Day 3 Genomic Prediction and Genomic Selection

Exercise 3.1 Accuracy of Genomic Predictions

Use the spreadsheet 'GSaccuracy 2015.xls' to investigate and explain the impact of the following parameters on the effective number of chromosome segments (M_e), the proportion of variance explained by markers (q²), the accuracy with which marker effects are estimated (r_Qhat), and the accuracy of the genomic prediction or molecular breeding value, MBV (r_{MBV}):

- number of markers (M)
- Effective population size (N_e)
- Heritability of phenotypes (h²)
- Number of training individuals (N)

Set L=1 and k=30 for a genome of 30 chromosomes of 1 Morgan

- a) What is the minimum number of markers that is needed to achieve near maximum genome coverage (q^2 =0.99) when N_e =100 versus 340 versus 1000 versus 10,000? Enter this in the table below.
- b) Set the number of markers M=1,000,000 to get nearly complete coverage regardless of N_e . Set $h^2\!=\!0.9$.

Now evaluate the size of the training set (N) needed to reach an MBV accuracy of 0.8 for N_e =100, versus 340 versus 1,000 versus 10,000. Enter the results in the table below.

c) Repeat b) for heritabilities equal to 0.5 and 0.2

	$N_e = 100$	$N_e = 340$	$N_{e} = 1000$	$N_e = 10,000$
Min. # markers				
$\mathbf{h}^2 = 0.9$				
$\mathbf{h}^2 = 0.5$				
$\mathbf{h}^2 = 0.2$				

d) Test the genome scaling argument that if the size of the simulated genome is reduced by a factor C, then the size of the training population also has to be reduced by the same factor C in order to maintain the same accuracy of MBV.

Exercise 3.2 EBVs combining phenotype and GBV

Consider selection for an additive trait with (total) heritability 0.2 and phenotypic standard deviation equal to 50. For this trait, you have been able to derive genomic breeding values with accuracy (r_{MBV}) equal to 0.5. The following sources of information are available for selection:

- own MBV
- own phenotype
- MBV of the individual's sire
- Phenotype of the individual's sire

Assume the top 20% individuals are selected. The base scenario is having own phenotype and phenotype of the sire only (no genotypes). Evaluate the impact of the following on the <u>accuracy</u> of selection and the genetic superiority of the selected individuals, using the spreadsheet 'STEBVaccuracy.xls':

- a) Adding genotyping of the individual to the base information of own phenotype and phenotype of the sire.
- b) Adding genotyping of the sire to the information from question a).
- c) Derive the elements of the P matrix and the G vector for question b)
- d) Explain the weight on the MBV of the sire in question b)
- e) Convert this MBV blending problem into a two-trait problem consisting of the original trait and the MBV as a correlated trait with heritability = 1. I.e. derive the genetic and phenotypic correlations between the two traits. Enter the results into MTindex.xls and check that it gives the same answers for question b).

Exercise 3.3 Genomic Selection and crossbreeding

Consider a purebred line producing pigs for crossbred performance.

Use CROSSBRGS.XLS to work out selection accurcay of the Index.

The breeding goal is 100% CB information.

Selection in the purelines is based on own performance, sire, dam, 3FS and 40HS.

In addition here are 40 Xbred HS performances recorded.

Trait heritability 0.25; c-squared 0.15

Work out the accuracy of the index for 2 values of r_{PC} (correlation between purebred and crossbred performance):

 $r_{PC} = 0.7 \qquad \qquad r_{PC} = 0.9$

No Genomic Selection No information from Xbreds With HS Information from Xbreds

Genomic Selection (Ne=100)
With HS Information from Xbreds
RefPopSize = 3000 PB

Genomic Selection
With HS Information from Xbreds
RefPopSize = 1500PB and 1500XB

Genomic Selection
With HS Information from Xbreds
RefPopSize = 3000 XB