University of
New England

Selection and inbreeding

Inbreeding

Grass $\rightarrow / \int^{90} \rightarrow / / \rightarrow \iint_{i+i}^{\phi \phi} \rightarrow$ Milk

So, previous slide illustrates

- Inbreeding coefficient

Animals that have related parents have more chance to carry two alleles that are identical by descend

- Genetic defects

Inbred individuals have more chance to express genetic defects

- Inbreeding depression:

Heterozygosity has often positive effects on phenotypes (and therefore inbreeding/homozygisty a negative effect >>

Genetic gain and inbreeding

- Select few individuals
- high genetic gain but
- low Ne and high F
- Select many individuals
- low genetic gain but
- high Ne and low F

Need to balance rates of F and genetic gain

Inbreeding

- Due to the mating of relatives

Which animal(s) in the pedigree are inbred?

Coefficient of inbreeding (F)

- The coefficient of inbreeding (F) is the probability that two alleles at a randomly chosen locus are identical by descent (IBD)

$$
I B D=\text { copies of same alleles from common ancestor }
$$

- F ranges from 0 to 1

What is F of individual X ?

Recall:

The coefficient of inbreeding (F) is the probability of 2 alleles at a randomly chosen locu's being identical by descent

$$
\begin{gathered}
p_{A 1 A 1}=\left(\frac{1}{2} x \frac{1}{2}\right) x\left(\frac{1}{2} x \frac{1}{2}\right)=\frac{1}{16} \\
p_{A 2 A 2}=\left(\frac{1}{2} x \frac{1}{2}\right) x\left(\frac{1}{2} x \frac{1}{2}\right)=\frac{1}{16} \\
F_{x}=\frac{1}{8}
\end{gathered}
$$

Also: half the relationship among parents

What is F of individual X ?

Shortcut 'loop' method:

- For one 'loop' (path through common ancestor) determine $1 / 2^{n}$, where n is the number of individuals in the loop (excluding X)

Loops are:
DAE: $1 / 2^{3} \quad \boldsymbol{F}_{x}=\frac{\mathbf{1}}{\mathbf{8}}$

Consequences of inbreeding

une

Inbreeding increases expression of recessive alleles

- Genotype frequencies
- Non-inbred:
q^{2}
2pq
p^{2}
- Inbred:
$q^{2}+p q F$
$2 p q-2 p q F$
$p^{2}+p q F$
- Example, q=0.02 (2\%)

F	0	0.125	0.25	0.50
Prob. aa (recessive genotype)	0.4 in 1000	2.9 in 1000	5.3 in 1000	10.2 in 1000

Change in genotype frequencies in response to inbreeding

For example, $p=q=0.5$

Genotype	aa	Aa	AA
Frequency	$\mathrm{q}^{2}+\mathrm{pqF}$	$2 \mathrm{pq}-2 \mathrm{pqF}$	$\mathrm{p}^{2}+\mathrm{pqF}$
At F=0	0.25	0.50	0.25
At F=0.5	0.375	0.25	0.375
At F=1.0	0.5	0	0.5

Note that allele frequencies do not change

Inbreeding depression reduces productivity \& viability

- Inbreeding depression
- Results in lowered performance and viability
- Reproductive fitness is particularly affected
- Due to loss of dominance arising from increased homozygosity
- Level of trait depression is variable
- Often 2-20\% decrease in the trait per 10\% F

Inbreeding reduces genetic variance

- As individuals become more alike, the within population genetic variance decreases
- V_{A} (with inbreeding) $=(1-\mathrm{F}) \mathrm{V}_{\mathrm{A}}$ (without inbreeding)
- Why is this a concern?

Inbreeding rate

- Inbreeding occurs due to the mating of relatives
- In a closed population inbreeding is inevitable
- Inbreeding rate $(\Delta \mathrm{F})$ describes the increase in F over time

The rate of inbreeding

- F at time ' t ' can be calculated as:

$$
F_{t}=1-\left[1-\frac{1}{2 N e}\right]^{t}
$$

where t is number of generations

- Note that this only holds for no selection and random mating
- More importantly:

Inbreeding Rate $\sim 1 / 2 \mathrm{~N}_{\mathrm{e}}$

- i.e. need $N_{e}>50$ for Inbreeding Rate to be < 1%
(which maybe about reasonable)

How to restrict inbreeding?

- Mating policies mostly affect
- progeny inbreeding (short term)
- but not long term rate of inbreeding $\Delta \mathrm{F}$
- The long term inbreeding rate depends on effective population size $\left(N_{e}\right)$
- Long term inbreeding is restricted by restricting the average co-ancestry among selected parents

Effective Population Size: Ne

Accounting for unequal sex ratio

- Effective pop'n size (Ne) reduces towards sex with fewer breeding individuals

Males / generation	2	2	2	5	20	1
Females / generation	2	20	200	200	200	99999
N	4	22	202	205	220	100,000
Ne	4	7.3	7.9	19.5	72.7	4

[^0]But it shows that usually, it is controlled by using enough sires

So to prevent inbreeding

- Use enough parents
- Use enough males 10 per generation
- Use males that are not too related to each other

Example of BLUP selection

Balancing inbreeding and merit

Balancing Selection and Inbreeding

- Higher selection intensities make bigger gain
- Fewer animals are selected, so also more inbreeding
- This trend is more evident with higher rates of fecundity , e.g. with new reproductive technologies
- Genetic evaluation (BLUP) favors selection of related animals
\rightarrow rationalization of selection make inbreeding restriction methods a necessity

Jointly optimizing merit and inbreeding

Wray and Goddard, 1994

$$
x^{\prime} G+\lambda x^{\prime} A x
$$

- merit: $x^{\prime} G$
$\lambda=$ penalty on inbreeding
$-x=$ vector with each animal's contribution to progeny
$-G=$ the vector with merit (EBV's) for each animal
- Co-ancestry: $x^{\prime} \mathrm{Ax}$
$-x=$ vector with each animal's contribution to progeny
- A = Numerator Relationships Matrix

Remember: $\Delta \mathrm{F}=\mathrm{x}^{\prime} \mathrm{Ax} / 2$

$$
F_{i}=0.5 a_{i j}
$$

Vector x of animal contributions

Source of animals Animal\# $x=$ Contribution

Balancing inbreeding and merit

- Restricting co-ancestry but this slows genetic (short term) progress
- How much inbreeding can we afford?
- Often inbreeding is restricted by limiting $\Delta \mathrm{F}$ to a certain preset value
- This optimal value may depend on your situation (how open is your nucleus?)

Optimizing genetic contributions

- Maximize objective function

$$
x^{\prime} G+\underline{\lambda} x^{\prime} A x
$$

$\lambda=$ inbreeding penalty
Question: what is best value for λ ?

How much inbreeding can we afford?

Could preset rate of inbreeding (e.g. 1\%) and determine λ accordingly (Meuwissen, 1997)

Alternative: look at graph (next slide)

Balancing inbreeding and merit $x^{\prime} G+\underline{\boldsymbol{\lambda}} x^{\prime} A x$

inbreeding or co-ancestry $x^{\prime} A x$

Balancing inbreeding and merit

This graph will look different for each population
somewhere here
might be

Example Optimal Contributions

Example Optimal Contributions

Example Optimal Contributions

Between versus within family selection

Own information (performance or genotype):
More variation within families

Advantage of genomic selection

More within-family selection - less inbreeding

Ultimately, genetic gain is about utilizing Mendelian sampling Variance

Conclusion Optimal Contribution Selection

- OCS is the only sensible selection method
- Optimality subject to some degree of subjectivity
- Separates best prediction of merit from selection rule
- Play with number of parents as well as progeny per selected parent \rightarrow optimizes contributions
- Different from simply giving more weight to family info
- Hard to deterministically predict response to OCS

[^0]: With selection, this formula underpredicts inbreeding (2 x)

