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Chapter 9

Modeling and Variance structures
Julius van der Werf

In this lecture we will look at the different sources of variation, how they are associated with
modd factors and how these together determine the variance structure of the data
Understanding various ways to define a variance structure is important for model building
and aso for understanding how the design of the data might or might not alow the estimation
of variance components. Working with mixed models requiresin the firgt place that you have
a good understanding of the variance structure that is imposed on the data. Software used
for mixed modd andyss will require the user to specify the variance dructure. In this
chapter we will discuss some smple variance structures with some nore sophisticated
extensons.

The Equation
The equation of amodd defines the factors that will or could have an effect on an observed
trat. The generd linear modd equation in matrix formis

y=Xb+Zu+e ..(1)
where
yisann x 1 vector of n observed records
bisap x 1 vector of p levelsof fixed effects
uisaq x 1 vector of qlevelsof random effects
eisann x 1 vector of random, residua terms
X isaknowndesign matrix of order n x p, which relates the recordsiny to the fixed effectsin b
Z is aknown design matrix of order n x g, which relates the records iny to the random effects
inu

Expectationsand Variance Covariance (VCV) Matrices
In generd the expectation of the modd parametersis

¥y 2Xby
Elu.=Z20_
b S0

(2

which is dso known as the 1% moment. The 2 moments describe the variance-covariance
Sructure of y:

a0 _a&s 00
Ve~ %0 Rp ~(3)

where G is a digperson matrix for random effects other than errors and R isthe dispersion
matrix of error terms, for which both are generd square matrices assumed to be nor:
gngular and positive definite, with eements that are assumed known.
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We usudly write
Va(y)=V=2ZGZ' +R cen(4)

Hence, the variance structure among y is only determined by the random effects.

Structure among data
Take asmple modd with 5 observations

Animd 1 yl
Animd 1 y2
Animd 2 y3
Animd 2 ya
Anima 3 y5

Themodd is y = +a+ e withabeing the animd effect.

We have 5 observations and 3 animals, hence the Z matrix hasb rows and 3 columns.
The variance-covariance (VCV) matrix among animasis G isa 3 x 3 matrix.

We could write var(@) = G = Iss 2, assuming there is no covariance among the animd
effects. The VCV among residudsisR isa5 x 5 matrix.

Would we expect covariances among the resduas? There would certainly be a covariance
between two observations on the same animd, but this is assumed to be covered by the
common effect of animds. This is easy to see by working out the dements of (4). We
assume firgt dl random residud effects are uncorrelated and have equd variance, i.e R =
Is 2.

The Z matrix looks like:

& 0 08 & 100 06
10 07 §100 0;
Z=¢0 1 0+andZGZ'=¢0 0 1 1 0+s? Notethat thedimensionsneed to
o 1 oZ 0 011 0;
% 0 1p 0 0 0 0 1y

be 5 by 5 asit is a description of the variance structure of the data, this part due to the
animal component. We see a block diagona with blocks for each anima and the dimension
of each block equa to the number of observations for each animdl.

The totd variance structure of the data as described in (4) by ZGZ' + R looks like
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A 10 0 05 & 00 0 08
¢ 100 0] © 100 0]
V=ZGZ +R=¢0 0 1 1 0+s?+ ¢0 0 1 0 0+ sZ=
© 011 0; © 00 1 0:
0 0 0 0 1y % 0 0 0 1y
s2+s? s’ 0 0 0
g s s’+s 0 0 0
) 0 s’Z+s s? 0
g 0 0 s? s’+s? 0
E 0 0 0 0 s?2+s?

(%]

Hence, we see a variance structure cause by two variance components such that

Var(y)=sZ+s

cov(y;, yir) = s 2 if the two observations are measured on the same animal and

cov(y;, yi') = 0 otherwise.

Note that the dructure is here defined by the design matrix Z. The random effects
themsdlves do actudly not have a structure among themsdves, they are independent. Note
adso that the covariance among observations on the same animd is not invoked by
correlations among the resduds, but by fitting an anima effect, whichis a common effect to
al observations for that animas, hence determining covariance. The resdud effects are dl
equaly distributed and independent (often called ‘ measurement error’, which is a convenient

term for interpretation purposes)

Structure among random effects

Now, what if the animals are genetically related? Suppose animals 1 and 3 are two half sbs?
It seems smple to accommodete this by defining a covariance amongst these animas due to

their additive genetic rdaionship.

el 0 .25

We could writevar@=G=50 1 0 :saz = As 2, where A isamatrix with

§25 0 1

additive genetic rdaionships among animals (usudly called the numerator reaionship matrix:

NRM, see later).
Thetotal variance structure of the data as described by ZGZ' + R is now
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&l 1 0 0 .25% & 00 0 0§
§€1 1 00 .25 © 100 0]
V=ZGZ+R=¢0 0 1 1 O0+sZ+ ¢0 0 1 0 0+ sZ=

¢0 0 11 0: © 00 1 0:
§25 25 0 0 1 % 0 0 0 1y

s2+s? s’ 0 0 is? 6

¢ 82 sies? 0 s

¢ 0 0 sZ2+s? s’ o -

g 0 0 s? sZ+s? 0 -

& 3s.  iss 0 0 s +sip

Hence, we see a variance structure caused by two variance components such that

Var(y) = s2 +sZ; cov(y, yi) = s 2 if messured on the same anima; cov(y, i) = 4s 2 if
measured on geneticaly related (haf sb) animals and cov(y;, ;') = 0 otherwise.

Note that the structure is now defined not only by the design matrix Z, but dso by a
dructure among random effects themselves (in ASReml, this is indicated as ‘internd
structure’).

Structur e dueto different random effects

Although the last modd has dready a non-trivid variance sructure implemented, the
question is whether the modd is complete. One observation is that the covariance among
two records of haf sbs is one quarter of the covariance among two records on the same
animd. The covariance among hdf sbsis, presumably, only genetic in origin (unless the half
sbs have a common environment, usudly not). This implies that the covariance anong two
records on the same anima dso has to be additive genetic. However, usudly, there are
other reasons for the latter to be smilar, due to common effects usudly indicated as
‘permanent environmental (PE) effect’. Hence, we would expect records on the same
animals to covary due to a complete smilarity of genetic effect aswell as the same PE effect.
It is therefore expected that the covariance cov(ys, y») > 4.cov(ys, Ys). We can model this
asfollows

y=u+2Za+2Z?+e.

Note that the design matrix is actualy the same for a and ?, (Z; = Z) asthisit rdates
observations to animals and one dose of a is dways accompanied by one dose of 2 Now,
relating this to the notation of the generd mixed modd: y = u+ Zu + e,

a0 s> 060
WehaveZ=[2,2Z;] andu= =~ andva(uy=G= a o

ggﬂ g 0 Isgfa
andvar(y) =V =ZGZ :zl’Azlsj + Zz’ngg2 +R (each term being an n x n matrix)
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therefore
®I+s;+s?  si+s? 0 0 sz O
g si+s) sit+si+s? 0 0 is2
V:g 0 0 sits;+s?  si+s] 0 :
c 0 0 Si+s,  S_.+si+s? 0 +
§ is? is? 0 0 si+sl+s?y

Compared to the previous modd, the half sib covariances are smaller. As the totd variance
should be the same, the extra component s gz has been taken out of one of the other. In this
case, it has been fully taken out of s ? asa + ?in the latter model replaces a in the previous
modd. In other words, the anima effect has now been lit into an additive genetic

component and a permanent environmental component. The residua component is therefore
the samein both models, i.e. s 2 is unchanged.

In the last model, we see a variance structure caused by tree variance components such that

Var(y)=s2 +s; +sZ covy,y)=s? +s_ if measured on the same animal; cov(y;,
yi) = %si if measured on geneticaly related (haf gb) animas and cov(y, y) =0
otherwise.

In complicated models, more than two random effects might be fitted, and these might have
a sructure among them e.g. maternd genetic effects, dominance effects, QTL effects etc. or
uncorrelated (litter effects, maternd environmenta effects), and different random effects may
have a correation among them (e.g. maternd and direct additive genetic effects, or additive
genetic effects for different traits). Recently, more complicated models have been proposed
to modd the change of variance depending on a continuous variable, eg. of time or
environment. Hence, the variance of a breeding vaue () could depend on the age a
measurement of the phenotype. These ae random regresson modds, dlowing
implementation of covariances functions to fit the data (see again a later Chapter). In
multivarigte adlyss, a range of structured or unstructured covariance patterns can be
imposed

It is nat difficult to formulate a mixed mode with many random effects, however, it
will be more difficult to estimate these effects if there are many. This will discussed further in
the chapter on variance component estimation.
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Variance sructurefor errors

In the previous, the error terms were assumed uncorrelated and had equa variance. Often, a
more sophisticated model for the error terms is more appropriate.

1) The error variances may not be the same for the different observations.
Heterogeneous variances are often moddled for different herds or flocks, different
environment or more generd for different subsets of the data

2) There may be covariances between error terms.

Note that correlations between error terms can often be accommodated by an additional
random effect, such as a permanent environmentd effect. In the previous example, we
could have use the modd

y=p+Za+e

andva(y)=V =2ZGZ =Z'AZ;s? +R

where
aad r 0 0 006
¢ 100 0f
R=¢0 0 1 r O0+%s’,whees?=s;+s’ and?=s;/s?
¢0 0 r 1 0:
0 0 0 0 1

However, an additiond fixed effect is usualy easier to implement in estimation software than
complicated covariance patterns among errors. Some eror structures, however, are
systematic and can be handled by some software programs. For example, if correlations are
functions of distances or time, we can impose systematic corrdation patterns such as an
autocorrelation structure, where the correlation between observations in two periods that
aret units gpart is equal to ?' In afollowing chapter on longitudina data, more discussion on
correlation patternsin longitudina datawill be presented.

Exercises:
1. Writethe error covariance structure for repeated records from 4 consecutive years.

2. Write the covariance structure d the data for 6 records on 3 animas, each with 2
records, where animals 1 and 3 are full sbs.

3. Repeat 2) with the additiona knowledge that animals 1 and 2 are from the same litter.
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