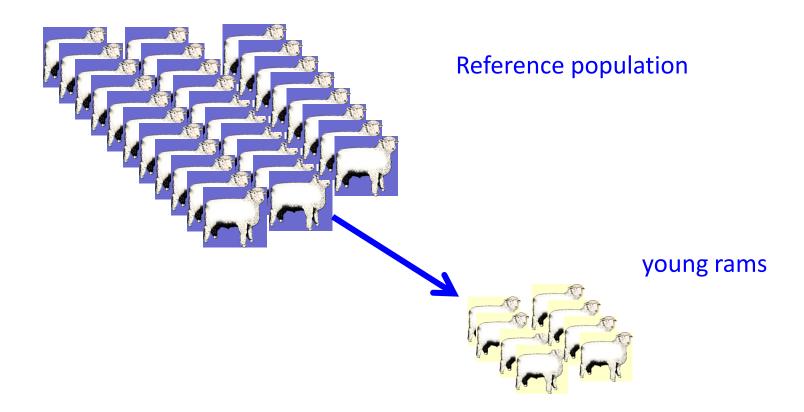




## **Genomic Selection Impacts**

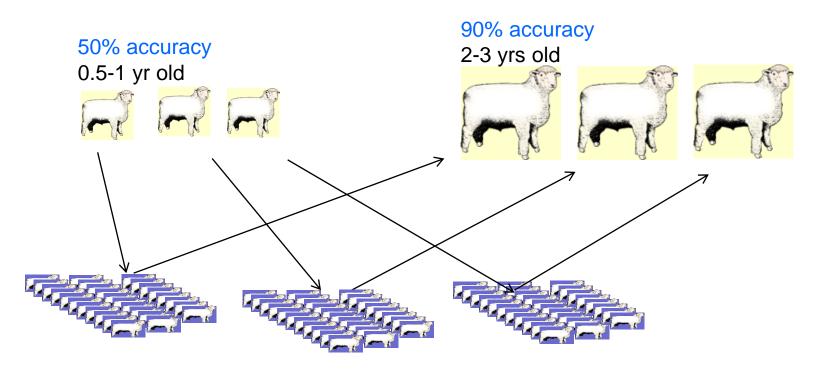
## Julius van der Werf


School of Environmental & Rural Science, UNE, Armidale

CRC for Sheep Industry Innovation, Armidale

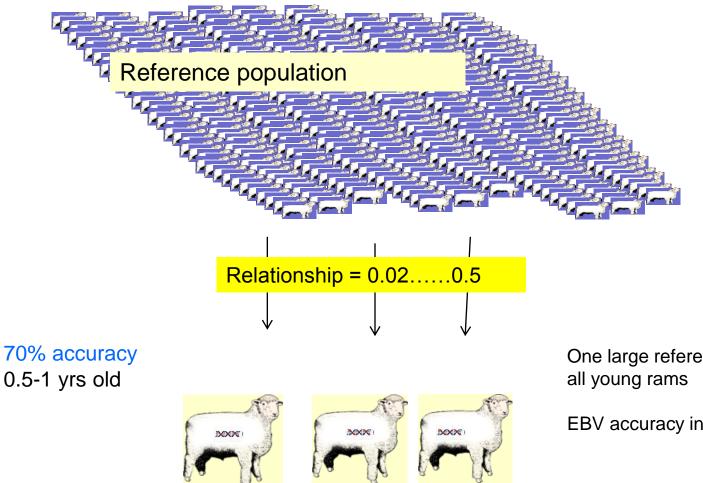


#### ARMIDALE GENETICS


## **Genomic Prediction: basic idea**



3) Computer centre can predict breeding value for young rams based on genomic relationship, combines it with other info


Can predict breeding value of young animals for 'any trait' measured in reference

## Compare: Progeny Testing



Each progeny group only informs one sire

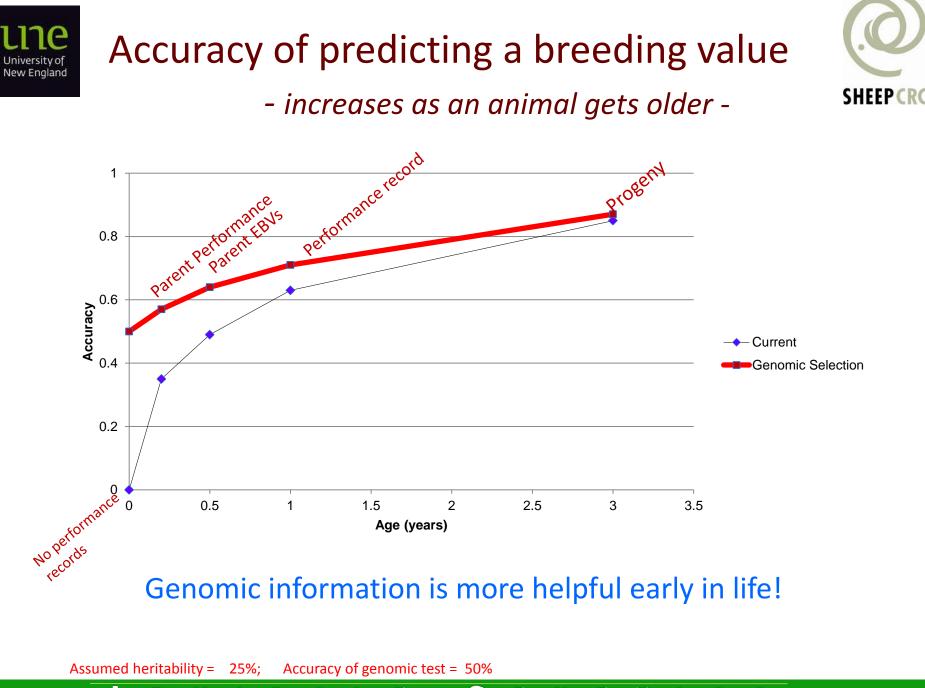
## **Genomic Testing**



One large reference population informs all young rams

EBV accuracy increased at young age

## Genomic Selection: Benefit


#### Overall:

More accurate prediction of genetic merit for breeding objective

#### Specific:

Traits that are usually difficult to improve difficult or expensive to measure can not be measured early low heritability

e.g. Carcass traits Lifetime time wool production Reproductive rate Parasite resistance



ARMIDALE GENETI

ICS

# Potential benefits of GS - some principles

% increase in EBV accuracy (male 1yo) and genetic gain

|                                      | $h^2 = 0.1 = r^2$ |         | $h^2 = 0.3 = r^2$ |         |
|--------------------------------------|-------------------|---------|-------------------|---------|
| Trait Measurability                  | %∆ Acc            | %∆ Gain | %∆ Acc            | %∆ Gain |
| < 1 year, both sexes                 | 15                | 7       | 7                 | 7       |
| > 1 year, both sexes                 | 68                | 19      | 59                | 37      |
| >1 year, females only                | 119               | 27      | 112               | 52      |
| on Corr. Trait, r <sub>g</sub> = 0.9 | 20                | 12      | 20                | 26      |
| on Corr. Trait, r <sub>g</sub> = 0.5 | 67                | 50      | 76                | 86      |

G

E

Ν

Ξ

Т

Π

С

S

A

R

Μ

D

A

L

Ε

### **une** Potential benefits of GS - some principles University of New England

% increase in EBV accuracy (male 1yo) and genetic gain

|                                      | $h^2 = 0.1 = r^2$ |         | $h^2 = 0.3 = r^2$ |         |
|--------------------------------------|-------------------|---------|-------------------|---------|
| Trait Measurability                  | %∆ Асс            | %∆ Gain | %∆ Асс            | %∆ Gain |
| < 1 year, both sexes                 | 15                | 7       | 7                 | 7       |
| > 1 year, both sexes                 | 68                | 19      | 59                | 37      |
| >1 year, females only                | 119               | 27      | 112               | 52      |
| on Corr. Trait, r <sub>g</sub> = 0.9 | 20                | 12      | 20                | 26      |
| on Corr. Trait, r <sub>g</sub> = 0.5 | 67                | 50      | 76                | 86      |

#### These effects underestimated due to not accounting for Bulmer effect

Ξ

L

A

8

A R Μ

D

G E Ν

С Π

T

S

# Iting the *trait* balance with genomic selection

| Current                     |          |          |  |  |
|-----------------------------|----------|----------|--|--|
| Selection                   |          |          |  |  |
|                             | Accuracy | Response |  |  |
| Weight kg                   | 0.71     | 0.79     |  |  |
| Dressing %<br>Saleable meat | 0.26     | 0.23     |  |  |
| yield %                     | 0.33     | 0.29     |  |  |
| Overall Merit               |          |          |  |  |
| <mark>\$Index</mark>        | 0.58     | 2.03     |  |  |

A G R Μ D A L E Ε Ν Ε T С S 

Ifting the *trait* balance with genomic selection

| Current<br>Selection Genomic Selection Difference          |          |          |          |          |     |  |
|------------------------------------------------------------|----------|----------|----------|----------|-----|--|
|                                                            | Accuracy | Response | Accuracy | Response |     |  |
| Weight kg                                                  | 0.71     | 0.79     | 0.75     | 0.76     | -4% |  |
| Dressing %                                                 | 0.26     | 0.23     | 0.59     | 0.42     | 83% |  |
| Saleable meat<br>yield %                                   | 0.33     | 0.29     | 0.60     | 0.46     | 59% |  |
| Overall Merit                                              |          |          |          |          |     |  |
| \$Index                                                    | 0.58     | 2.03     | 0.69     | 2.43     | 20% |  |
| Note: not only more gain overall, but shift to HTML traits |          |          |          |          |     |  |

G A R Μ L Ξ Ε Ν T С S D A 



**Benefits across Species** 



### <u>% extra gain impact</u>

- Early trait small small
- Late Trait moderate gen int/acc

G

Ξ

Ν

Т

I

С

S

L

A

Ξ

- Sex limited trait
  - females only, late
  - Males only early

Μ

D

П

A

R

very large small to modest

gen int acc/gen int

accuracy/gen int



## **Benefits - Dairy**



- Extra gain ~100%
- Breeding objective dominated by sex-limited trait
- No more progeny testing (save money)
- Very much shorter generation intervals
- More use of reproductive technologies
- Potential to select on hard to measure traits but only if these are being measured!
- Commercial males have more chance to be selected
- AI companies can easily afford testing
- Widely used in the industry



## **Benefits - Beef**



– Extra gain ~25-50%

R

М

D

A

- Breeding objective has some hard to measure traits
- More emphasis on carcass and meat, less on growth

G

Ð

N

Ð

Т

С

S

- More emphasis on females reproductive rate
- Somewhat shorter generation intervals
- More use of reproductive technologies
- Potential to select on hard to measure traits but only if these are being measured!
- Genotyping cost can be high for breeders
- Who pay for the reference population?

L

Ε



## Benefits – Pigs & Poultry



- Extra gain ~50%?
- More emphasis on meat quality, Feed Efficiency?
- Sex limited traits

A

R

M

- shorter generation intervals in layers
- Potential to select on hard to measure traits but only if these are being measured!

G

Ð

N

Ð

Т

С

S

– Genotyping cost can be high?

D

A

L

Ð





## Conclusion

- Genomic selection can benefit breeding programs
- A challenge to implement:
  - cost to breeders
  - Need for phenotypes  $\rightarrow$  reference population / multi breed
- Reference population needs to contain (indirect) relatives of selection candidates – at this stage
- Reference population needs to be continuously updated

#### ARMIDALE GENETICS