Selection Accuracy

refers to the accuracy of selecting on breeding value

- Estimated Breeding Values (EBVs) are estimates of the True Breeding Values (TBVs), which cannot be observed directly
- Quality of EBV is measured by Accuracy
- Accuracy is correlation between EBV and TBV (Acc 0-1)
- The closer the EBV is to the true breeding value the higher the accuracy, the greater the selection response

How much genetic change?

Accuracy of EBV = correlation with True BV

Accuracy = 45%

Accuracy = 90%

Select on EBV: accuracy related to response

Accuracy = 45%

Double accuracy gives double selection response!

Accuracy = 90%

Sources of information to get EBV

• <u>own phenotype</u>, as $EBV_i = h^2P$

- But we can have a number of sources of information, such <u>information from relatives</u>
 - Performance on dam, sire, siblings,
 - Genomic test
- More information results in a more accurate EBV

- And therefore more selection response

What part of observed phenotypic differences in parents is passed on to progeny?

Parent hasa phenotypic deviation (e.g. +10)Progeny gets0.5 * heritability x phenotypic deviation

heritability = 5%

heritability = 75%

progeny gets + 0.25

progeny gets + 3.75

Breeding Value

What part of differences in parents is passed on to progeny?

Parent hasa phenotypic deviatione.g. +10Progeny gets0.5 * heritability x phenotypic deviationheritability = 5%heritability = 75%parent EBV = +0.50parent EBV = +7.50

parent EPD = +0.25

parent EPD = +3.75

Estimating Breeding Values

- Principle
 - how is it estimated?
- Using information from relatives
- Properties
 - Accuracy
 - Variance
 - Prediction Error
- Selection Response
 - select on EBV

How to use information on an animals' own performance?

	<u>X1</u>	EBV
	own	
Animal	perform.	
1	3.6	?
2	-8.3	?
3	3.5	?
4	16.7	?
5	-14.4	?
6	6.6	?
7	-1.4	?
8	-6.2	?
9	6.2	?
10	15.0	?

Principle of EBV estimation

Regression of breeding value on phenotype

How much do we expect the BV to be better if we know that P is one unit better

Slope = cov(A,P)/var(P)

Ρ

EBV estimation: regression

• If P = Own Performance

Slope = cov(A, P)/ var(P)

$$= V_A / V_P$$

P

 $= h^2$

How to use information from relatives?

		EBV
	sire's	
Animal	perform.	
1	9.2	?
2	3.2	?
3	-15.4	?
4	7.1	?
5	-4.9	?
6	16.1	?
7	-12.2	?
8	8.7	?
9	7.4	?
10	-4.0	?

EBV estimation: regression

• If P = Performance of Sire

Slope = $cov(A, P_{sire})/ var(P_{sire})$

 $= \frac{1}{2} V_{A} / V_{P}$

 $= \frac{1}{2} h^2$

P_{sire}

Here we need some basic Quantitative Genetic theory

$$P = A + E$$
 \rightarrow General Model

$$Var(P) = var(A) + var(E) = V_A + V_E$$
 no cov. between A and E

$$cov(A_i, P_i) = cov(A_i, A_i) + cov(A_i, E_i) = V_A$$
 if A same animal as P

$$cov(A_i, P_j) = cov(A_i, A_j) + cov(A_i, E_j) = a_{ij}V_A$$

 $a_{ij} = additive genetic$
relationship between i and j

as E's are uncorrelated if not same animal

 $cov(P_i, P_j) = a_{ij}V_A$

Finding the optimal index weights

Regression of breeding value on a phenotype **EBV = b**. **P**

 $\frac{\operatorname{cov}(P_i, A)}{\operatorname{var}(P_i)}$

Examples:

if P = Own Performance

 $\mathbf{b} = \frac{V_A}{V_A + V_E} = h^2$

if P = Sire Performance

b =
$$\frac{\frac{1}{2}V_A}{V_A + V_E} = \frac{1}{2}h^2$$

What does this all mean?

Regression of y on x :

– If we know x, what does that tell us about y?

if we know an animal performed well, what does that tell us about his breeding value? A: Depends on heritability

 $b = h^2$

if we know an animal's sire performed well, what does that tell us about his breeding value? A: It carries only half of Sire's genes + it depends on heritability

 $b = \frac{1}{2} h^2$

if we know an animal's great granddam performed well, what does that tell us about his breeding value? A: It carries even less of great grandma's genes

 $b = 1/8 h^2$

Some more basic Quantitative Genetics theory

Using information based on a mean

var(mean) =common variance+specific/nequal to allSpecific bit is averaged out

Common variance = t. σ_p^2 σ_p^2 = phenotypic variance t = intra class correlation \rightarrow correlation among group members e.g. between FS: t = ½ h² + c² e.g. mean of n Full Sibs Var(P_r) = ½ Vr + V + V + (½Vr + Vr + 1)/p

$$var(P_{FS}) = \frac{1}{2} v_A + v_{common env} + \left\{ \frac{1}{2} v_A + v_{specific env} \right\} / n$$

t. $\sigma_p^2 + (1-t) \sigma_p^2 / n$

Var(mean) = t. σ_p^2 + (1- t) $\sigma_p^2/n = \frac{1+(n-1)t}{n} \sigma_p^2$

Variance of a mean

 $Var(mean) = var(sum/n) = (1/n)^2 var(sum)$

Var(sum) = var(all variances and covariances)

e.g.
$$var(x+y) = var(x) + var(y) + 2cov(x,y)$$

An easy way to workout variances of means

Mean = Sum/n

 $Var(Mean) = var(Sum)/n^2$

Var(Sum) = { n.1 + n(n-1).t } σ_p^2

Var-cov matrix of all elements that make up the mean

Var(Mean) = { [n.1 + n(n-1)t] $/n^2$ } σ_p^2

= { [1 + (n-1)t] /n }
$$\sigma_p^2$$

Variance of a mean

An easy way to workout co-variances with means

Mean = Sum/n

CoVar(X, Mean) = CoVar(X, Sum)/n

CoVar(X, Mean) = { n.t} σ_p^2/n

CoVar(X, Mean) = $t\sigma_p^2$

Vector with covariances of a variable X with all elements that make up the mean, X could be either phenotype, or a breeding value Covar(X, P_i) = $t\sigma_p^2$

Covariance of a variable with the mean is same as covariance of a variable with each element that make up the mean

Some more basic Quantitative Genetics theory

Using information based on a mean (e.g. mean of sibs)

/ar(mean P) =
$$\frac{1+(n-1)t}{n} \sigma_p^2$$
 FS HS
 $t = \frac{1}{2}h^2 + c^2$ $t = \frac{1}{4}h^2$

Cov(mean P, A) = $a_{ij}\sigma_a^2$ $a_{ij} = \frac{1}{2}h^2$ $a_{ij} = \frac{1}{4}h^2$

a_{ij} = genetic relationship between members of group and subject (A)

Weight for Mean of	n Full Sibs	n Half Sibs
<u>Cov</u> = Var	<u>½.n.h²</u> 1+(n-1)t _{FS}	<u>n.t</u> 1+(n-1)t _{HS}
		= n n+(1-t _{HS})/t _{HS}

Some more Quantitative Genetics theory

Using a progeny mean

var(mean) = common variance + specific/n
equal to all Specific bit is averaged out

Mean performance of n progeny (= HS mean):

 $P_{HS} = \frac{1}{2} A_{sire} + \frac{1}{2} A_{dam} + Mendelian Sampling term + Residual / n$

 $Var(P_{HS}) = \frac{1}{4} V_A + (\frac{3}{4} V_A + V_E)/n = t \sigma_p^2 + (1-t) \sigma_p^2/n \qquad t = \frac{1}{4}h^2$ Weight for Mean of n Progeny

 $\frac{\text{Cov}}{\text{Var}} = \frac{\frac{1}{2} \cdot n \cdot h^2}{1 + (n-1)\frac{1}{4}h^2} = \frac{2 \text{ nt}}{(1-t) + \text{ nt}} = \frac{2 \text{ n}}{n + (1-t)/t} = \frac{2n}{n + \lambda}$

alternatively

$$\frac{\text{Cov}}{\text{Var}} = \frac{\frac{1}{2}V_A}{\frac{1}{4}V_A + (\frac{3}{4}V_A + V_E)/n} = \frac{2n}{n + (\frac{3}{4}V_A + V_E)/\frac{1}{4}V_A} = \frac{2n}{n + \lambda}$$

How to combine information from relatives?

	X1	X2	EBV
	own	sire's	
Animal	perform.	perform.	Index
1	3.6	9.2	?
2	-8.3	3.2	?
3	3.5	-15.4	?
4	16.7	7.1	?
5	-14.4	-4.9	?
6	6.6	16.1	?
7	-1.4	-12.2	?
8	-6.2	8.7	?
9	6.2	7.4	?
10	15.0	-4.0	?

Who should we select, animal 10 or animal 6?

Combining different sources of information

Selection Index (multiple regression)

 $EBV = Index = b_1P_1 + b_2P_2 + b_3P_3 + \dots + b_nP_n$

Selection index with more information sources

This is prediction of a single trait BV, tomorrow MT prediction

Example

How do we use such weights?

	weights	0.284	0.107	
	_	X1	X2	EBV
		own	sire's	
A	nimal	perform.	perform.	Index
	1	3.6	9.2	2.00
	2	-8.3	3.2	-2.01
	3	3.5	-15.4	-0.67
	4	16.7	7.1	5.50
	5	-14.4	-4.9	-4.63
	6	6.6	16.1	3.60
	7	-1.4	-12.2	-1.72
	8	-6.2	8.7	-0.82
	9	6.2	7.4	2.54
	10	15.0	-4.0	3.83
Var	r-covar of	(98	17	
act	ual x1 and	x2	104	\prec

This is like the P-matrix but based on realized values, usually we use population parameters (phenotypic (co-)variances)

e.g. use STEBVaccuracy.xls

Single Trait selection index calculation

Parameters			
Heritability	0.25		
Repeatability of subsequent records	0.5		
c-squared (among full sibs)	0		
			L
		Run	Index
Information used	Nr.Records		weigh
nr of own records	1		0.111
nr. of records on dam	1		0.048
nr of records on sire	1		0.025
nr of full sib records	2		0.063
			0 4 70
nr. of half sib records (excl. full sibs)	20		0.179

Why use selection index?

- BLUP does it 'automatically' but
- Can use selection index theory to work out:

- Accuracy for a given set of information
- The weighting of various information sources
- The 'value' of various information sources
- The weighting on own vs family information
- Correlation between EBV of sibs

Single Trait selection index calculation

STEBVaccurcay.xls

Selection Index (single trait objective)

First summarize some definitions

 $I = b_1 x_1 + b_2 x_2 + \dots + b_n x_n$ var(X)=P

Single trait breeding objective: H= A (breeding value)

Cov(X,A) = G (a vector with ST objective) Optimal weights are $b = P^{-1}G$

Var(I) = var(b'X) = b'var(X)b = b'Pb =
$$\sigma_1^2$$

Var(H) = σ_a^2
Cov(I,H) = cov(b'X,A) = b'cov(X,A) = b'G = b'Pb = σ_1^2

 $b = P^{-1}G \rightarrow Pb = G$

Accuracy of selection index (single trait)

r_{IA} = correlation between Index (=EBV) and A

$$= \underline{cov(I,A)} = \underline{\sigma_{I}^{2}} = \underline{\sigma_{I}} / \sigma_{A} = \sqrt{(b'Pb/\sigma_{a}^{2})}$$

$$\sigma_{I} \sigma_{A} = \sigma_{I} \sigma_{A}$$

Because cov(I,A) = var(I)

Selection Index = Best Linear Prediction BLP Index (I) is best estimate of breeding value: I = E(A|X) = cov(X,A)/var(X) Same as BLUP, but without fixed effects.

Var(I)= var(EBV) = r_{IA}^2 .var(BV) = $r_{IA}^2 \sigma_a^2$ r_{IA}^2 also known as reliability

accuracy of EBV = correlation with True BV

Accuracy = 45%

Accuracy = 90%

Regression A on I = cov(I,A) / σ_{I}^{2} = 1

Because cov(I,A) = var(I)

Suppose EBV_A +56 r = 0.50 EBV_B +56 r = 0.95 select A or B?

Examples of accuracies

	h ² =0.1	h ² =0.3	
own information	0.32	0.55	equal to sqrt h ²
mean of 10 half sib	0.23	0.33	
mean of 1000 half-sibs	0.49	0.50	max is sqrt 0.25 = 0.5
mean of 1000 full-sibs	0.70	0.71	max is sqrt 0.5 = 0.71
mean of 100 progeny	0.85	0.94	max approaches 1.0

Accuracies of animal increase as they get older \rightarrow (more info)

The composition of the breeding value

 $A = \frac{1}{2} A_{sire} + \frac{1}{2} A_{dam} + MS$

with no selection

Dad

 $V_{A} = \frac{1}{4}V_{A} + \frac{1}{4}V_{A} + \frac{1}{2}V_{A}$

Mum

Examples of accuracies

	h ² =0.1	h ² =0.3	
own information	0.32	0.55	equal to sqrt h ²
mean of 10 half sib	0.23	0.33	
mean of 1000 half-sibs	0.49	0.50	max is sqrt 0.25 = 0.5
mean of 1000 full-sibs	0.70	0.71	max is sqrt 0.5 = 0.71
mean of 100 progeny	0.85	0.94	max approaches 1.0

Accuracies of animal increase as they get older \rightarrow (more info)

Accuracy of predicting a breeding value

increases as an animal gets older

Accuracy of own performance vs progeny test

Progeny test gives usually more accurate EBV then own performance

EBV properties:

Variance of EBV's - how much they differ

- Var(EBV) = $r_{IA}^2 \sigma_a^2$
- SD(EBV) = $r_{IA} \sigma_{A=}$ Standard deviation of EBVs

Simply a function of accuracy

Note the extremes of Var(EBV) if $r_{IA} = 0$ vs $r_{IA} = 1$ across age classes

EBV properties

Accuracy = r= 0.45Reliability = r^2 = 0.2025

 $Var(EBV) = Iow = r^2 V_A$

Regression BV on EBV = 1

Accuracy = r= 0.90Reliability = r^2 = 0.81

Var(EBV) = high = $r^2 V_A$

Regression BV on EBV = 1

EBV properties:

Prediction Error Variance- how much they still may change

• PEV = var(EBV-TBV) = $(1-r_{IA}^2)V_A$

• SEP = sqrt(PEV) =
$$\sqrt{(1-r_{IA}^2)\sigma_A}$$

EBV± 1.96.SEP

Prediction Error Variance

Standard Error of Prediction

Confidence Interval

Own record: $r_{IA} = \sqrt{h^2} = 0.63$, SEP=14.7

Progeny: $r_{IA} = \sqrt{0.81} = 0.9$, SEP=8.3

Confidence interval of TBV | EBV

Selection on EBV vs inbreeding

X1 = Own X2 = Sire's	Performance Performance							
h2 varP varA varE	0.3 100 30 70	P 100 15	15 100	-1 	G 30 15	=	b 0.284 0.107	
		Selec	tion index v X1 own perform.	weights for X2 sire's perform.				
		0.1 0.3 0.5	0.098 0.284 0.467	0.045 0.107 0.133				

Observe the weight on sire information, depending on h²

Lower h² means more emphasis on family information

Selection on EBV vs inbreeding

Simulation:

Belonsky and Kennedy, 1989

Selection on INDividual performance vs selection on BLUP

	Increase in years of se	genetic m lection	Inbreeding Increase		
Heritability		RILID	רוא/ואם RI ווא		RIID
пспартну		DLOI	DLOI/IND		DLUI
0.1	0.78	1.41	1.81	0.174	0.383
0.6	5.16	5.31	1.03	0.205	0.293

- 1. BLUP more response than phenotypic selection (IND) *Difference is larger for smaller heritability.*
- 2. BLUP more inbreeding Especially for low heritabilities

Co-selection of relatives

Selection on EBV vs inbreeding

Not only h² but also information available affects co-selection of relatives

$h^2 - 0.5$					Accuracy of EBV 0.585
11 =0.5		Index		value of	
Information used	Nr.Records	weight		variate:	
nr of own records	0	-	-	-	
nr. of records on dam	1	0.250	dam	20%	
nr of records on sire	1	0.065	sire	1%	
nr of full sib records	0	-	-	-	correlation EBV FS 1.000
nr. of half sib records (excl. full sibs)	40	0.741	HS	15%	correlation EBV HS 0.633
nr. of progeny	0	-	-	-	
STEBVaccurc	ay.xls				
$h^2 - 0 5$					Accuracy of EBV 0.914
11 =0.5		Index		value of	
Information used	Nr.Records	weight		variate:	
nr of own records	1	0.164	own	2%	
nr. of records on dam	1	0.062	dam	0%	
nr of records on sire	1	0.016	sire	0%	
nr of full sib records	0	-	-	-	correlation EBV FS 0.516
nr. of half sib records (excl. full sibs)	40	0.185	HS	0%	correlation EBV HS 0.455

1.172

Prog

15%

Note also that value of family info can be reduced due to Bulmer effect (reduced variance due to selection) – see later

nr. of progeny

25

Accuracy = 45%

Predicted Response

i = selection intensity (standard normal)

Regression of A on EBV = 1 i.e. slope is the same for accurate and inaccurate EBVs, see left

select on EBV's:

Response = i * SD(EBV)

R= i * r * σ_a

Summary of this lecture

- Selection Index Theory can be used to work out weights and accuracy for a given set of information about an particular EBV
- Quantitative Genetic Theory and matrices (P, G) are used to work out such index weights (b) and accuracies
- In Genetic Evaluation we use BLUP where this all occurs 'automatically'
- Selection Index Theory still useful to predict what happens
 - Accuracy for a given amount of information
 - Accuracy if using genetic marker information
 - Importance of own vs family information for given situations

Modeling selection on Animal Model BLUP

Fit sire and dam EBV mates of sire (HS-dams) Half sibs Full sibs Own info

Pseudo BLUP

Iterate Selection Index

BLUP-EBV.xls STEBVaccurcay.xls

