

Design of reference populations

Julius van der Werf

CRC for Sheep Industry Innovation School of Environmental and Rural Science, UNE, Armidale, NSW

Genomic Prediction: basic idea

Prediction from DNA \rightarrow genomic breeding values - GBV

GBV + Current EBV \rightarrow Improved EBV GEBV

Merit depends on trait measurability

Setting up reference populations

Trait is already measured	Early measurement	Late Measurement
YES	No Need	Use industry data (milk, fertility, late wool)
NO	Create Reference population (slaughter)	Create Reference population

Genomic selection has affected the need for phenotyping !

more...not less

Who pays?

Design of a reference population

Investing in information for genetic improvement pre-genomics

Investing in information for genetic improvement

Investing in information for genetic improvement

Measure outside nucleus if traits - can not be measured within nucleus - carcass, eating quality, reproduction otherwise, reference population can be nucleus

Genomic selection has an advantage over sib or progeny test selection because

- 1. the information comes earlier
- 2. can afford to test more distant relatives

Design of Reference Population

Genomic Testing Relationship paradigm $a_{ii} > 0.05$ Genomic Testing LD paradigm

a_{ij} > 0.0000001

Relationship paradigm

LD paradigm

Need relatives in reference Need to keep reference 'up to date' Denser markers maybe of limited benefit Accuracy limited by relationships and # of relatives Consider to use IBD inference

May achieve prediction across breeds Reference population of long lasting benefit Accuracy limited by marker density and size of reference Requires detectible average effects across wide range of genetic background

Summarizing Genomic Prediction - What information is used?

- Based on very many small genomic- relationships
- Does not require 'direct relatives' to be tested
- Can be based on distant relatives 'some generations away'
-but the number of small relatives needs to be large (thousands)
- Can not predict across breed

Design of reference populations

Across breed? Longevity of RefPop?

Accuracy of genomic prediction depending on size of reference population Goddard 2009

Using Goddard 2009

design of reference population

- Relatedness between reference population and selection candidates
- Across breeds or lines?
- Number of sires, nr of progeny per sire, which dams?

Relatedness matters more if the reference population is smaller

Sources of information contributing to GBV accuracy

Information Nucleus * structure *

Information Nucleus Sites

How many are needed?

	Breed	Merino	WS,PD	BL	GBV accuracy		
	Ne	1000	250	100			
	Size Reference pop'n	30,000	10,000	5,000			
	Progeny per year	3750	1250	625	high		
	Predicted benefit in dG	40%	20%	?			
	Size Reference pop'n	12,000	4,000	2,000			
	Progeny per year	1500	500	250	moderate		
	Predicted benefit in dG	20%	10%	?			

Assuming the ref pop is refreshed every 8 yrs Numbers are needed per breed!

INF2 design

breed	rams	prog/ram	Meat	Wool	Repro	Xbred ewes	Merino ewes	Total ewes
WS	72	13	896			448	560	
PD	72	13	896			448	560	
BL	27	30	101		403	202	756	
Mer SF	27	30	202	484	403		1008	
MerMed	27	30	202	484	403		1008	
MerStrong	27	30	202	484	403		1008	
tal genotyp	ed		2499	1452	1613			
Total ewes						1098	4902	6000
Totals	251		2499	1452	1613	1098	4902	

Note that most terminal progeny are crossbreds A crossbred counts for a half (towards each breed)

Smaller breeds options

(Assuming a small effective population size)

- Measure 250 progeny per year (from ~ 20 sires) or
- Measure + genotype 50 progeny tested sires per year
- Need 8x more to get started (or wait 8 years)