

Selection and inbreeding

So, previous slide illustrates

• Inbreeding coefficient

Animals that have related parents have more chance to carry two alleles that are identical by descend

• Genetic defects

Inbred individuals have more chance to express genetic defects

• Inbreeding depression:

Heterozygosity has often positive effects on phenotypes (and therefore inbreeding/homozygisty a negative effect >>

Ne = effective population size

Genetic gain and inbreeding

- Select few individuals
 - high genetic gain
 but
 - low Ne and high F

Need to balance rates of F and genetic gain

Inbreeding

• Due to the mating of relatives

Which animal(s) in the pedigree are inbred?

Coefficient of inbreeding (F)

The coefficient of inbreeding (F) is the probability that two alleles at a randomly chosen locus are identical by descent (IBD)

IBD = copies of same alleles from common ancestor

F ranges from 0 to 1

What is F of individual X?

Recall:

The *coefficient of inbreeding* (F) is the probability of 2 alleles at a randomly chosen locus being *identical by descent*

$$p_{A1A1} = \left(\frac{1}{2}x\frac{1}{2}\right)x\left(\frac{1}{2}x\frac{1}{2}\right) = \frac{1}{16}$$
$$p_{A2A2} = \left(\frac{1}{2}x\frac{1}{2}\right)x\left(\frac{1}{2}x\frac{1}{2}\right) = \frac{1}{16}$$
$$F_x = \frac{1}{8}$$

Also: half the relationship among parents

une

What is F of individual X?

Shortcut 'loop' method:

 For one 'loop' (path through common ancestor) determine ½ⁿ, where n is the number of individuals in the loop (excluding X)

Loops are: DAE: $\frac{1}{2}^{3}$ $F_{x} = \frac{1}{8}$

une

Consequences of inbreeding

Inbreeding increases expression of recessive alleles

- Genotype frequencies
 - Non-inbred: q^2 2pq p^2
 - Inbred: q^2+pqF 2pq-2pqF p^2+pqF
- Example, q=0.02 (2%)

F	0	0.125	0.25	0.50
Prob. aa (recessive genotype)	0.4 in 1000	2.9 in 1000	5.3 in 1000	10.2 in 1000

Change in genotype frequencies in response to inbreeding

For example, p=q=0.5

Genotype	aa	Aa	AA
Frequency	q²+pqF	2pq-2pqF	p²+pqF
At F=0	0.25	0.50	0.25
At F=0.5	0.375	0.25	0.375
At F=1.0	0.5	0	0.5

Note that allele frequencies do not change

Inbreeding depression reduces productivity & viability

• Inbreeding depression

- Results in lowered performance and viability
- Reproductive fitness is particularly affected
- Due to loss of dominance arising from increased homozygosity
- Level of trait depression is variable
 - Often 2-20% decrease in the trait per 10% F

Inbreeding reduces genetic variance

- As individuals become more alike, the *within* population genetic variance decreases
- V_A (with inbreeding) = (1-F) V_A (without inbreeding)

• Why is this a concern?

Inbreeding rate

- Inbreeding occurs due to the mating of relatives
- In a closed population inbreeding is inevitable
- Inbreeding rate (Δ F) describes the increase in F over time

The rate of inbreeding

•F at time 't' can be calculated as:

$$F_t = 1 - \left[1 - \frac{1}{2Ne}\right]^t$$

where t is number of generations

- Note that this only holds for no selection and random mating
- More importantly:

• i.e. need $N_e > 50$ for Inbreeding Rate to be < 1%

(which maybe about reasonable)

How to restrict inbreeding?

- Mating policies mostly affect
 - progeny inbreeding (short term)
 - but not *long term* rate of inbreeding ΔF
 - The long term inbreeding rate depends on

effective population size (*N*_e)

• Long term inbreeding is restricted by restricting the average co-ancestry among selected parents

Effective Population Size: Ne

Accounting for unequal sex ratio

 Effective pop'n size (Ne) reduces towards sex with fewer breeding individuals

Males / generation	2	2	2	5	20	1
Females / generation	2	20	200	200	200	99999
Ν	4	22	202	205	220	100,000
Ne	4	7.3	7.9	19.5	72.7	4

With selection, this formula <u>underpredicts</u> inbreeding (2x) But it shows that usually, it is controlled by using enough sires

So to prevent inbreeding

- Use enough parents
- Use enough males 10 per generation

• Use males that are not too related to each other

Example of BLUP selection

Terminals - Top 1 Sires	150		Analy	(sis D)ate 1	Friday	, 15 June	2001	Inbreedi	na 8 Ac	curacies	LAM	BPLAN [.]	
D	Stud of breeding	What	Pount	Ywt	Pfat	Pemd	Carcase +	Progeny	Coeff I	Neight (Carcase	Sire	Sire of Dam	
161972-1999-990196	HILLCROFT FARMS	5.46	14.95	14.94	-1.19	1.62	226.64	38	0.133	83	70	1619721998980093	1630001993930134	
162368-1998-980211	KURRALEA	6.60	12.39	12.69	-0.89	2.50	215.20	1148		97	96	1623681994940260	8600401992920175	
162204-19 <mark>99-990</mark> 453	BETHELREI	8.52	13.38	15.87	-1.18	1,11	211 75	224		93	89	8601221993930205	1619721995950289	
161972-19 <mark>98-980</mark> 093	HILLCROFT FARMS	5.15	14.40	16.00	-1.08	0.25	207 <mark>5</mark> 1	12		80	74	1630001993930134	1603361992920349	
161972-19 <mark>98-980</mark> 527	HILLCROFT FARMS	8.46	13.45	10.97	-1.66	-0 <mark>.47</mark>	204 <mark>1</mark> 0	25		85	76	1619721996960091	1630001993930134	
860122-19 <mark>93-930</mark> 205	OHIO	6.95	11.94	13.72	-1.60	0 <mark>.4</mark> 9	203 <mark>7</mark> 6	1522		98	97	8601221992920200	8601221987870073	
161143-19 <mark>99-990</mark> 204	DERRYNOCK	8.39	12.10	12.19	-0.49	2,19	203 <mark>6</mark> 0	38		82	76 🔦	1623681998980211	040001993930411	
160060-19 <mark>96-960</mark> 004	ANNA VILLA	8.56	14.90	16.18	-0.48	0.24	200 47	151		93	87	1632801992920016	1623541990900584	
161143-19 <mark>99-990</mark> 201	DERRYNOCK	5.43	11.83	11.14	-1.19	0 <mark>.83</mark>	199 <mark>8</mark> 3	39		83	77 <	1623681998980211	613151995950042	
230034-19 <mark>97-970</mark> 904	BURWOOD	4.98	11.01	8.82	-2.27	-0 <mark>.55</mark>	198 <mark>8</mark> 2	380	0.003	96	92	2300091994940171	2300341994940314	These are sibs so
163677-20 <mark>00-000</mark> 140	FELIX	6.69	13.56	13.36	-0.59	0 <mark>.61</mark>	197 <mark>9</mark> 8	56		70	63	1619721995950289	1600341994940020	might not select all
160060-19 <mark>97-970</mark> 115	ANNA VILLA	6.30	14,47	11.69	-0.42	0.24	196 <mark>9</mark> 0	118		90	83	1600601996960004	1600601992920057	of them as flock
162204-19 <mark>99-990</mark> 394	BETHELREI	7.42	12.97	14.27	-1.03	0.14	196 <mark>8</mark> 5	24		82	74	8601221993930205	1622041996960579	sire
161143-19 <mark>99-990</mark> 064	DERRYNOCK	5.10	11.20	10.10	-0.72	1 <mark>.60</mark>	196 <mark>0</mark> 1	18		80	74 <	1623681998980211	₹640001994940317	
161972-19 <mark>96-960</mark> 020	HILLCROFT FARMS	5.32	12.96	10.66	-0.80	0 <mark>.</mark> 36	195 <mark>2</mark> 0	83		88	75	1630001993930134		
160185-19 <mark>96-960</mark> 001	JOLMA	6.19	10.29	10.42	-1.56	0 <mark>.63</mark>	194 <mark>5</mark> 7	101		90	83	1630001993930134	1613151991910870	
161235-19 <mark>97-970</mark> 830	POLLAMBI	7.10	10.69	10.35	-0.88	1.50	194.54	34		87	79	1700991993930002	1612351991910691	
163677-1999-990307	FELIX	7.09	12.52	11.59	-1.29	-0.47	192.45	54		83	74	8601221993930205	1636771994940008	
162368-1999-990290	KURRALEA	5.53	10.84	10.58	-0.62	1.59	192.11	68		69	62	1623681998980211	1630001993930160	
860074-1995-950044	ADELONG	7.17	14,47	13.22	-0.80	-0.94	191.15	448		96	94	8600741993930189		
163000-1998-980575	RENE	7.59	12.01	13.06	-0.50	0.99	190.92	12		71	60	1623681994940260	8600371992920165	
162368-1997-970443	KURRALEA	6.58	12.13	7.96	-1.00	0.08	190.69	178		88	83	1640001993930411	8600401992920175	
160034-1999-991208	MOSSLEY	5.52	13.45	10.27	-0.53	0.04	190.41	17	0.003	78	70	1621001998980130	1600341994940171	
161437-1999-990006	WARBURN	5 41	10.97	10.93	-1 21	0.37	190 26	14		73	65	1604621994940012	1640001993930411	

Balancing inbreeding and merit

inbreeding or co-ancestry

une

Balancing Selection and Inbreeding

- Higher selection intensities make bigger gain
- Fewer animals are selected, so also more inbreeding
- This trend is more evident with higher rates of fecundity , e.g. with new reproductive technologies
- Genetic evaluation (BLUP) favors selection of related animals

→rationalization of selection make inbreeding restriction methods a necessity

Jointly optimizing merit and inbreeding

Wray and Goddard, 1994

 $x'G + \lambda x'Ax$

• merit: x'G

 λ = penalty on inbreeding

- x = vector with each animal's contribution to progeny
- G = the vector with merit (EBV's) for each animal
- Co-ancestry: x'Ax
 - x = vector with each animal's contribution to progeny
 - A = Numerator Relationships Matrix

Remember: $\Delta F = x'Ax/2$ $F_i = 0.5 a_{ii}$

Vector *x* of animal contributions

Source of animals	Animal#	x = Contribution
Male candidates	1 2 3 4 5 6 7 8	$ \begin{bmatrix} 0 \\ .1 \\ .05 \\ 0 \\ .01 \\ 0 \\ 0 \\ \end{bmatrix} \sum = 0.5 $
Female candidates	101 102 103 104 105 106 107 108	$\sum_{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$

Note that this does not only determines number of selected sires and dams, but also allows for unequal contributions

Balancing inbreeding and merit

- Restricting co-ancestry but this slows genetic (short term) progress
- How much inbreeding can we afford?
- Often inbreeding is restricted by limiting ΔF to a certain preset value
- This optimal value may depend on your situation (how open is your nucleus?)

Optimizing genetic contributions

• Maximize objective function

 $x'G + \underline{\lambda}x'Ax$

 λ = inbreeding penalty

Question: what is best value for λ ?

How much inbreeding can we afford?

Could preset rate of inbreeding (e.g. 1%) and determine λ accordingly (Meuwissen, 1997)

Alternative: look at graph (next slide)

Balancing inbreeding and merit $x'G + \lambda x'Ax$

inbreeding or co-ancestry x'Ax

Balancing inbreeding and merit This graph will look different for each population

inbreeding or co-ancestry

_	∑'x	nmales	nfemales	G		Relation	ships M	atrix						
Male 1	0.125	4	4	127	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Male 2	0.125			122	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00		
Male 3	0.125	Find	l optimal	150	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00		
Male 4	0.125	cont	ributions	109	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00		
Female 1	0.125			120	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00		
Female 2	0.125			123	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00		
Female 3	0.125			89	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00		
Female 4	0.125			113	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00		
average me	rit of progeny	x'G	119.12											
Inbreeding weight λ -9999999.0								-			13	8.00		
rage co-acestr	y of progeny	x'Ax/	0.063								13	6.00		
			/	(in		132.00								
				0.X) X	ຍ	9 130.00								
				inde	^						12	8.00		
	/					•					12	6.00		
	<					[12	4.00		
												2.00		
											12	0.00 8.00		
					000	0.100	0.200		0.300	0.40)0	0.500		

\ \	4				_								
2	/ х	nmale	es nfemales	G			Relation	iships M	atrix				
Male 1	0.127	4	4	127	7	1.00	0.00	0.25	0.00	0.00	0.00	0.50	0.00
Male 2	0.108			122	2	0.00	1.00	0.00	0.25	0.00	0.00	0.00	0.50
Male 3	0.129	Fi	nd optimal	150	0	0.25	0.00	1.00	0.00	0.00	0.00	0.25	0.00
Male 4	0.136	CC	ontributions	109	9	0.00	0.25	0.00	1.00	0.00	0.00	0.00	0.25
Female 1	0.189		F	120	0	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
Female 2	0.177			123	3	0.00	0.00	0.00	0.00	0.00	1.00	0.25	0.00
Female 3	0.049			89		0.50	0.00	0.25	0.00	0.00	0.25	1.00	0.00
Female 4	0.085			113	3	0.00	0.50	0.25	0.25	0.00	0.00	0.00	1.00
average me	rit of progeny	x'G	121.91										
Inbreeding weight λ -99999999.0					Г							138	. 00- 7
rage co-acest	rv of progenv		-			-	-				.00		
	., <u>.</u> , <u>.</u>		-							134	.00		
				ତି	-		/	*				132	.00
				Ň		U	/					130	00
				dex		×	•					128	.00
	\checkmark			<u> </u>			+					120	.00
					F		•					126	.00
					F							124	.00
					ŀ		-					122	.00
					Ļ		1	1		1	1	120	.00
					0.00	00	0.100	0.200)	0.300	0.4	00	0.500
								co-ances	την (χ.Αλ	0			

Ž	Ух `	nmales	nfemales	G		Relation	ships M	atrix				
Male 1	0.000	4	4	127	1.00	0.00	0.25	0.00	0.00	0.00	0.50	0.00
Male 2	0.000			122	0.00	1.00	0.00	0.25	0.00	0.00	0.00	0.50
Male 3	0.500	Find	150	0.25	0.00	1.00	0.00	0.00	0.00	0.25	0.00	
Male 4	0.000	con	109	0.00	0.25	0.00	1.00	0.00	0.00	0.00	0.25	
Female 1	0.000			120	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
Female 2	0.500			123	0.00	0.00	0.00	0.00	0.00	1.00	0.25	0.00
Female 3	0.000			89	0.50	0.00	0.25	0.00	0.00	0.25	1.00	0.00
Female 4	0.000			113	0.00	0.50	0.25	0.25	0.00	0.00	0.00	1.00
average merit of progeny x'G 136.50											100	~~
Inbreeding	weight	λ	0.0					_ _			138.	
rage co-acest	ry of progeny	x'Ax y	0.250				-	_			130.	00
			~	6		,					134.	00
				X (X	9 .×	*					132.	00
				inde		+					130.	00
						+					128.	00
	\checkmark					+					120.	00
											124.	00
				•					122.	00		
					0.000	0.100	0.200		0.300	0.400)	0.500

	X	nmales	nfemales	G		Relation	ships M	atrix				
Male 1	0.063	4	4	127	1.00	0.00	0.25	0.00	0.00	0.00	0.50	0.00
Male 2	0.076			122	0.00	1.00	0.00	0.25	0.00	0.00	0.00	0.50
Male 3	0.361	Find	optimal	150	0.25	0.00	1.00	0.00	0.00	0.00	0.25	0.00
Male 4	0.000	conti	ibutions	109	0.00	0.25	0.00	1.00	0.00	0.00	0.00	0.25
Female 1	0.208			120	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
Female 2	0.238			123	0.00	0.00	0.00	0.00	0.00	1.00	0.25	0.00
Female 3	0.000			89	0.50	0.00	0.25	0.00	0.00	0.25	1.00	0.00
Female 4	0.055		_	113	0.00	0.50	0.25	0.25	0.00	0.00	0.00	1.00
average me	rit of progeny	x'G	1 31.75									
Inbreeding	weight	λ	-50.0								138.0	0 -7
rage co-acest	ry of progeny	x'Ax _{>}	0.132				-	•			136.0	0-
			\sim	_		*	/					0
				S X							<u>132.0</u>	•
				ex (×	•					130.0	-
	/			ind		•					128.0	-
	\checkmark					•					126.0	0-
											124.0	0-
	This is mo	re than sir	nply			•					122.0	0-
	moving ba	0		0 100	0 200		300	0.400	<u>120.0</u>	0 0 500		
to mass selection					000	0.100	0.200	(0.400	,	0.500
	(penalizing				co-ancest	ry (x'Ax)						

Between versus within family selection

<u>Own information</u> (performance or *genotype*):

More variation within families

More within-family selection – *less inbreeding*

Advantage of genomic selection

Ultimately, genetic gain is about utilizing Mendelian sampling Variance

une

Conclusion Optimal Contribution Selection

- OCS is the only sensible selection method
 - Optimality subject to some degree of subjectivity
 - Separates best prediction of merit from selection rule
 - Play with number of parents as well as progeny per selected parent → optimizes contributions
 - Different from simply giving more weight to family info
- Hard to deterministically predict response to OCS