2 (inverse of ½: the variance of the Mendelian sampling term)) to 
the animals’ diagonal. If the animal has no parents known, and his ancestry is explained by groups 
(e.g. a breed), none of the animals BV has been explained and leading to a coefficient of 1. This 
distinction between ‘fixed groups’ and ‘random real ancestors’ is easier to maintain, and in a way less 
relevant, if the groups consist of many ‘phantom parents’, i.e. if they have many ‘progeny’. In that 
case, the difference between random and fixed will be small (as it is with sires with many progeny). 
But if groups are made up of phantom parents of just one animal, the distinction is not easy to 
maintain. This leads to the conclusion that there are some theoretical arguments about fitting group 
effects as random rather than fixed.  
 



14: Genetic groups 

14- 6  
 

 

Example (from Mrode, 1996) 
 
By way of example the modifications of a pedigree structure needed to set up the above NRM is 
shown. 
 
Calf  Sire  Dam 
 
1      unknown      unknown 
2       unknown      unknown 
3       unknown      unknown 
4   1       unknown 
5   3    2 
6   1    2 
7   4    5 
8   3    6 
 
This can be rewritten assigning unknown sires to one group and unknown dams to another group. 
 
Calf  Sire  Dam 
 
1             G1              G2 
2    G1      G2 
3              G1              G2 
4   1               G2 
5   3    2 
6   1    2 
7   4    5 
8   3    6 
 
 
The NRM is then constructed using the above rules, in this case n = 8 animals and p = 2 groups. The 
solutions to the modified MME have a problem in that the genetic group effects are still fixed effects 
and some restrictions on their solutions may be needed. 
 
In the example, there are different groups for sires and dams, as selected sires may have a different 
(usually higher) genetic merit than the average of selected dams. However, there is some danger here, 
as group solutions could become confounded. In this example, if animal 4 was discarded, it would 
not be possible to estimate a difference between G1 and G2, and the coefficient matrix would be 
singular. 
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Genetic Evaluation across Breeds 
 
Many genetic evaluation systems are for one breed at a time. Sometimes there is a good statistical 
reasons  for this, that animals from different breeds are hardly ever found on the same farm, let alone 
in the same contemporary (management) group. In that case, breed effects can not be estimated from 
the data, and an across breed evaluation is not justified. A second reason might be more political, as 
some genetic evaluations are organized by breed societies, that have no interest in crossbreeding or 
comparing themselves with other breeds (especially if they might look less favourable).  From a 
neutral perspective it would be best to evaluate animals always across breeds and have good 
linkages between breeds (many farms with more than one breed). In that case, selection ca be 
optimized across breeds, and  use of genetic resources should be optimal (although there are some 
interesting optimization problems here for animal breeders). 
The main issues to consider with across breed evaluation are 
 

o Modeling and estimating the breed differences 
o Modeling and estimating crossbreeding effects 
o Modeling and estimating differences in variances between breeds 

 
Breed differences (additive genetic effects between breeds) can be dealt with through appropriate 
genetic grouping. Whether the breed effects are accurately estimable depends on the distribution of 
different breeds across te different management groups. Breed comparisons can only be made based 
on data on different breeds within the same fixed effect level (e.g. of contemporary group) 
Note that often, both direct and maternal breed effects need to be estimated. For the latter we also 
need dams of different breeds to be compare in the same herd. 
 

Non additive genetic effects  (between breeds) 

In the analysis of data across populations, one might expect non-additive effects. Depending on the 
crossbreeding group, different coefficients for dominance (or heterosis) and epistatic (or 
recombination) effects are expected. A straightforward way to account for such effects is to include 
them in the model as linear regression coefficients (Van der Werf and De Boer, 1989). The additive 
genetic breed effects will be a regression of phenotype on proportion of genes of a particular breed in 
the animal making the record. Similarly, dominance is related to heterozygosity of the animals’ 
genome. For example, the heterosis coefficient for an animal with a sire having ps as a proportion 
from breed A and 1-ps from breed B, and a dam with coefficient pd and 1-pd, would be equal to 
ps.(1-pd) + (1-pd).pd. This is easy to see as it predicts the proportion of ‘heterozygous alleles’. 

   

 

       Dam alleles 

   Sire alleles   Prop. Breed A  Prop breed B 
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       pd    1-pd 

 Proportion from breed A  ps  ps.pd  ps.(1-pd) 

 Proportion from breed B 1-ps  (1-ps).pd (1-ps) .(1-pd) 

There is a relatively simple extension to coefficients for multiple breeds, although gives an additional 
complication that AxB heterosis may not be the same as BxC heterosis, etc. 
The coefficient for epistasis is related to heterozygosity of the parents’ genome. This can be derived 
as e.g. as ps(1-ps) + pd.(1-pd).  This coefficient would represent what is also known as 
‘recombination loss (Dickerson, 1969).  However, there are several epistatic models possible, 
depending on the actual allelic actions and interactions tat are hypothesized (see Kinghorn, 1983). In 
any case, additive and non-additive effects in crossbreeding data should be accounted for as these 
effects influence the mean (as first moments) and genetic evaluation would be baised if they were not 
accounted for.   

A problem is often that not all crossbreeding types are evenly (or even at all) represented. The 
regression model is not very robust to such sub-optimal designs. Depending on the dataset, one might 
‘pre-estimate- crossbreeding effects and pre-correct the data. In estimating crossbreeding effects, is 
useful to check the estimability of the crossbreeding parameters (often A, D and E have a quite high 
sampling correlation). It is also useful to compare a regression model with a model with each 
crossbreeding type as a fixed effect. The latter model does not rely on any assumptions of genetic 
effect in the model. If the expected mean for a particular crossbreeding group from the regression 
model deviates from the breed group model (other than by sampling), than the regression model 
might lack a certain effect (e.g. maternal effect or heterosis). 
Finally, when looking at crossbreeding models at single, or two locus level, it is quickly clear that 
different crossbred groups can be expected to have different genetic variance (both additive and non-
additive). To some extent, the infinitesimal genetic model is not compatible with dominance and 
inbreeding depression (see next).    
 

Conclusion 
In analysis of crossbred data, the first worry is to have the first moments right, i.e. the model has to 
account for breed effects and possible non-additive effects like heterosis and recombination loss. It is 
important here to realize that breed differences are additive effects and should be added on to within 
breed effects of additive effects, in order to obtain across breed EBV’s. 
A second, and of secondary importance, worry is to have the variances right. The fewer loci in the 
underlying genetic model, the more change that different genotypes (crossbred groups) have different 
genetic variance. However, as most traits are assumed to be regulated by a large number of loci, and 
as breed differences (and allele frequencies) are generally not expected to be very high (unless for 
more extreme crosses), it may be reasonable to assume homogeneity of variance across crossbred 
groups. 
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Exercises 1. 
 
1) Consider the following data 
 

Animal sire dam breed  performance 
1  0 0 Jersey  220 
2  0 0 Jersey  260 
3  0 0 HF  280 
4  0 0 HF  320 
5  1 2 Jersey  240 
6  3 4 HF  300 

 
Set up mixed model equation with groups according to the regular MME  
Set up the modified mixed model equations 
Discuss the interpretation of the group solutions as ‘phantom parents’ 
Note the matrix Q’*A-1 and discuss the meaning of this. 

 
2) Repeat the first exercise with the following data 

 
Animal sire dam breed  performance 
1  0 0 Jersey  220 
2  0 0 Jersey  260 
3  0 0 HF  280 
4  0 0 HF  320 
5  1 4 Xbred  265 
6  3 2 Xbred  275 

 
 
 
Exercise 2  
 
In the following example, set up mixed model equations. Consider only effects of breed.  Determine 
breed contribution of each animal and also EBV’s ‘across breeds’. 
 
Calf  Sire  Dam  %Angus %Nelore  Yearling Wgt 
1      unknown      unknown  100  0  320 
2       unknown      unknown  0  100  280 
3       unknown      unknown  50  50  310 
4   1       unknown  50  50  304 
5   3    2  follows from above  307 
6   1    2  follows from above  296 
7   4    5  follows from above  302 
8   3    6  follows from above  314 
 


