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Genomics Revolution – Human Genome Project

2

• A complete human genome contains three billion base pairs of DNA

• Precision/Personalized medicine was the reason behind the 13 
years effort and $2.7 billion spent on the Human Genome 
Project (Completed in April 2003)

• A human genome can now be mapped in just a few hours for less 
than $1,000

• The human genome includes approximately 20,000 different 
genes that encode proteins.

• Genomes of all humans are extremely similar. There are minor DNA 
sequence variations in each individual (between 1% and 3%) that 
makes them unique.
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Genomics Revolution – Gold Rush (GWAS)

3Genomics Inform. 2012 Dec; 10(4): 220–225

Genomics Revolution – Gold Rush (GWAS)
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First successful GWAS was carried out in 2002 (Nat Genet. 2002;32:650–654)

The next publication was 3 years later in 2005

Source: https://bioinformaticshome.com/tools/gwas/gwas.html)
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Genomics Revolution
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Personalized Medicine

What’s changed?
• Our ability to sequence the genome
• Our ability to analyze the large genomic data

Introduction to Genomic
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Human:

• Understand, diagnose, 
monitor, treat, predict 
and prevent diseases

• Development of medicine 
(e.g., Vaccines)

Livestock:

• Genetic selection to increase 
production and profitability

• Efficiency

• Resiliency

• Sustainability

• Food security

• Welfare

5
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Introduction to Genomic
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By 2020, the impact of genetics on medicine will be even more widespread. The 
pharmacogenomics approach for predicting drug responsiveness will be standard 
practice for quite a number of disorders and drugs. New gene-based "designer 
drugs" will be introduced to the market for diabetes mellitus, hypertension, mental 
illness, and many other conditions. Improved diagnosis and treatment of cancer 
will likely be the most advanced of the clinical consequences of genetics, since a 
vast amount of molecular information already has been collected about the 
genetic basis of malignancy. By 2020, it is likely that every tumor will have a precise 
molecular fingerprint determined, cataloging the genes that have gone awry, and 
therapy will be individually targeted to that fingerprint.

Implications of the Human Genome Project for Medical Science
Francis S. Collins, MD, PhD; Victor A. McKusick, MD

JAMA. 2001;285(5):540-544. doi:10.1001/jama.285.5.540

Introduction to Genomic
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Source: Hildebrand Factory chocolate, Germany
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Introduction to Genomic

9https://www.livescience.com/1st-uk-child-to-receive-gene-therapy-for-fatal-genetic-disorder-is-now-happy-and-healthy

Feb 17, 2023

Timeline of Major Events in Dairy Cattle Breeding

10

• Artificial insemination + Frozen semen

• Mate best with the best and hope for the best (Robert Bakewell 1770)

• Animal model (BLUP)

• Embryo transfer

• Ovum pickup (OPU) + Invitro fertilization (IVF)

• Genotyping + Genomic Selection

• Sexed semen

• New technologies ?

Innovation

Ti
m

e

• Use of pedigree
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Introduction to Genomic Selection
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Genotypes

Ref: Kor Oldenbroek and Liesbeth van der Waaij, 2015.

Investment in 
continuous data 
collection is the key 
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Genetic evaluation:
• Variance components
• Genetic similarity between individuals

G H

Introduction to Genomic Selection
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From theory to application – An example:

• Theory of Individual Cow Model (Animal Model) was 
first proposed by Henderson in mid 1960’s

• The national application of Animal Model in US began 
in 1989

Almost 20 years gap!

Computer Power

Introduction to Genomic Selection

14

From theory to application:

• Van Arendonk et al., · 1994; (Genetics: 137: 319-329)
• Nejati-Javaremi et al., 1997 (JAS 75: 1738-1745)
• Meuwissen et al., 2001 (Genetics 157: 1819-1829)
• VanRaden, 2008 (JDS 91: 4414-4423)

The national application of Genomic Selection in US began in 2008

• Dense marker data
• Computer power

The same story for Single Step BLUP

Introduction to Genomic Selection
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Genetic Marker

15

Genetic marker can help track the inheritance of a gene and it can 
be anything like DNA sequence or a phenotypic characteristic like 
polledness. 

Examples of DNA markers:
• Single Nucleotide Polymorphism (SNPs)
• Microsatellites
• Indels
• Restriction Fragment Length Polymorphisms (RFLPs)
• Variable Number of Tandem Repeats (VNTRs)
• Copy Number Variants (CNVs)

A DNA marker may or may not have a function

Genetic marker - Single Nucleotide Polymorphism

16

• Bi-allelic
• Most common type of DNA marker
• Uniformly distributed across the genome
• Lower information content at single locus
• Lower cost per marker
• SNPs make up about 90% of human genetic variation

An SNP is a genomic variant at a 
single base position in the DNA 
with at least 1% frequency in the 
population.

Source: DOI:10.1007/s11356-022-19981-7
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Genotyping Technologies

17

• SNP Microarrays
• Illumina’s Infinium Beadchip assay
• Affymetrix GeneChip Array

• TaqMan SNP assay
• MassArray SNP
• DNA Sequencing (NGS)

https://biocertica.com/blogs/genetics/what-are-other-types-of-genotyping-technologies

Genotyping Technologies – Important Factors

18

• Call rate
• Accuracy of genotype call
• Reproducibility

Illumina Infinium
microarray
>99%
>99.9%
>99.9%

17
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Genotyping Technologies

19

Source: https://biocertica.com/blogs/genetics/how-do-we-perform-genotyping

Challenges with Genomic Data – Big Data?

20Ref: Stein 2010

More importantly
in-silico data

19
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Challenges with Genomic Data

Genomic Data

22

Two main providers of microarray SNP chip and genotype call 
software are Illumina and Affymetrix.
The genotype files come in “Tall” or “Wide” format:

[Header]
GSGT Version 2.0.4
Processing Date 2023-01-01 12:00 AM
Content GGP100k.bpm
Num SNPs 95256
Total SNPs 95256
Num Samples 20
Total Samples 20
[Data]
SNP Name                  Sample ID  Allele1–Forward  Allele2–Forward  Allele1–Top  Allele2–Top  Allele1–AB  Allele2–AB  GC Score
10-104012831-C-G-rs442869917   Sample1    C    C C C A    A 0.5420
10-15108992-A-G-rs384947169    Sample1    A    A A A A A 0.9090
10-15835936-G-A-rs209130723    Sample1    G    G G G B    B 0.3396
10-26681293-G-A-rs453101503    Sample1    G    G G G B    B 0.6591
10-26948606-C-T-rs384792959    Sample1    C    C G    G B    B 0.3390
10-27008241-A-C-rs42918694     Sample1    C    C C C B    B 0.7581
10-27895449-A-G-rs451556029    Sample1    A    A A A A A 0.1042
10-37505397-T-A-rs135642375    Sample1    A    A T    T B    B 0.6645
10-37505419-T-C-rs136559242    Sample1    C    C G    G B    B 0.7314
10-46144755-G-A-rs135125777    Sample1    A    G    A    G    A    B    0.8879
10-47509723-A-T-rs467796086    Sample1    A    A A A A A 0.5256
10-49904259-G-A-rs471723345    Sample1    G    G G G B    B 0.7448
10-6988001-T-C-rs211553144     Sample1    T    T A    A A A 0.4207
10-81024106-T-G-rs448413483    Sample1    T    T A    A A A 0.5362

21
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Genomic Data

23

AB “Wide” format

Index SNP Name Sample1.Gtype Sample2.Gtype Sample3.Gtype Sample4.Gtype Sample5.Gtype
1 ARS-BFGL-BAC-10919 AA AA AA AB AA AA
2 ARS-BFGL-BAC-10975 AB AA AA AA AB AB
3 ARS-BFGL-BAC-11000 AB AA AA AB AA AA
4 ARS-BFGL-BAC-11003 AB AA AB AA AA AA
5 ARS-BFGL-BAC-11025 AB BB BB AA BB BB
6 ARS-BFGL-BAC-11044 AB AB AB AB BB BB
7 ARS-BFGL-BAC-11193 AB BB AB AB AB AA
8 ARS-BFGL-BAC-11215 AB BB AB AA AB BB
9 ARS-BFGL-BAC-11218 AB AB AB BB BB BB
10 ARS-BFGL-BAC-11276 BB BB BB AB AB BB
11 ARS-BFGL-BAC-11283 AA AA AA AA AB AB
12 ARS-BFGL-BAC-11513 AB AA AB AB AA AA
13 ARS-BFGL-BAC-11612 BB BB AB AB AB BB
14 ARS-BFGL-BAC-11657 BB BB BB AB BB BB
15 ARS-BFGL-BAC-11666 AB BB AB AB BB AB

Genomic Data

24

Why is AB allele coding preferred?

Designation of strand and allele is usually not consistent across platform, 
organization and assemblies

AB coding is a simple method that ensures uniformity of genotype calls

https://www.illumina.com/documents/products/technotes/technote_topbot.pdf

23
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Genomic Data – Format Conversion

25

The most common format to store genotypes:
• VCF (Variant Call Format)
• BED – PLINK
• Plain text file

VCF:
• Very flexible  Phased/unphased SNP, Indel
• Complex and not compressed
• Big file size  Slow to read 

BED
• Specific to PLINK
• Binary
• Simple
• Slightly compressed

Genomic Data – Allele Coding for Additive Gene Action

26

Gene Content:
Gene Content is the number of copies of a reference allele for an SNP

• In the absent of mutation, its h2 is 1
Gene Content can be calculated on A B allele

2 = AA
1 = AB
0 = BB

Centered Coding:
1  = AA
0  = AB
-1 = BB

Parameter estimates (Same)
Marker effect (Same)
Breeding vales (Same)
GRM (Different)
Reliability (Different)

GSE: 2011, 43:25

Distances between allele codes within a marker is the same for both methods.

25
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Genomic Data

27

ID           genotypes
SAMPLE_123   00210215022102011...
SAMPLE_124   01201012212201111...
SAMPLE_125   11101202201220110...
SAMPLE_126   22102110021102101...
SAMPLE_127   10120050110010200...
SAMPLE_128   02222201052101111...
SAMPLE_129   11202210021102122...
SAMPLE_130   00021150120011201...
SAMPLE_131   21102020022010252...
.
.
.

Example of genotype file:

ID         Chip  genotypes
SAMPLE_123   1   00210215022102011...
SAMPLE_124   1   01201012212201111...
SAMPLE_125   1   11101202201220110...
SAMPLE_126   1   22102110021102101...
SAMPLE_127   1   10120050110010200...
SAMPLE_128   1   02222201052101111...
SAMPLE_129   1   11202210021102122...
SAMPLE_130   2   00021150120011201...
SAMPLE_131   2   21102020022010252...
.
.
.

QMSim / BLUPF90 FImpute

SNPID    Chr    Pos
rs100    1      115
rs220    1      1567
rs272    1      2369
rs343    1      4034
rs423    1      8921
rs487    1      10561
rs499    1      11834
rs542    1      12956
rs589    1      14283
.
.
.

Map file:

SNPID    Chr    Pos      Chip_HD   Chip_LD
rs100    1      115      1         0
rs220    1      1567     2         1
rs272    1      2369     3         0
rs343    1      4034     4         0
rs423    1      8921     5         2
rs487    1      10561    6         0
rs499    1      11834    7         3
rs542    1      12956    8         0
rs589    1      14283    9         4
.
.
.

Genomic Data

FImputeQMSim / BLUPF90

27
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ID           Sire      Dam      Gender
SAMPLE_123   Sire_A Dam_F M
SAMPLE_124   Sire_B Dam_J F
SAMPLE_125   Sire_D Dam_B M
SAMPLE_126   Sire_B Dam_O F
SAMPLE_127   Sire_H Dam_I M
SAMPLE_128   Sire_K Dam_Q M
SAMPLE_129   Sire_A Dam_S M
SAMPLE_130   Sire_H Dam_V M
SAMPLE_131   Sire_M Dam_A F
.
.
.

Pedigree file:

Genomic Data

Statistics of Genomic Data & Quality Check

• Call Rate
• Minor Allele Frequency (MAF)
• Heterozygosity Rate
• Duplicate Samples/SNP
• Mendelian Errors

• Parentage Test
• Gender Conflicts

• Hardy-Weinberg Equilibrium
• Linkage Disequilibrium and Identification of Misplaced SNPs

Most common:

29
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QC: Call Rate

• Low call rate (either per SNP over samples or per sample over 
SNPs) is normally associated with low genotype quality

• For Illumina and Affymetrix microarray genotypes, samples/SNPs 
with call rate bellow 95% should be excluded

Source: Illumina Genotyping 
Technical Note

QC: Minor Allele Frequency (MAF)

• If p is frequency of allele 1 and q frequency of allele 2 MAF = 
min(p , q)

• If MAF is zero, the SNP is not segregating and has no information

• If MAF is very low, it may cause problem both numerically and 
statistically

• MAF filter level depends on power to detect associations (e.g.
sample size)

• Usually, MAF filter is set to 1% but for large sample size it could be 
smaller

31
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QC: Heterozygosity Rate

• Higher than expected heterozygosity is an indication of sample 
contamination and low genotyping quality

• Samples with 3 SD deviation from mean heterozygosity of 
population should be removed

• Excess of heterozygosity can also be used to removed low quality 
genotype (Difference between expected and observed)

abs(Observed Hetero rate -2pq ) > 0.15
(Wiggans 2011)

QC: Duplicate Samples/SNP

• Challenge: identification of duplicates in large data set
• A simple but not optimized solution:

• Sort SNP based on allele frequency
• Use partial search
• Do parallel processing T=200; //for 50K panel

Err=0;
for(i=0;i<n;++i)
{

for(j=0;j<n;j+=500)
{

for(k=j;k<n && k<(j+500);++k)
{

if(g1!=g2) ++Err;
}
if(Err>T) break;

}
//if Err <=T duplicate detected 

}

33
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QC: Mendelian Errors

• Mendelian error is a genotype inconsistency between progeny 
and parent

• Pedigree error
• Sample mix-up
• Poor genotype quality

X

aa

AAAa

QC: Hardy-Weinberg Equilibrium

Under HWE allele frequencies will stay the same across generations

• HWE assumption:
• No mutation
• random mating
• no gene flow
• infinite population size
• no selection

Genotype frequency under HWE: p2, 2pq, q2

HWE test in livestock under intense selection may not be a definite 
indicator of poor genotype quality except for excess of heterozygosity

35
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QC: Identification of Misplaced SNPs Using LD 

• LD is non-random association of alleles at two loci
• SNPs located close to each other show high allelic correlation (most of 

the time inherited together)
• SNPs far apart or on different chromosomes show low allelic correlation

37
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• Field experiment

– Realistic but expensive and sometimes infeasible

• Mathematical modeling

– Very useful but very simplified model

• Simulation

– Flexible, complex model and works when math does not work

Approaches to Solve the Problems

39

Simulation

• A simulation is the imitation of the operation of a real-world 
process or system over time (Banks et al. 2001)

40

39
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Simulation Basics

• Priors/Parameters (collected over time on historical data)

• We understand how the system works, but generating 
data/samples by modeling the system is very complex

• Simulation uses priors/parameters to generate each single 
force in the system and try to evolve the system over time (it 
may need long processing time)

• Simulation is used in almost all fields!

41

• Integration

Simple Example of Stochastic Process Application 

42

41
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• How many earth planets can fit inside the sun?
Known: Sun radius is 109 times of earth radius 

Another Example

~1,300,000

43

Why Genome Simulation

• Genomic/Sequence data is not available to many researchers 

• Extremely cost effectives

• Generate tuned data for method comparison

• Simulation provides more detailed results

• Genome is very complex so deterministic modeling is difficult

44

43
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Sequencing Cost

45

Population simulation

• Environmental effects

• Genetic effects

• Interactions

 Micro-evolution (within population)

– Continuous

– Over long period of time

 Macro-evolution (e.g. origin and extinction of populations)

– Can be slow or fast

46

45

46



24

Evolution

• The genotype of an individual is static. But the fitness of 
individuals plays critical role in evolution

• Evolutionary changes happen in the population over 
generations when one generation turns to another

• Evolutionary forces change frequency of alleles in favor 
of adaptation to the environment 

47

Evolutionary Forces

48

Polar bears

Recessive affecting fitness

G1

G2

• Easily hunted
• Cannot hunt

47
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• Mutation
• Drift
• Migration (i.e. gene flow)
• Natural selection
• …

Evolution is a result of changes in allele frequencies

• Better adaptation to the environment (fitness)
• Higher rate of reproduction or more contribution to the gene pool 

of the next generations

Evolutionary Forces

49

• Deterministic
– It has no random elements
– Entire relation between input and output is known
– One replicate is needed
– Fast
– Difficult to program
– Complex systems are difficult to model

• Stochastic
– It has at least one random element
– It is usually not solved analytically
– It is based on probability theory
– Generally, large number of replicates are needed
– Time consuming
– Easy to program

Types of Simulation

50

49
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• Backward simulation (coalescent)

• Forward simulation (gene dropping)

Backward method takes a set of sequences sampled today and
work backwards in time to reconstruct their common ancestral
sequence while forward simulation works generation by
generation forward in time.

Main Types of Population Simulation

51

Forward vs Backward

Most of classical population genetics considers the future of a population
given a starting point, the coalescent considers the present, while taking
the past into account.

One can combine the two:
• Simulate the present population structure using backward simulation
• Simulate future generation using forward simulation

52
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Pros and Cons

• Forward simulation can keep track of the complete ancestral 
information

• Forward simulation is much easier to take into account 
evolutionary forces like selection, migration, …

• Forward simulation can simulate more realistic samples

• Backward simulation is computationally more efficient than 
forward simulation

• Forward simulation is much more flexible

53

• No drift (i.e., very large population size)
• No mutation
• No migration
• No selection
• Random mating
• Sex ratio of 1

Idealised population (no evolution)

Hardy-Weinberg Equilibrium

54
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How to Detect Evolution?

• If evolution is not occurring, then we should observe 
HWE or no change in allele frequencies over time

• Magnitude of change (+ or -) in allele frequency over 
generations points to intensity of evolution

– A good example might be comparison of change in allele 
frequencies related to intelligence between species 
(human is still evolving!)

55

The Challenges

• We need priors/parameters for simulation (e.g., distributions, h2, Vp)

• Estimation of past allele frequencies – Most of the time no historical data 
is available

• Past population size is not known accurately

• Genealogy

56
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Some Solutions

• Simplify the model

• Calculated population size from current linkage 
disequilibrium information

• Start the simulation with equal allele frequencies or 
non-segregating alleles

57

Steps

58

• Simulate founders/base population

• Simulate recent generations from the founders

57
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Simulating Polygenic Effect

• For base population

𝑎 ~ 𝑁(0, 𝜎 )

𝑎 = 𝜎 ∗ 𝑁𝑅𝑛𝑑

𝑁𝑅𝑛𝑑~ 𝑁(0, 1)

• For recent generations

𝑎 =
(𝑎 +𝑎 )

2
+ 𝑀𝑆

𝑀𝑆 = 𝜎 ∗ 𝑁𝑅𝑛𝑑 ∗ 0.5 − 0.25(𝐹 + 𝐹 )

59

Simulating Residual Effect

• For all individuals

𝑒 ~ 𝑁(0, 𝜎 )

𝑒 = 𝜎 ∗ 𝑁𝑅𝑛𝑑

𝑁𝑅𝑛𝑑~ 𝑁(0, 1)

60
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• For base population (historical)

Priors/parameters

– Allele frequency distribution

– Number of alleles

– Genetic architecture (Additive, polygenic, major genes?)

– Demographic events in the past (domestication, migration, bottleneck, …)

– Past effective population size

Simulating Markers and QTLs

61

Haplotypes

Simulating Markers and QTLs

Founder generation

•Simulate large enough number of generations
to reach mutation-drift equilibrium

•Simulate known demographic event

•No selection

62

61
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Simulating QTL Effects

• QTL effects are simulated in the last historical generation

QTL allelic effects are first sampled based on the specified

distribution (i.e., gamma, normal or uniform distribution)

and then are scaled such that the sum of QTL variances in

the last historical generation equals the input QTL

variance.

63

• For progeny in historical population

– Sample two individuals regardless of gender (random union of gametes)

– Sample the number of crossovers based on binomial distribution

– Place the crossovers randomly

– Start with one haplotype randomly and walk through the haplotypes

– Simulate mutation

Simulating Markers and QTLs

(fe)male

Progeny

(fe)male

64
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• For progeny after historical generations

– Select a male and female based on desired mating design

– Sample the number of crossovers based on binomial distribution

– Place the crossovers randomly

– Start with one haplotype randomly and walk through the haplotypes

Simulating Markers and QTLs

Sire Dam

Progeny
65

Linkage Disequilibrium

65

66



34

Linkage Disequilibrium

• Non-random association of alleles at two loci 
because of physical linkage or co-selection

• If we know genotypes/alleles at one locus how well
this information can help to predict unobserved
genotypes/alleles at neighboring locus

67

Linkage Disequilibrium – Cont’d

Linked
on the same chromosome

Unlinked
On different chromosomes

68

67
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Linkage Disequilibrium – Cont’d

Locus 2

B = ■
fB = 0.5

b = □
fb = 0.5

A = ●
fA = 0.5

● ■
fAB = 0.25

● □
fAb = 0.25

Locus 1
a = ○
fa = 0.5

○ ■
faB = 0.25

○ □
fab = 0.25

Locus 2

B = ■
fB = 0.5

b = □
fb = 0.5

A = ●
fA = 0.5

● ■
fAB = 0.35

● □
fAb = 0.15

Locus 1
a = ○
fa = 0.5

○ ■
faB = 0.15

○ □
fab = 0.35

Linkage equilibrium

Linkage disequilibrium

Observed frequencies

69

Linkage Disequilibrium – Cont’d

• When genes are linked, statistical dependence exists

• Linked genes tend to be inherited together

• This tendency declines as distance increases

• The decline is mainly the results of crossing-over

70
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Crossing-over

Source: Lynch and Walsh, 1998

• Cross-over happens when generation turns

• There is less chance of cross-over between 
close variants and therefore they stay linked 
together for longer period of time

71

Causes of LD – Departure of Gamete Frequencies From Expectation

+ Drift (small effective population size)

+ Selection & assortative matings

+ Mutation

+ Migration

+ Crossing

Main causes in
livestock populations

72

71
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Deviation of gamete frequencies from expectation

𝐷 = 𝑓 − 𝑓 𝑓

D can be positive or negative depending if A and B are in coupling or repulsion phase

How is LD Measured?

When haplotypes are reconstructed/known

When haplotypes are unknown

𝐷 =
𝑛

𝑛 − 1

4𝑛 + 2 𝑛 + 𝑛 + 𝑛

2𝑛
− 2𝑓 𝑓

where n is the number of individuals and 𝑛 , 𝑛 , 𝑛 and 𝑛 are the 
numbers of individuals for each genotype combination (Lynch and Walsh, 1998).

73

How is LD Measured? – Cont’d

𝑟 =
𝐷

𝑓 𝑓 𝑓 𝑓

For bi-allelic markers / SNP

For multi-allelic markers D’ or X2 are usually used.

74

73

74



38

Decay of Linkage Disequilibrium

Persistency of LD over generations is a function 
of recombination or distance between the SNPs

Holstein cattle

Decay of LD
as a function of distance

Decay of LD
as a function of generation

75

LD is non-random association of alleles at two loci in 
population

Linkage could be considered as LD within family

LD vs Linkage

LD

Decay of LD over generations is a function of distance between the 
markers

76

75
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Linkage Linkage disequilibrium

m

q

M

Q

M

Q

m

q

m
q

M
Q

• Random sample

LD vs Linkage– Cont’d

77

Linkage Disequilibrium and Genetic Relationship

Extent of linkage disequilibrium:

Human                            Dairy cattle

Relationship between individuals:

Human                            Dairy cattle

Genetic drift
Selection

78

77
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• Close relatives share long haplotypes

• Distant relatives share short haplotypes

Length of shared haplotypes between two individuals 
stores information about the genetic relationship

Age of relationship (Meuwissen et al. 2014)

Linkage Disequilibrium and Genetic Relationship – Cont’d

79

LD and Estimation of Past Ne

Ref: (Sved, 1971); c is distance in Morgan

Ref: (Hayes et al., 2003)

Holstein cattle 80

79
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Finding Misplaced SNPs

81

A misplaced SNP shows low level of LD with 
nearby SNP but strong LD with distant SNPs

• Genetic simulation resources: 
https://popmodels.cancercontrol.cancer.gov/gsr/packages/

• List of generic simulation software: 
https://bioinformaticsonline.com/pages/view/8265/list-of-
generic-simulation-softwaretoolsresource-with-brief-
description-and-homepage

Available Resources

82

81
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QMSim

83

QMSim – QTL & Marker Simulator

Designed for simulating:
– livestock populations
– Large scale genomic data
– Family based data (complex pedigree)
– Multiple populations
– Evolutionary forces
– Computational efficiency

84
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Where to Get It?
https://animalbiosciences.uoguelph.ca/~msargol/qmsim/

85

How it Works?

Historical population
• Random mating
• No selection
• Mutation
• Drift
• Bottleneck/expansion events

Recent population(s)

Step 1

Step 2 Generation 1

Generation 2

Generation n

• Creating desired extent of LD
• Mutation-drift equilibrium

• Creating desired population 
structure

• Long range LD
• No mutation
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Parameter file structure

• Global parameters
• Historical population parameters
• Recent population(s) parameters
• Genome parameters
• Output options

87

How to write a parameter file

Basic rules:

• Each commands end with a ;
• Each section begins with “begin” and ends 

with “end” command
• Comments

//
/* … */      multi-line

88
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Global parameters

/*******************************
**     Global parameters     **
*******************************/
title = "Example 1 - 10k SNP panel";
nrep = 1;                    //Number of replicates
h2    = 0.2;                  //Total heritability
qtlh2 = 0.2;                  //QTL heritability
phvar = 1.0;                  //Phenotypic variance

Whole genetic variation is explained 
by simulated QTLs 
Polygene h2 = h2 – qtlh2

89

Global parameters

/*******************************
**     Global parameters     **
*******************************/
title = "Example 1 - 10k SNP panel";
nrep = 1;                    //Number of replicates
h2    = 0.2;                  //Total heritability
qtlh2 = 0.1;                  //QTL heritability
phvar = 1.0;                  //Phenotypic variance

50% o genetic variation explained by simulated QTLs and 50% by 
polygenes
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Historical population

/*******************************
**   Historical population   **
*******************************/
begin_hp;

hg_size = 420 [0] 420 [2000];   //Size of the historical generations
nmlhg = 20;                   //Number of males in the last generation

end_hp;

Historical nodePopulation size    [generation number]

Generation 0

Generation 2000

420  individuals

420  individuals

91

Historical population

/*******************************
**   Historical population   **
*******************************/
begin_hp;

hg_size = 2000 [0] 150 [2000];  //Size of the historical generations
end_hp;

Generation 0

Generation 2000

2000  individuals

150  individuals

Represents a livestock population
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Historical population

/*******************************
**   Historical population   **
*******************************/
begin_hp;

hg_size = 1000 [0] 3000 [4000];  //Size of the historical generations
end_hp;

Generation 0

Generation 4000

1000  individuals

3000  individuals

Similar to the human population

93

Recent population(s)

/*******************************
**     Recent population     **
*******************************/
begin_pop = "p1";             //Population name
begin_founder;

male   [n =  20, pop = "hp"];
female [n = 400, pop = "hp"];

end_founder;
ls  = 2;                   //Litter size
pmp = 0.5 /fix;            //Proportion of male progeny
ng  = 10;                  //Number of generations
md  = rnd;                 //Mating design
sd = tbv;                 //Selection design
cd  = age;                 //Culling design
begin_popoutput;

data;
stat;
genotype /gen 8 9 10;

end_popoutput;
end_pop;
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Genome parameters

/*******************************
**          Genome           **
*******************************/
begin_genome;

begin_chr = 30;            //Number of chromosomes
chrlen = 100;           //Chromosome length
nmloci = 333;           //Number of markers
mpos = rnd;           //Marker positions
nma = all 2;         //Number of marker alleles
maf = eql;           //Marker allele frequencies
nqloci = 25;            //Number of QTL
qpos = rnd;           //QTL positions
nqa = rnd 2 3 4;     //Number of QTL alleles
qaf = eql;           //QTL allele frequencies
qae = rndg 0.4;      //QTL allele effects

end_chr;
interference = 25;

end_genome;

95

Output options

/*******************************
**      Output options       **
*******************************/
begin_output;

output_folder=“output_s1”; //output folder name
hp_stat;       //Save brief statistics on historical population
linkage_map;   //Report linkage map (centiMorgan)
allele_effect; //Save allele effect

end_output;
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Decay of linkage disequilibrium

In an ideal population linkage disequilibrium decays exponentially over 
generations for long distances but not for short distances

97

Inbreeding

Mean inbreeding in population:
𝐹 = 1 − (1 −

1

2𝑁𝑒
)
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Mutation-drift equilibrium

• Mutation generates new variation
• Drift removes variation

• Mutation rates
• Effective population size (Ne)

Mutation:
• Infinite-allele mutation model
• Finite-allele mutation model

99

Mutation-drift equilibrium

At equilibrium
𝐹 = 𝐹 = 𝐹 ⋯ = 𝐹

• Infinite-allele mutation model:
𝐹 =

1

1 + 4𝑁𝑒𝑢

• Finite-allele mutation model:

𝐹 =
1 +

4𝑁𝑒𝑢
𝑘 − 1

1 +
4𝑁𝑒𝑢𝑘
𝑘 − 1

k = the number of possible alleles

100
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Mutation-drift equilibrium

Allele frequencies at equilibrium:

4Neu > 1      Normally distributed
4Neu = 1      Uniform
4Neu < 1      U-shape distribution

Ref: Wright, 1931

101

Mutation-drift equilibrium
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Mutation-drift equilibrium

Scenario 1 Scenario 2

103

Mutation-drift equilibrium

Scenario 3 Scenario 4
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Mutation-drift equilibrium

Scenario 5 Scenario 6

105

Mutation-drift equilibrium

Issue 1:
When large population size is considered, large number of 
generations is needed to establish mutation-drift equilibrium

Solution:
Simulate small number of individuals over smaller number of 
generations and then expand the population gradually to 
achieve desired population size. 

n = 500

n = 2000
Long range LD
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Mutation-drift equilibrium

Issue 2:
Too many loci are going to fixation!

Solution:
Simulate larger number of loci and then select those that 
are segregating to get the desired density 

/*******************************
**          Genome           **
*******************************/
begin_genome;

begin_chr = 10;...
end_chr;
select_seg_loci /maft 0.01 /nmrk 50000 /nqtl 500;

genomeend_genome;

107

Monitoring the equilibrium

/*******************************
**      Output options       **
*******************************/
begin_output;

monitor_hp_homo /freq 100;
end_output;

------------------------------------------------------
hp_homo_mrk file:
Gen    Mean homozygosity
0     0.360734
100   0.398209
200   0.433752
300   0.468322
400   0.499805

3600  0.886277
3700  0.888996
3800  0.890092
3900  0.891668
4000  0.892113

108
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Selecting founders for recent populations

/*******************************
**     Recent population     **
*******************************/
begin_pop = "p1";
begin_founder;

male   [n =  20, pop = "hp"];
female [n = 400, pop = "hp"];

end_founder;...
end_pop;

begin_pop = "p2";
begin_founder;

male   [n =  20, pop = "p1", gen = 10, select = tbv /h];
female [n = 400, pop = "p1", gen = 10, select = tbv /h];

end_founder;...
end_pop;

From the last historical 
generation

Should be defined before “p2”

109

Selecting founders for recent populations

begin_pop = "p3";
begin_founder;

male   [n =  10, pop = "p1", gen = 10, select = tbv /h];
male   [n =  10, pop = "p2", gen = 10, select = tbv /h];
female [n = 200, pop = "p1", gen = 10, select = tbv /h];
female [n = 200, pop = "p2", gen = 10, select = tbv /h];

end_founder;...
end_pop;
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Mating & selection in recent populations

/*******************************
**     Recent population     **
*******************************/
begin_pop = "p1";
begin_founder;

male   [n =  20, pop = "hp"];
female [n = 400, pop = "hp"];

end_founder;...
md = rnd;                 //Mating design
sd = tbv;                 //Selection design
cd = age;                 //Culling design

end_pop;

Mating design (md) can be:
rnd = random;  rnd_ug = random union of gametes;
minf = minimizing inbreeding; maxf = maximizing inbreeding;
p_assort = positive assortative; n_assort = negative assortative; (/phen, /ebv, /tbv)

111

Mating & selection in recent populations

/*******************************
**     Recent population     **
*******************************/
begin_pop = "p1";
begin_founder;

male   [n =  20, pop = "hp"];
female [n = 400, pop = "hp"];

end_founder;...
md = rnd;                 //Mating design
sd = tbv;                 //Selection design
cd = age;                 //Culling design

end_pop;

Selection design (sd) can be:
rnd = random
phen = based on phenotype
tbv = based on true breeding value
ebv = based on estimated breeding value

/l or /h can be used to select 
low or high values
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Mating & selection in recent populations

/*******************************
**     Recent population     **
*******************************/
begin_pop = "p1";
begin_founder;

male   [n =  20, pop = "hp"];
female [n = 400, pop = "hp"];

end_founder;...
md = rnd;                 //Mating design
sd = tbv;                 //Selection design
cd = age;                 //Culling design

end_pop;

Culling design (cd) can be:
rnd = random
phen = based on phenotype
tbv = based on true breeding value
ebv = based on estimated breeding value
age = based on age

/l or /h can be used to select 
low or high values

113

Estimation of breeding values

/*******************************
**     Recent population     **
*******************************/
begin_pop = "p1";
begin_founder;

male   [n =  20, pop = "hp"];
female [n = 400, pop = "hp"];

end_founder;...
md = rnd;                 //Mating design
sd = ebv;                 //Selection design
cd = age;                 //Culling design
ebv_est = blup;

end_pop;

EBV estimation method can be:
blup = best linear unbiased prediction
approx = approximation based on sibs information
accur = approximation based on user defined accuracy
external_bv = user is responsible to estimate breeding values in each 
generation 114

113
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External estimation of breeding values

ebv_est = external_bv "external_solver";

Each generation

1) QMSim creates “data.tmp”
2) QMSim runs “external_solver”

2.1)  external_solver reads “data.tmp”, estimates breeding values and 
writes the results in “my_bv.txt”

3) QMSim reads “my_bv.txt” and progresses to the next generation

115

Outputs

ld_decay file

116

No. marker pairs
--------------------
Bin\Gen.        0        1 
[0,.05)      5497     5560 
[.05,.1)     5541     5479 
[.1,.2)     10666    10896 
[.2,.3)     10716    10533 
[.3,.4)     10478    10427 
[.4,.5)     10569    10401 
[.5,.6)     10417    10437 
[.6,.7)     10363    10372 
[.7,.8)     10271    10204 
[.8,.9)     10230    10195 
[.9,1)      10177    10052 
[1,2)      100300   100636 
[2,3)       99853    99905 
[3,4)       98099    97956 
[4,5)       96133    95345 

Mean R2(SD)
--------------------
Bin\Gen.              0              1 
[0,.05)  0.3709(0.3994) 0.3543(0.3961) 
[.05,.1) 0.3308(0.3758) 0.3100(0.3666) 
[.1,.2)  0.2862(0.3446) 0.2641(0.3339) 
[.2,.3)  0.2408(0.3071) 0.2264(0.3011) 
[.3,.4)  0.2255(0.2930) 0.2099(0.2834) 
[.4,.5)  0.2063(0.2771) 0.1914(0.2677) 
[.5,.6)  0.1916(0.2641) 0.1793(0.2555) 
[.6,.7)  0.1860(0.2555) 0.1695(0.2436) 
[.7,.8)  0.1729(0.2401) 0.1568(0.2274) 
[.8,.9)  0.1674(0.2319) 0.1497(0.2202) 
[.9,1)   0.1604(0.2267) 0.1447(0.2139) 
[1,2)    0.1384(0.2037) 0.1263(0.1934) 
[2,3)    0.1123(0.1697) 0.1030(0.1621) 
[3,4)    0.0961(0.1481) 0.0873(0.1404) 
[4,5)    0.0872(0.1370) 0.0793(0.1300) 

Distance in cM
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Outputs

mrk file

117

ID      Genotypes (paternal allele, maternal allele) ...
35521   2 2 1 1 1 1 1 1 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 2…
35522   2 2 1 1 1 1 1 1 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 2…
35523   2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2…
35524   2 2 1 1 1 1 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 2…
35525   2 2 1 2 1 1 1 1 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 2…
35526   2 2 1 1 1 1 1 1 2 1 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 2…
35527   2 2 1 1 1 1 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 2…
35528   2 2 1 1 1 1 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 2…
35529   2 2 1 1 1 1 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 2…
.
.
.

Outputs

mrk file (in SNP genotype code)

118

ID      Genotypes (0 = a1,a1; 2 = a2,a2; 3 = 
35521  22222242220224403232242223324242222022…
35522  22224222220222200202222220022222222022…
35523  22222242220224403232242223324242222022…
35524  22222242220224403232242223324242222022…
35525  22222222220224403232224223324222222022…
35526  22222222220224403232224223324222222022…
35527  22222222220224403232242223324242222022…
35528  22222222220222200202222220022222222022…
35529  22222222220224403232242223324242222022…
35530  22222222220224403232242223324242222022…
35531  22222222220222203232242223324242222022…
35532  22222242220224403232242223324242222022…
35533  22224222220222200202222220022222222022…
.
.
.
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Outputs

linkage map file

119

ID          Chr    Position
M1           1     0.07522
M2           1     0.14365
M3           1     0.37741
M4           1     0.38784
M5           1     0.41830
M6           1     0.54802
M7           1     0.71100
M8           1     0.78760
M9           1     0.82219
M10          1     0.86985
M11          1     0.92948
M12          1     1.02755
M13          1     1.06030
M14          1     1.07831
.
.
.

Outputs

freq file

120

ID       Gen Chr  Allele:Freq ...
M1         1   1    2:1.000000
M2         1   1    1:0.970000   2:0.030000
M3         1   1    1:1.000000
M4         1   1    1:1.000000
M5         1   1    1:0.688000   2:0.312000
M6         1   1    1:0.069000   2:0.931000
M7         1   1    2:1.000000
M8         1   1    1:0.100000   2:0.900000
M9         1   1    2:1.000000
M10        1   1    2:1.000000
M11        1   1    2:1.000000
.
.
.
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Outputs

qtl effect file

121

ID      Chr   Allele:Effect ...
Q1        1     1:-0.000059   2: 0.000174
Q2        1     1:-0.000131   2: 0.015543
Q3        1     1: 0.000894   2:-0.004144
Q4        1     1: 0.000004   2:-0.000004
Q5        1     1:-0.002999   2: 0.007286   3: 0.006781
Q6        1     1: 0.000039   2:-0.000245
Q7        1     1:-0.000104   2: 0.000891
Q8        1     1:-0.000024   2: 0.004732
Q9        1     1: 0.001907   2:-0.002520
Q10       1     1: 0.000703   2:-0.000330
Q11       1     1:-0.000248   2: 0.008515
Q12       1     1:-0.000040   2: 0.003418
Q13       1     1:-0.000007   2: 0.000335
Q14       1     1: 0.000079   2:-0.004041
Q15       1     1: 0.000138   2:-0.000046
Q16       1     1:-0.003273   2:-0.011271   3: 0.007570
.
.
.

Data backup and transfer

• All you need is to backup the initial seed and 
the parameter file

• Use the same parameter file and initial seed 
with the “seed” command to generate 
identical output
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QMSim main limitations

• One historical population

• Single trait

• No dominance and epistatic effects

• And many more !!!
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