Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

4. Differential Evolution

Vive la difference!

Brian Kinghorn

University of New England Armidale, Australia

Differential Evolution Price and Storn, 1997

```
• Small, Simple, Effective ...
```

```
while (count < GEN MAX)
 2
    £
 3
      for (i=0; i<NP; i++)</pre>
 4
 5
       do a=rnd_uni()*NP; while (a==i);
       do b=rnd uni()*NP; while (b==i || b==a);
 6
 7
       do c=rnd_uni()*NP; while (b==i || b==a || c==b);
 8
       j=rnd_uni()*D;
       for (\overline{k}=1; k \leq D; k++)
 9
10
         if(rnd_uni() < CR || k==D)
11
12
13
                 trial[j]=x1[c][j] + F*(x1[a][j]-x1[b][j]);
14
15
            else
16
17
                 trial[j]=x1[i][j];
18
19
            i=(i+1)/D
20
21
22
23
24
25
26
27
       score=evaluate(trial);
       if(score<=cost[i])
             for(j=0; j<D; j++)x2[i][j]=trial[j];</pre>
             cost[i]=score;
         else for (j=0; j<D; j++) x2[i][j]=x1[i][j];
28
29
    for(i=0; i<NP; i++)</pre>
30
31
         for(j=0; j<D; j++) x1[i][j]=x2[i][j];</pre>
32
    count++:
34
```


The DE algorithm

```
Sample base population: parentallele(i, j) = -50 + 100 * Rnd
For generation = 1 to maxgens
   For individual = 1 to PopSize
       ' Make a challenger
          For j = 1 to N loci
           Make challenger allele or use individual's
          Next Locus
      Compare fitness of challenger and individual
      Replace individual if challenger wins
   Next individual
Next generation
```

