

### **Optimizing Breeding Programs**

### Decisions in breeding programs

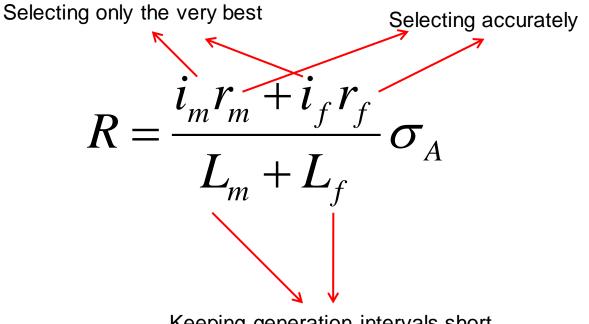


Where to go?

breeding objective (which traits)

#### Who and what to measure?

performance, DNA test


genetic evaluation

Who to select and mate?

reproductive technol.

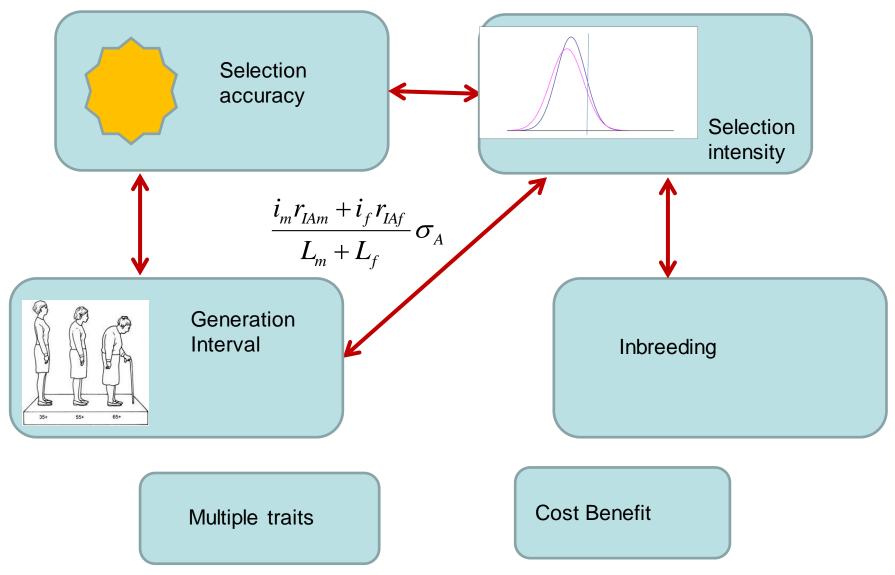
gains vs inbreeding

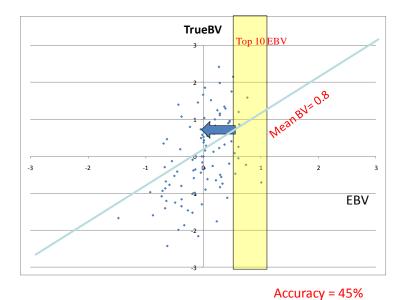
### Making genetic progress is about



Keeping generation intervals short

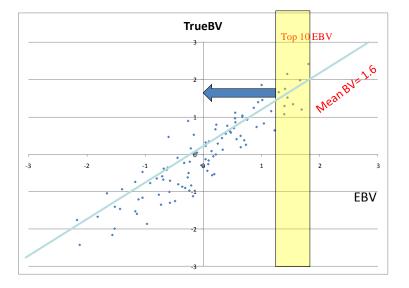
#### Reproductive rates affect all of the above!


# Aspects that need to be balanced:

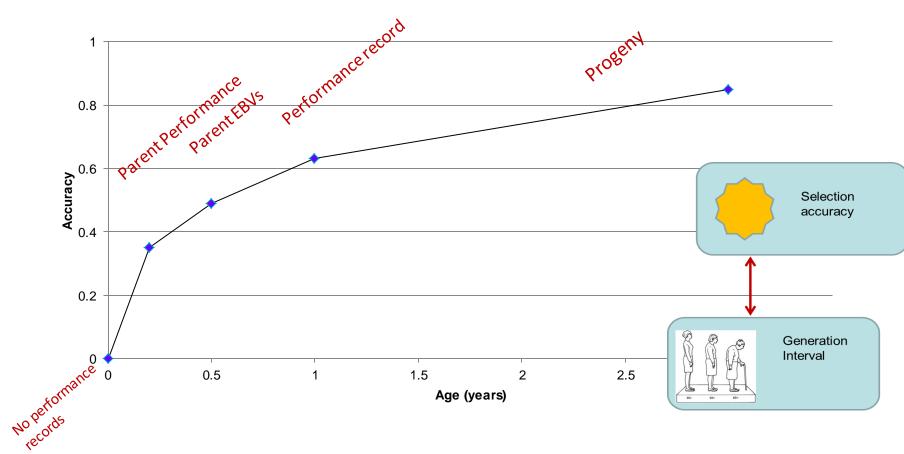

• Selection accuracy versus generation interval

$$\frac{i_m r_{IAm} + i_f r_{IAf}}{L_m + L_f} \sigma_A$$

- Short generation intervals are good for fast progress, but young breeding animals have lower EBV accuracy
- Selection accuracy versus selection intensity
  - Money available for testing (either performance or DNA) can be used to test a few animals accurately, or to test more animals with lower accuracy. For example, testing fewer young bulls but giving them more test progeny.
- Selection intensity versus generation interval
  - Selecting fewer animals for breeding each year and keeping those longer
- Selection intensity versus inbreeding
- The relative emphasis in selection for multiple traits
- Cost versus benefits


### Aspects that need to be balanced



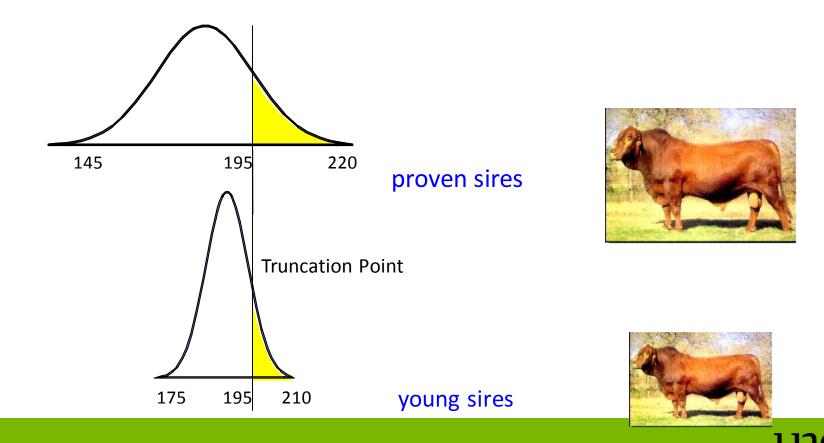




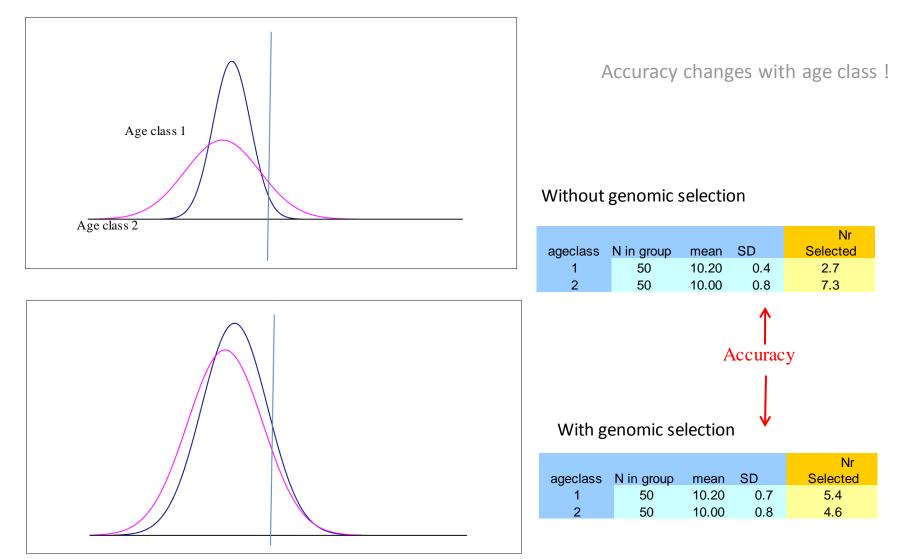

#### the more accuracy, the more response



#### Accuracy of predicting a breeding value - increases as an animal gets older




Assumed heritability = 25%

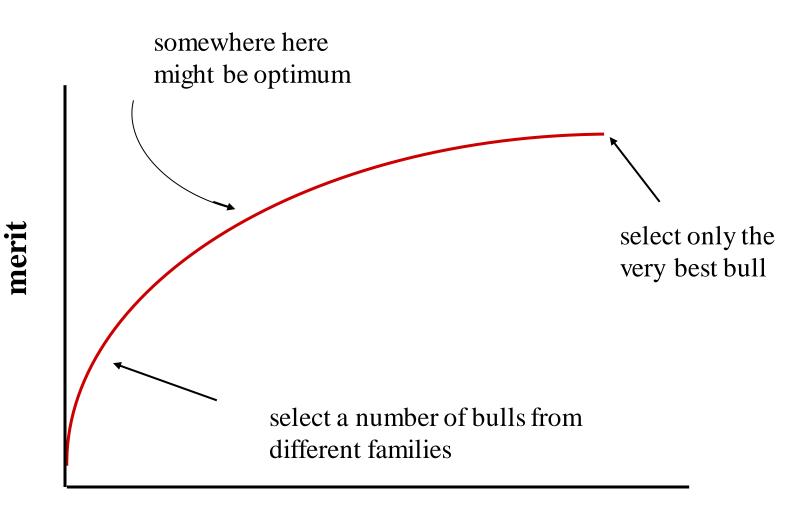

Need to balance accuracy and generation interval!

#### BLUP helps selecting between old and young bulls

- EBVs can be compared directly over age classes
- Selection on BLUP EBVs optimizes generation interval



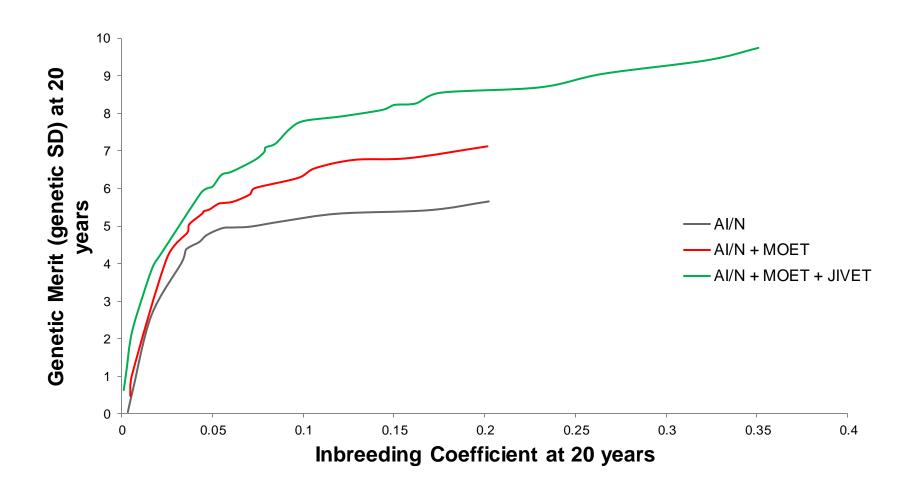
#### Optimizing age structure



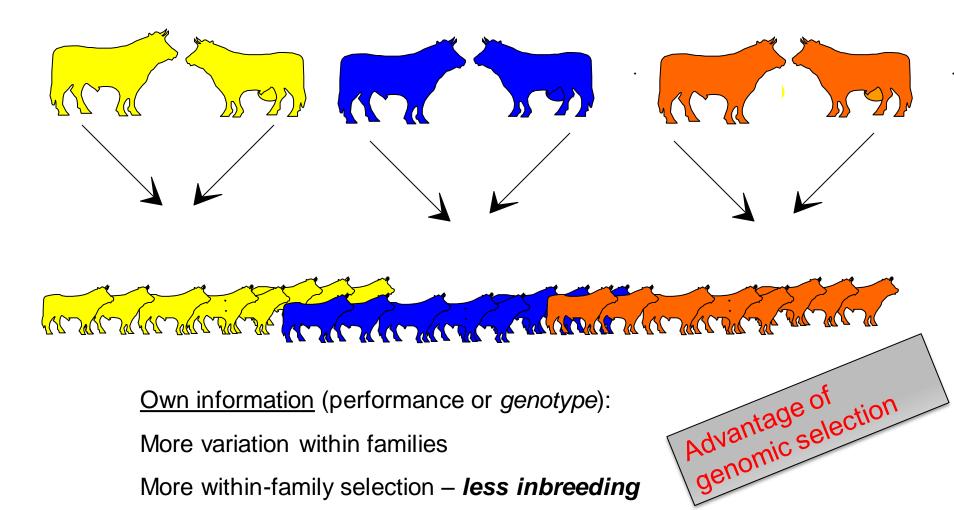

# Best to select on EBV, irrespective of accuracy /genotyped or not / age

|         | birth year | genotyped | progeny | EBV  | асс |
|---------|------------|-----------|---------|------|-----|
| Kevin   | 2009       | Y         | 0       | +124 | 71  |
| Tony    | 2005       | Ν         | 345     | +119 | 97  |
| Bob     | 2009       | Ν         | 0       | +117 | 63  |
| John    | 2008       | Ν         | 45      | +113 | 85  |
| Paul    | 2006       | N         | 1087    | +112 | 99  |
| Geoff   | 2009       | Y         | 0       | +106 | 40  |
| Malcolm | 2007       | Ν         | 67      | +105 | 89  |

#### Balancing inbreeding and merit

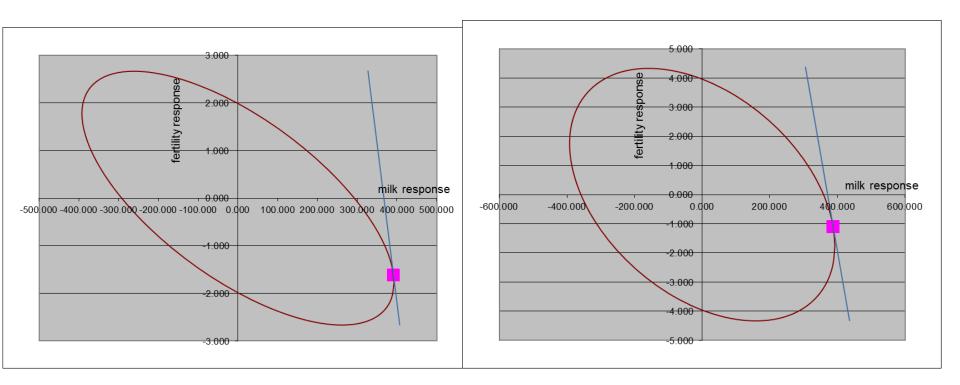

This graph will look different for each population




inbreeding or co-ancestry

#### **Genetic Gain vs Inbreeding After 20 Years**

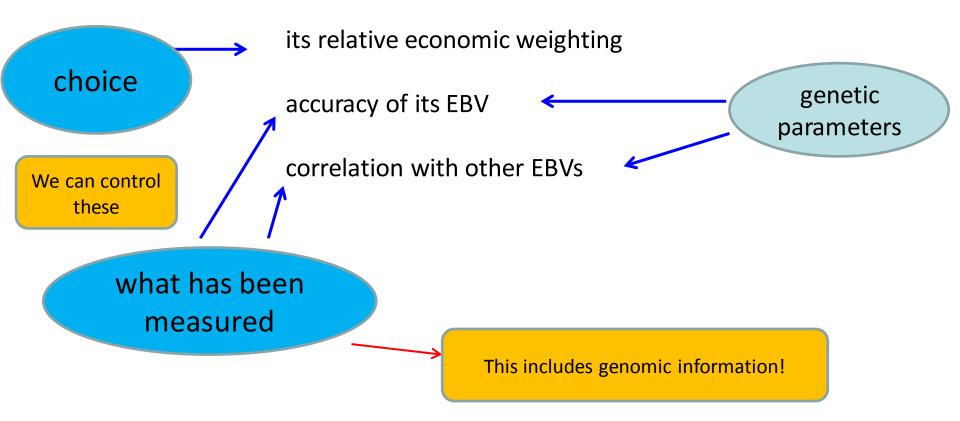
Tom Granleese et al., AAABG 2013




### Between versus within family selection



#### Balancing Traits, weights and information


#### Multiple traits

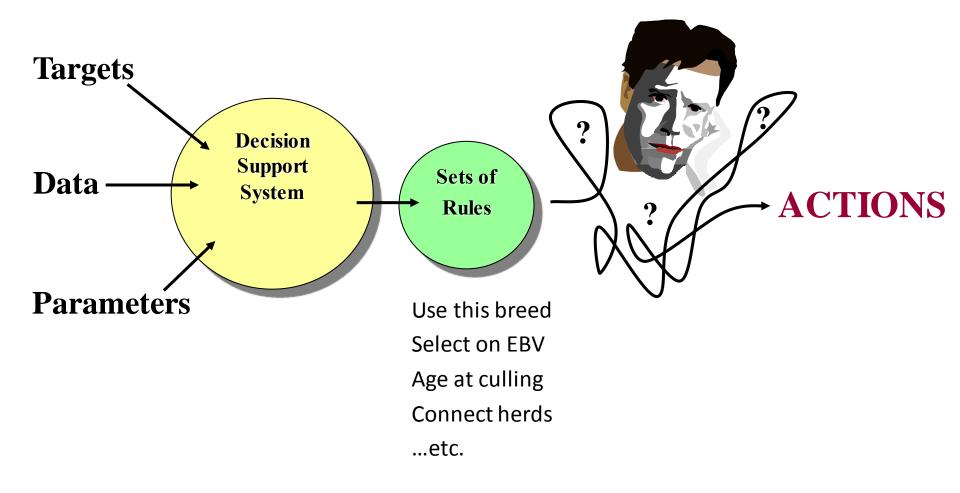


Usually push the traits that have more information/higher EBV accuracy  $\rightarrow$  Balance may change with genomic information on 'hard to measure traits'

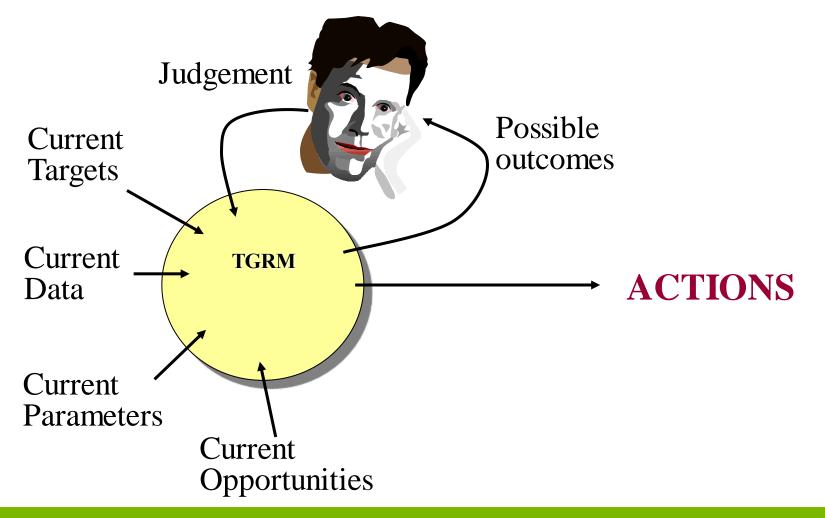
Importance of Trait measurement

1 The ultimate response of a trait will depend on:

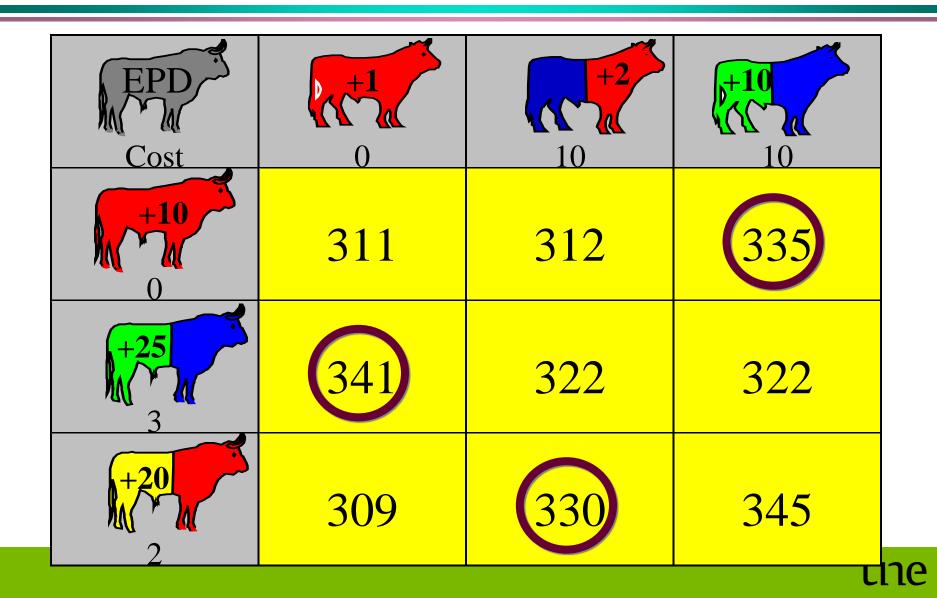


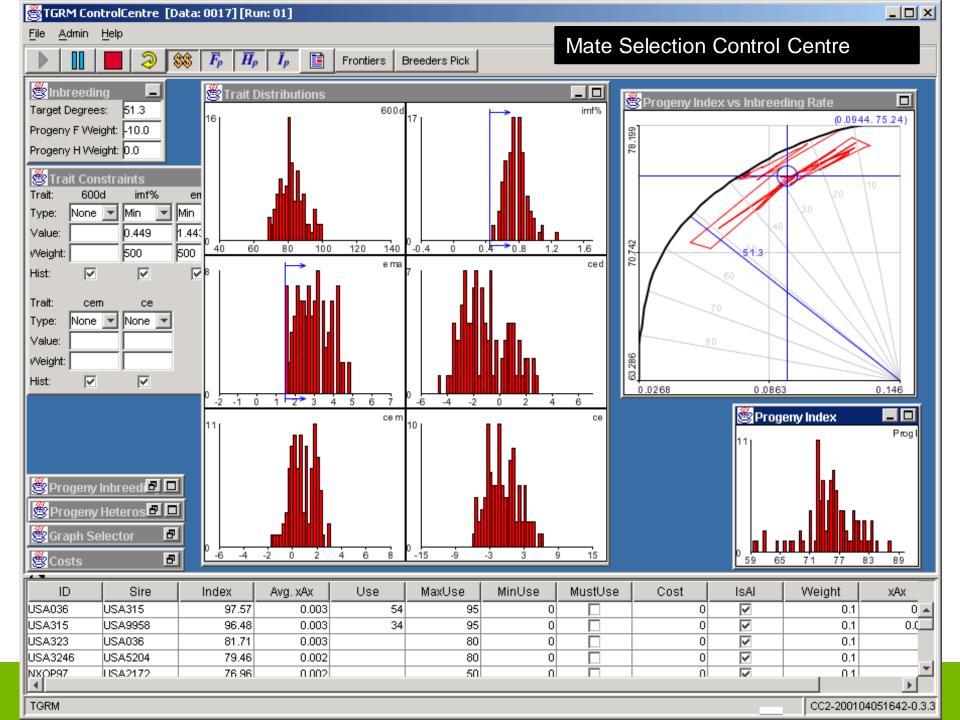

### **Evaluating Breeding programs**

- Deterministic vs Stochastic Simulation
- Optimization strategies
- Rule based vs tactical design of breeding programs

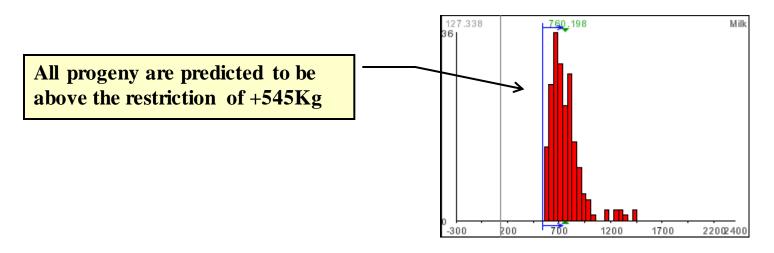

Implementation of programs ...

- Rules-based approach:
  - "Start joining on 1st February"
  - "Use best 10 rams mated to best 400 ewes"
  - "Set up a rotational cross"
- Tactical approach
  - Maximise impact of selection and mating, based on *prevailing* animals, markets, costs, constraints and opportunities.


### Rules-based approach to Design

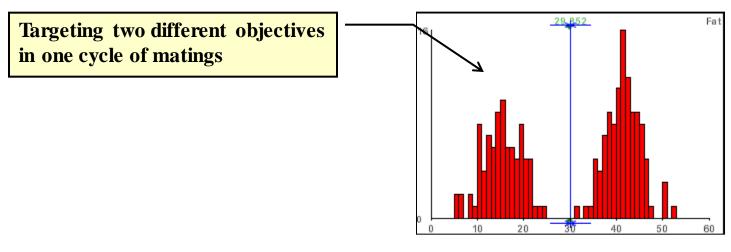



### Tactical approach to Design Action Decision Systems



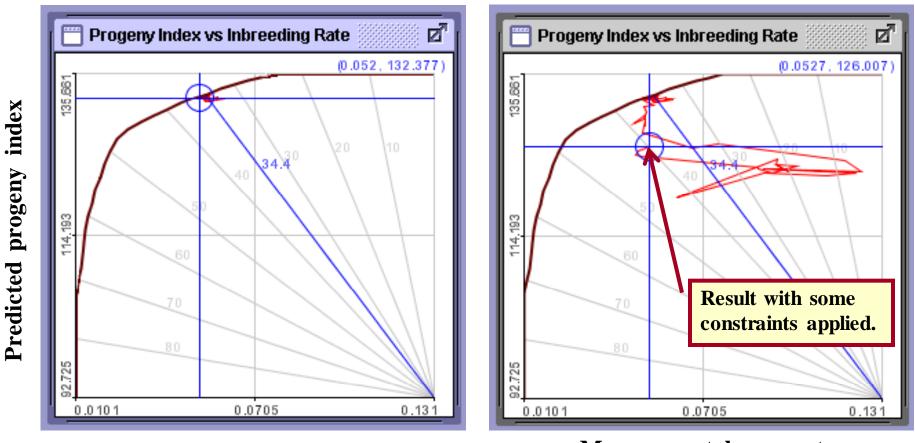

### Mate allocations ...






### Achieving Trait Constraints




Predicted progeny Milk EBVs

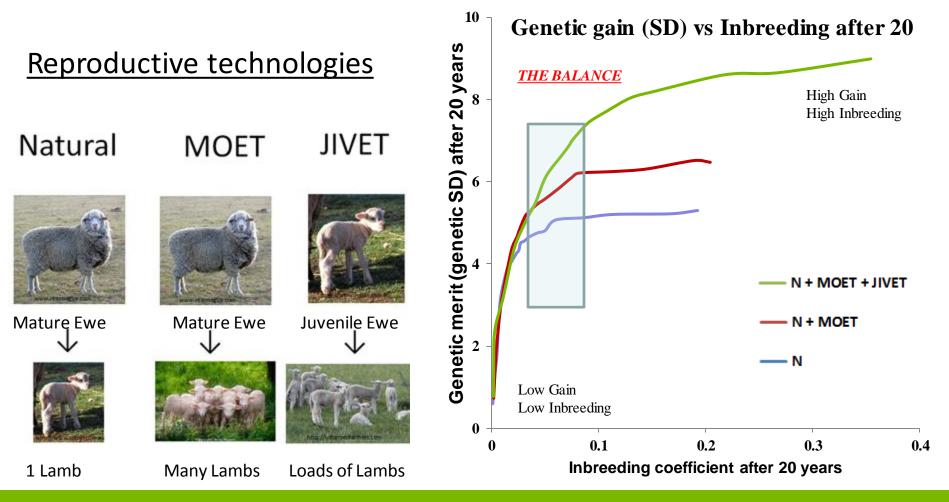
### Achieving Trait Constraints



Predicted progeny Fat EBVs

#### Imposing constraints (eg. Sire use, QTL outcome, trait distributions)




Mean parental coancestry

Mean parental coancestry

|                                                             | Wating List - Netscape         File Edit View Go Communicator Help         Output: Mating List                            |                         |         |          |                 |                |                                         |               |               |         |              |         |         |            |           |   |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|----------|-----------------|----------------|-----------------------------------------|---------------|---------------|---------|--------------|---------|---------|------------|-----------|---|
|                                                             |                                                                                                                           | <u>/</u> iew <u>G</u> o |         |          |                 | •              |                                         |               | - <b></b>     |         | Juipui       | . mati  |         |            |           |   |
| <ul> <li>www.wv</li> </ul>                                  | - Seeh                                                                                                                    | _ 🌺                     |         |          | 🟦 🤌             |                | Sin |               |               |         |              |         |         |            |           | N |
|                                                             | Back                                                                                                                      | Forwar                  | -       |          | lome Sear       |                |                                         |               |               | itop    |              |         |         | <b>2</b> 7 |           |   |
|                                                             | 👔 🦋 Bookmarks 🙏 Location: http://tgrm.une.edu.au/servlet/reports_show/987823367381_0018_01/matlst0.htm 💽 🕼 What's Related |                         |         |          |                 |                |                                         |               |               |         |              |         |         |            |           |   |
| A Total Genetic Resource Management A Mating List (by Sire) |                                                                                                                           |                         |         |          |                 |                |                                         |               |               |         |              |         |         |            |           |   |
|                                                             | Report Summary   Sires Summary   Mating List   Mating List (CSV)   Mating List (TXT)                                      |                         |         |          |                 |                |                                         |               |               |         |              |         |         |            |           |   |
|                                                             |                                                                                                                           |                         |         |          |                 |                |                                         |               |               |         |              |         |         |            |           |   |
|                                                             |                                                                                                                           |                         |         |          |                 |                |                                         |               |               |         |              |         |         |            |           |   |
|                                                             | up down                                                                                                                   | up dawn                 | up dawn | up dawn  | up down         | up dawn        | up dawn                                 | up dawn       | up dawn       | up dawn | up dawn      | up dawn | up dawn | up dawn    | up dawn   |   |
|                                                             | Sire                                                                                                                      | Dam                     | index   | <u> </u> | <u>SireCoan</u> | <u>DamCoan</u> | SortIndex                               | <u>600d-1</u> | <u>600d-2</u> | imf%    | <u>ema-1</u> | ema-2   | ced     | <u>cem</u> | <u>Ce</u> |   |
|                                                             | USA3246                                                                                                                   | T229                    | 66.68   | 0.0156   | 0.003228        | 0.000138       | 64.9366                                 | 88.00         | 88.00         | 0.50    | 0.15         | 0.15    | 1.25    | -0.70      | 0.02      |   |
| lŀ                                                          | USA3246                                                                                                                   | T213                    | 70.18   |          | 0.003228        | 0.000175       | 69.9997                                 | 81.50         | 81.50         | 0.65    | 1.55         | 1.55    | 2.35    | 0.48       | 3.48      |   |
| li                                                          | USA3246                                                                                                                   | T157                    | 64.68   |          | 0.003228        | 0.000000       | 62.1640                                 | 85.00         | 85.00         | 0.45    | 0.20         | 0.20    | 2.81    | -1.08      | 0.83      |   |
| li                                                          | USA3246                                                                                                                   | T137                    | 65.64   | 0.0000   | 0.003228        | 0.000000       | 65.4690                                 | 72.00         | 72.00         | 0.70    | 0.40         | 0.40    | 2.88    | 1.52       | 6.09      |   |
| l i                                                         | USA3246                                                                                                                   | T117                    | 68.09   | 0.0078   | 0.003228        | 0.000087       | 67.1344                                 | 76.00         | 76.00         | 0.65    | 1.45         | 1.45    | 2.80    | 0.81       | 4.59      |   |
| Ì                                                           | USA3246                                                                                                                   | т063                    | 76.10   | 0.0039   | 0.003228        | 0.000000       | 75.5340                                 | 77.00         | 77.00         | 0.90    | 1.35         | 1.35    | -0.09   | 0.03       | 0.14      |   |
| ĺ                                                           | USA3246                                                                                                                   | T057                    | 73.06   | 0.0000   | 0.003228        | 0.000000       | 72.8840                                 | 70.00         | 70.00         | 0.90    | -0.55        | -0.55   | 2.74    | 0.34       | 3.60      |   |
|                                                             | USA3246                                                                                                                   | T029                    | 64.08   | 0.0235   | 0.003228        | 0.000132       | 61.5570                                 | 77.50         | 77.50         | 0.60    | 0.40         | 0.40    | 3.38    | -0.97      | 1.62      |   |
|                                                             | USA3246                                                                                                                   | т020                    | 75.63   | 0.0078   | 0.003228        | 0.000000       | 74.6740                                 | 90.50         | 90.50         | 0.65    | 1.45         | 1.45    | 1.87    | -0.43      | 1,17      |   |
|                                                             | USA3246                                                                                                                   | T013                    | 67.38   | 0.0000   | 0.003228        | 0.000133       | 67.2019                                 | 77.50         | 77.50         | 0.70    | 1.20         | 1.20    | 1.69    | 0.48       | 2.82      |   |
|                                                             | USA3246                                                                                                                   | тоо8                    | 72.18   | 0.0000   | 0.003228        | 0.000298       | 71.9982                                 | 73.50         | 73.50         | 0.75    | 1.05         | 1.05    | 3.04    | 2.21       | 7.62      |   |
|                                                             | USA3246                                                                                                                   | \$305                   | 63.88   | 0.0078   | 0.003228        | 0.000141       | 62.9215                                 | 81.50         | 81.50         | 0.55    | 1.35         | 1.35    | -0.42   | -0.71      | -1.67     |   |
|                                                             | USA3246                                                                                                                   | R001                    | 66.58   | 0.0000   | 0.003228        | 0.000000       | 66.4090                                 | 67.50         | 67.50         | 0.80    | 1.35         | 1.35    | 3.75    | 1.14       | 6.20      |   |
|                                                             | USA3246                                                                                                                   | Q075                    | 62.24   | 0.0000   | 0.003228        | 0.009841       | 61.5426                                 | 84.00         | 84.00         | 0.55    | 0.35         | 0.35    | 2.09    | 0.25       | 2.76      |   |
|                                                             | USA3246                                                                                                                   | Q001                    | 73.62   |          | 0.003228        | 0.000000       | 73.4490                                 | 73.00         | 73.00         | 0.80    | 1.30         | 1.30    | 2.50    | 0.36       | 3.40      |   |
| H k                                                         | USA323                                                                                                                    | R211                    | 67.93   |          | 0.000296        | 0.000093       | 67.9094                                 | 87.50         | 87.50         | 0.55    | 2.85         | 2.85    | -3.00   | -2.26      | -8.13     |   |
| H k                                                         | USA315                                                                                                                    | Т99                     | 74.46   | <u> </u> | 0.022720        | 0.000116       | 73.2452                                 | 89.50         | 89.50         | 0.70    | 2.00         | 2.00    | 0.22    | -0.21      | -1.76     |   |
| H R                                                         | USA315                                                                                                                    | T270                    | 79.83   | <u> </u> | 0.022720        | 0.000000       | 78.6263                                 | 94.00         | 94.00         | 0.80    | 2.60         | 2.60    | -0.14   | 0.27       | -1.15     |   |
| H R                                                         | USA315                                                                                                                    | T259                    | 72.26   | <u> </u> | 0.022720        | 0.000114       | 71.0503                                 | 85.50         | 85.50         | 0.70    | 0.55         | 0.55    | -0.46   | -0.01      | -2.04     |   |
| H R                                                         | USA315                                                                                                                    | T243                    | 76.79   | <u> </u> | 0.022720        | 0.000154       | 69.3281                                 | 88.00         | 88.00         | 0.75    | 2.95         | 2.95    | -1.00   | 0.20       | -2.15     |   |
|                                                             | USA315                                                                                                                    | T217                    | 72.43   | <u> </u> | 0.022720        | 0.000000       | 71.2263                                 | 82.00         | 82.00         | 0.70    | 0.55         | 0.55    | 0.49    | 0.13       | -0.80     | - |
| 1                                                           | 🖆 🖦 🛛 Document: Done                                                                                                      |                         |         |          |                 |                |                                         |               |               |         |              |         |         |            |           |   |

### Genetic Gain vs Inbreeding while using female reproductive technologies

Tom Granleese, 2015



### Proportion of females assigned technologies

at  $1\% \Delta dF$  per gen

SHEEP CRC

|                         | AI/N            | MOET                          | JIVET F       | Total<br>emales* | Males<br>Used <sup>*</sup> | Females<br>per male |
|-------------------------|-----------------|-------------------------------|---------------|------------------|----------------------------|---------------------|
| Early Trait             |                 |                               |               |                  |                            |                     |
| With GS                 | 0.29            | 0.28                          | 0.43🥿         | 85               | 19                         | 4.5                 |
| NOGS                    | 0.34            | 0.36                          | 0.30          | 88               | 20                         | 4.4                 |
| Late Trait              |                 |                               |               |                  |                            |                     |
| With GS                 | 0.31            | 0.26                          | 0.43 🥿        | 88               | 14                         | 6.3                 |
| NOGS                    | 0.34            | 0.35                          | 0.31 💙        | 89               | 15                         | 6.0                 |
| Dairy                   |                 |                               |               |                  |                            |                     |
| With GS                 | 0.38            | 0.28                          | 0.34 🥿        | 218              | 39                         | 5.6                 |
| NOGS                    | 0.47            | 0.35                          | 0.18 ┙        | 237              | 41                         | 5.8                 |
| GS SHIFTS PROPORTION to | JIVET           | Compensate for sire diversity | emale lack of | diversity w      | ith more                   |                     |
| Granleese et al., AAABG | <b>201B</b> /18 |                               |               |                  |                            | une                 |

## Optimizing use of repro technologies

| Proportion<br>Captured<br>by breeder | AI   | MOET | JIVET | Dams<br>Used | G/yr<br>(\$) | L    |
|--------------------------------------|------|------|-------|--------------|--------------|------|
| 0.06                                 | 0.95 | 0.00 | 0.05  | 261          | \$2.26       | 1.87 |
| 0.32                                 | 0.77 | 0.04 | 0.19  | 221          | \$2.82       | 1.46 |
| 0.64                                 | 0.36 | 0.10 | 0.54  | 136          | \$3.96       | 1.21 |
| $\checkmark$                         |      |      |       |              |              |      |

If breeder captures more benefit she/he can afford to invest more and make more gain