

Optimizing Breeding Programs

COST-BENEFIT of genomics

Cost - Benefit of breeding programs

Cost-Benefit industry wide

Cost-Benefit Stud + Direct clients

Cost-Benefit Stud + Direct clients

Value of selecting Stud Rams and Flock Rams

(allele) frequency of one unit of superiority as expressed in commercial flock

Discount rate	CDE flock rams	CDE stud rams
0	0.99	3.93
0.05	0.78	1.96
0.08	0.68	1.37

Herd structure

	Nr Cows Commercial Herd		12,000	
		Comm Dams/sire	50	
	Comm Sire replacem. rate		0.33333	
	Comm Weaning rate		1	
Nr new rams needed for comm herd/yr			80	
Nr lifetime Progeny per commercial sire			150	

Pro	20%		
	Stud weaning rate	1	
	Stud dams/sire	40	
	Nr stud breeding cows	800	
	Nr. Of stud sires	20	
	Nr of comm bulls sold per year	80	
	Proportion of males DNA tested	100%	
Nr. Stud born Male DNA tested/yr		400	
Nr of commercial bulls sold per Stud male		4	
Nr of DNA tested young male per stud bull		20	
Ir of commercial progeny receiving genes from a stud male			600

100 prog/comm bull

400 prog/stud sire

Value of selecting Stud Rams

Value of a superior sire = Selection Difference * Nr.Progeny * expression per progeny Stud sire + 8.8 400 1.36 = \$7,194With Genomics + 9.8 400 1.36 = \$8,011

+817

Cost benefit analysis

• Extra benefit per stud sire

\$817

- Extra Cost If all young stud males tested: 20 young males/stud sire
- Break even: \$817 / 20 = \$41 per DNA test

2 stage selection

How many bulls to genotype?

All have a breeding value at stage 1EBVOnly some get extra info from GBVGEBV

Important parameters:

EBV accuracy

added accuracy GBV \rightarrow GEBV

% gain compared with 100% genotyping EBV 0.34, GBV 0.39, GEBV = 0.50, **r**_{EBV,GEBV} = **0.7**

At high(ish) correlation between EBV and GEBV only need to genotype ~20%

% gain compared with 100% genotyping EBV 0.10, GBV = 0.39, GEBV 0.40, **r**_{EBV,GEBV} = **0.25**

Proportion genotyped

At low(er) correlation between ASBV and ASBV1 need to genotype more

Summary

- Can calculate additional gain on a per ram basis, assuming returns in commercial progeny
- Those figures depend on
 - Additional accuracy
 - Age structure
 - Flock parameters such as weaning rate, mating rate, proportion sold
 - Can have strategies to save costs, e.g. test top 20%

Adding accuracy with genomic testing

	EBV accuracies of young males at 18 months		
Trait	W/o GS	With GS	%difference
Birth Weight	0.32	0.48	48%
Post Weaning Weight	0.67	0.79	17%
Post Weaning Eye Muscle	0.66	0.70	6%
Post Weaning Fat	0.58	0.64	9%
Adult Weight	0.49	0.69	41%
Adult Clean Fleece Weight	0.55	0.69	25%
Number of Lambs Weaned	0.17	0.28	60%
Dual Purpose Index	0.24	0.35	46%

Do people use DNA testing?

Only major breeds: Merino Poll Dorset White Suffolk Border Leicester

				Parentage/Pol
Year	50k	700k	LD	
2012	1,519	0	0	10,073
2013	3,313	920	5,386	20,011
2014	1,144	1,430	4,123	13,909
2015	240	151	4,183	27,956
Total	6,408	2,502	14,309	81,543
		i	ndustry	
rocoarob			muustry	

research

Report back to producer

Flock Profile

une

Merino Select 2014 Drop Average

Validating results of Genomic Profiling

Data from 65 pilot project flocks (2010-2014)

Flock mean predicted from genomic test (mean of 15 samples)

What next?

- Further delivery: aim for delivering to 100 commercial flocks
- Ram breeders with their clients
- Testing usage in a lamb supply chain
- Use wether trail (samples form 50 flocks, compare with phenotypic means)
- Explore the potential of sample pooling

Need to develop value propositions

Objectives

Benchmark **commercial flocks based on genomic testing**, by estimating the genetic mean of the flock for various traits.

Outcome:

Estimating genetic merit in commercial sheep cohorts can

- help with more informed ram buying decisions > RamSelect
- create a pull for ASBVs from ram buyers
- create more awareness about importance of good genetics in the flock
- assist in defining cohorts in supply chains or other management practices driven by performance predictions

22

Project 3.2 Better delivery: understanding benefits

Cumulative net present value (profit) – Fully integrated, 7,000 Mult., 180,000 Comm.

