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 1.1. Linear models and ordinary least squares (45 min) 

Consider the following model: 

 ( )nixy i

p

j
jiji ,...,1            
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=++= ∑

=

εβµ      

where: iy  is the phenotype of the ith individual, µ  is an effect common to all individuals (an 

“intercept”), ijx  are covariates (e.g., marker genotypes), jβ  is the effect of the jth covariate and    iε is a 
model residual. In matrix notation the model is expressed as: 

 εXβy +=            [1] 

where: { }iy=y is a vector of phenotypes, { }pxx1X ,...,, 1=  is an incidence matrix for the vector of 

regression coefficients, ( )′= pββµ ,...,, 1β  and { }iε=ε  is a vector of model residuals. 

The ordinary least squares estimate of β  is the solution to the following optimization problem: 
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jiji xy β  is a residual sum of squares. The first order conditions of [2] are satisfied by 

[ ] yXXXβ ′′= −1ˆ
OLS .  

 

Deriving ordinary least-squares (OLS) estimate using existing R-functions. The 
OLS estimate of β  can be obtained using the function lm(), which fits a linear model by OLS. 
Alternatively, we can compute the solution using matrix operations. The code below simulates data for 
regression [1], and fits the linear model using lm(). 
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Example 1. Deriving Ordinary Least Squares estimates using lm()  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

rm(list=ls()) 
## SIMULATES DATA FOR A LINEAR MODEL 
 set.seed(12345) 
 n<-100 
 p<-6 
 set.seed(12345) 
 X<-matrix(nrow=n,ncol=p, 
           data=rbinom(n=n*p,p=.5,size=1)) 
 beta<-rnorm(p,mean=0,sd=2) 
 ERROR<-rnorm(n=n,sd=1,mean=0) 
 y<-124 +X%*%beta+ERROR  # note %*% computes matrix product 
 
## FITS THE MODEL USING lm() ############################# 
 fm<-lm(y~X) 
 summary(fm) 
 bHat1<-fm$coeff 
#(continues below) 

In the system of equations 

   [ ] yXβXX ′=′ OLS
ˆ       [2] 

we will refer to [ ]XXC ′=  as the matrix of coefficients and to yXrhs ′=  as the right-hand side of the 
system.  The matrix of coefficients can be computed using   C<-t(X)%*%X,  or, equivalently,            
C<-crossprod(X). Similarly, the right-hand-side can be computed using  rhs<-t(X)%*%y, or, 
equivalently, rhs<-crossprod(X,y). crossprod() is usually faster.  The system can be 
solved using the function solve(), as illustrated below. 

Example 2. Deriving Ordinary Least Squares Using Matrix Operations 

1 
2 
3 
4 
5 
6 
7 
 

# (continued from Example 1) 
## FITS LINEAR MODEL USING MATRIX OPERATIONS #################   
  X2<-cbind(1,X) ## note a vector of 1s is added type head(X) 
  C<-crossprod(X2) 
  rhs<-crossprod(X2,y) 
  bHat2<-solve(C,rhs) 
# (continues in Example 3) 

 The matrix of coefficients is symmetric and positive definite. The cholesky decomposition of this 
matrix (U) is an upper-triangular matrix satisfying C=U’U.  U can then be used to invert C using 
chol2inv() function (see below). This is usually faster than using function solve().  Other 
factorizations of C, such as the eigen-value decomposition, eigen(),  or the QR decompositions, 
qr(), can also be used to invert C as well.  An example using the cholesky decomposition of C is given 
below. 
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Example 3. Inversion of positive definite matrices using the Cholesky factorization  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

# (continued from Ex. 1 and 2) 
  X2<-cbind(1,X) # note a vector of 1s is added type head(X) 
  C<-crossprod(X2) 
  rhs<-crossprod(X2,y) 
  U<-chol(C)     # computes the Cholesky decomposition 
  CInv<-chol2inv(U) # obtains the inverse from a Cholesky decomp. 
  bHat3<-CInv%*%rhs 
  # compare bHat1, bHat2, bHat3 
  round(cbind(bHat1,bHat2,bHat3),4) 
# (continues in example 4) 

 Iterative procedures. In practice, when p is large, the system of equation is solved using 
some type of iterative methods.  Here is one possible algorithm. Suppose that we know all but the jth 
regression coefficient, then, from the data-equation we can write: 

      

where: is an off-set formed by subtracting from the original phenotypes the 

contribution to the conditional expectation of all but the jth predictor, that is . The OLS estimate 

of  in [3] is simply 

.   [4] 

A back-fitting algorithm can then be formed by iterating over regression coefficients using [4]. 
This is implemented in the following R-code.  

• Run the code. How do estimates computed using the above-described algorithm compare with 
the exact solution? 

• Change nIter (the number of iterations) from 2  to 30 and compare. 
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Example 4. Deriving Ordinary Least Squares Using Iterative Procedures 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

# Computes OLS using a back-fitting algorithm 
  SSx<-colSums(X2^2)           # the diagonal elements of X’X 
  nIter<-2                     # number of iterations of the algorithm 
  bHat4<-rep(0,ncol(X2))       # initialvalues bj=zero 
  bHat4[1]<-mean(y)            # initial values mu=mean(y) 
  e<-y-mean(y)                 # initial model residuals 
 
  for(i in 1:nIter){           # loop for iterations of the algorithm 
    for(j in 1:ncol(X2)){      # loop over predictors 
        yStar<-e+X2[,j]*bHat4[j]   # forming off-sets 
        bHat4[j]<- sum(X2[,j]*yStar)/SSx[j]   # eq. [4] 
        e<-yStar-X2[,j]*bHat4[j]   # updates residuals 
    } 
  } 
 
  # compare bHat1, bHat2, bHat3, bHat4 
  round(cbind(bHat1,bHat2,bHat3,bHat4),4) 

 

1.2. The ‘Curse’ of Dimensionality (45 min) 

The mean-squared error (MSE) of an estimator is: ( ) ( ) 
 −=

2ˆˆ θθθ EMSE  where θ  is the true 

value of the parameter and θ̂  is the estimator, which is a function of the data (X and y in the regression 
example discussed above). The expectation in the MSE formula is taken with respect to all possible 
samples of data. Commonly X is treated as fixed and the expectation is taken only with respect to 
possible realizations of y given X.  

The MSE can be decomposed in two components: ( ) ( )[ ] ( )θθθθ ˆˆˆ 2
VarEMSE +−=   , where 

( )[ ]θθ ˆE−   and ( )θ̂Var  are the bias and variance of the estimator.  

The expectation of the OLS estimate of regression coefficients in [1] is: 

[ ] [ ] [ ]
[ ] [ ]
[ ] [ ] [ ]

[ ] [ ]εXXXβ

εXXXXβXXX

εXβXXX

yXXXXβ
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E

E

EE OLS
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−
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1

11

1

1

                

                

                

ˆ

 

When model [1] holds, [ ] 0ε =E , therefore: [ ] βXβ =OLSE ˆ . In words, if the linear model holds, OLS 

gives unbiased estimates of regression coefficients. The second term of the MSE formula, ( )θ̂Var , is a 
frequentist measure of uncertainty and reflects variability of the estimator over repeated sampling. The 
asymptotic (co)variance matrix of OLS estimates of regression coefficients, given X, is, 
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( ) [ ] 21ˆ σ−′= XXβVar , where 2σ is the variance of model residuals. This is also the finite-sample co-
variance matrix of estimates under normality. Therefore, the MSE of the estimate of the jth regression 
coefficient is 2σjjC  where jjC  is the jth diagonal entry of the inverse of the matrix of coefficients, that 

is [ ] 11 −− ′= XXC . This element decreases with sample size. In the following example we study how MSE 
of estimates of regression coefficients changes with n and p. 

Example 5. Effects of n and p  on Mean-Squared Error of OLS estimates 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

rm(list=ls()) 
n<-seq(from=100,to=300,by=10) # vector defining sample size 
p<-seq(from=5,to=80,by=4)     # vector defining number of predictors 
x<-rbinom(prob=.5,n=max(p)*max(n),size=1) # sample predictors 
X<-matrix(nrow=max(n),ncol=max(p),data=x)  
varE<-1 
VAR<-matrix(nrow=length(n),ncol=length(p),NA)  
colnames(VAR)<-p 
rownames(VAR)<-n 
for(i in 1:length(n)){ # loop over sample size 
   for(j in 1:length(p)){ # loop over number of predictors 
     tmpX<-X[1:n[i],1:p[j]] 
     C<-crossprod(tmpX) 
     CInv<-chol2inv(chol(C))  
     VAR[i,j]<-mean(diag(CInv))*varE  #average variance of estimates 
   } 
}  
## plot Variance (equal to MSE in this case) Vs. n and p 
persp(z=VAR,x=n,y=p,xlab="Sample Size", 
        ylab="Number of Predictors",zlab="MSE(bj)",col=2) 

 NOTE. When p>n, the OLS estimate is not unique because  is singular. Nevertheless, 
predictions, [ ] yXXXXy ′′= −ˆ , are unique; here [ ]−′XX  is a generalized inverse of XX′ . The function 
ginv() of library(MASS) can be used to compute a Moore-Penrose generalized inverse. The 
function svd() can be used to compute the singular value decomposition of X from where  ŷ  can also 
be computed. 

In genomic models p>n, because of this, estimation methods other than OLS are required. In the 
following sections we consider alternative methods. 

1.3. Confronting the challenges posed by highly dimensional predictors (45 
min) 

 In this section we discuss two different approaches designed to confront the challenges posed 
by ‘large p with small n’ regressions. In the first one (subset selection) we design an algorithm to select k 
out of p (k<=p) predictors; our final model will include only these k predictors. Subset selection is a 
commonly used practice, and it is based on the idea that ‘highly dimensional predictors are dangerous’; 
therefore, the approach seeks to reduce the number of predictors. The second approach (shrinkage 
estimation) uses all available predictors and confronts the challenges posed by regressions with p>n by 
using shrinkage estimation methods. We illustrate this approach using ridge regression.  In both 
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examples we use a genomic dataset made available with R-package BLR (‘wheat’). This dataset contains 
4 phenotypes evaluated in 599 wheat lines that were genotyped for 1,279 markers. In the examples we 
use 450 lines for training and evaluate the prediction accuracy of each of the methods on the remaining 
149 lines (testing). 

 Subset selection. The problem of selecting k out of p (k<p) predictors can be viewed as a 
model comparison problem. Ideally, we would fit all possible models and select the one that is best 
according to some model comparison criterion (e.g., AIC, Akaike Information Criterion, Akaike 1973). In 
practice, when p is large fitting all possible models is not feasible. Instead model search algorithms are 
used. A very simple search algorithm consists of regressing the response in each of the predictors one at 
a time (‘single marker regression’). Each of these regressions yields a measure of association between 
markers and phenotypes (e.g., a p-value). Then, we can form our final model by using the first k 
predictors ranked according to the association measure. This approach is commonly used in Genome 
Wide Association Studies (GWAS).  The following example fits models with k predictors (k=1,…,300) 
chosen based on the marginal association between markers and phenotypes. The examples use the 
‘wheat dataset’ of the BLR package of R (G. de los Campos and Pérez 2010; Paulino Pérez et al. 2010). 

Example 6. Subset selection using p-values derived from single-marker regressions 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

rm(list=ls()) 
##### DATA ############################################# 
 library(BLR) 
 data(wheat) 
 objects() 
 N<-nrow(X) ; p<-ncol(X) 
 y<-Y[,2] 
 set.seed(1235) 
 tst<-sample(1:N,size=150,replace=FALSE) 
 XTRN<-X[-tst,] ; yTRN<-y[-tst] 
 XTST<-X[tst,] ; yTST<-y[tst] 
###### SINGLE MARKER REGRESSIONS ######################## 
 pValues<-numeric() 
 for(i in 1:p){ 
 fm<-lm(yTRN~XTRN[,i]) 
 pValues[i]<-summary(fm)$coef[2,4] 
 print(paste('Fitting Marker ',i,'.',sep='')) 
 } 
 plot(-log(pValues,base=10),cex=.5,col=2) 
####### VARIABLE SELECTION ############################## 
 myRanking<-order(pValues) 
 sqCor<-numeric() 
 for(i in 1:300){  
 tmpIndex<- myRanking[1:i] 
 fm<-lm(yTRN~XTRN[,tmpIndex]) 
 bHat<-coef(fm)[-1] ; bHat<-ifelse(is.na(bHat),0,bHat) 
 yHat<-as.matrix(XTST[,tmpIndex])%*%bHat 
 sqCor[i]<-cor(yTST,yHat)^2 
 print(paste('Fitting Model with ',i,' markers!',sep='')) 
 } 
 plot(sqCor,type='o',col=2,ylab='Squared Correlation', 
       xlab='Number of markers',ylim=c(0,.28)) 
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Shrinkage estimation. We have seen that when n is small and p is large OLS estimates have 
high variance, and therefore high MSE. In addition, when p is large relative to n, over-fitting may occur, 
yielding poor predictive ability. Penalized estimates of regression coefficients are designed to confront 
these problems. The main idea is to reduce MSE by reducing the variance of the estimator, even at the 
expense of introducing bias. We will cover penalized estimation procedures in more detail in Lab 2; here 
we briefly illustrate their performance using Ridge Regression (Hoerl and Kennard 1970). Recall that in 
the linear model of eq. 1 

  εXβy +=           [1] 

the OLS estimates of regression coefficients are the solution to the following systems of equations 

  [ ] yXβXX ′=′ OLS
ˆ      [2] 

The RR estimates has a very similar form, we simply add a constant to the diagonal of the matrix 
of coefficients, that is: 

  [ ] yXβDXX ′=+′ RR
ˆ   λ     [5] 

where λ  is a constant and D is a diagonal matrix with zero in its first diagonal entry (this, to avoid 
shrinking the estimate of the intercept) and ones in the remaining diagonal entries and zeroes 
everywhere else. When either λ  equals zero, the solution to the above problem is OLS. Adding a 
constant to the diagonal entries of the coefficient matrix makes it non-singular and shrinks the estimates 
of regression coefficients other than the intercept towards zero. This induces bias but reduces the 
variance of the estimates; in large-p with small-n problems this may reduce MSE of estimates and may 
yield more accurate predictions.  The following R-code computes RR estimates. 

Example 7. Ridge Regression 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

 MSx<-0 
 for(i in 1:ncol(XTRN)){ MSx<-MSx+mean((XTRN[,i]-mean(XTRN[,i]))^2)} 
 h2<-0.5 
 lambda<-round(MSx*(1-h2)/h2) 
 
 TMP<-cbind(1,XTRN) 
 C<-crossprod(TMP) 
 rhs<-crossprod(TMP,yTRN) 
 for(i in 2:ncol(C)){ C[i,i]<-C[i,i]+lambda } #adds a constant to diag 
 CInv<-chol2inv(chol(C)) 
 bHatRR<-crossprod(CInv,rhs) 
 yHatRR<-cbind(1,XTST)%*%bHatRR 
 tmp<-cor(yHatRR,yTST)^2 
 lines(x=c(0,30),y=rep(tmp,2),col=4,lwd=2) 
 lines(x=c(150,300),y=rep(tmp,2),col=4,lwd=2) 
 text(x=90,y=tmp,label=expression(paste('RR (lambda=',lambda, ')')),col=4 ) 
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2.1. Penalized Estimates 

Ordinary least squares (OLS) and Maximum likelihood (ML) are examples of estimation methods 
in which estimates are derived by maximizing the fitness (as measured by the residual sum of squares or 
likelihood function) of the model to the training data. When the number of predictors (p) is large 
relative to sample size (n) this is not a good strategy: estimates can have high mean-squared error (MSE) 
and over-fitting may occur. Penalized estimates are obtained as the solution to an optimization problem 
that balances two components: how well the model fits the data and how-complex the model is. The 
general form of the optimization problem is: 

( ) ( ){ }   ,      ˆ
minarg

ββyβ
β

JL λ+=       [1]  

where, ( )βy, L  is a loss function that measure lack of fit of the model to the data, ( )βJ  is a measure of 
model complexity and 0≥λ  is a regularization parameter controlling the trade-offs between fitness 
and model complexity.  

Ridge Regression (Hoerl and Kennard 1970) is a particular case of [1] and is obtained by setting 

( )βy, L  to be a residual sum of squares ( ) ∑ ∑ 







−=

i

2

,
j

jiji xyL ββy and ( )βJ  to be the sum of 

square of the regression coefficients; typically, some of the regression coefficients (e.g., the intercept) 
are not penalized; therefore, ( ) ∑

∈

=
Sj

2
jJ ββ where S define the set of coefficients to be penalized. 
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jiji xy βλβ
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 When  ∞→λ  the solution is 0β = ˆ
RR . On the other extreme, as 0=λ  the solution is the OLS 

estimates of β .  In matrix notation problem [2] can be represented as: 

( ) ( ){ }DββXβ-yXβ-yβ ′+′= λ      ˆ
minargRR  

where: ( ) ( ) ∑ ∑ 







−=′

i

2

 
j

jiji xy βXβ-yXβ-y  is a RSS and ∑
∈

=′
Sj

2
jβDββ  is a sum of squares of the 

regression coefficients. Here, D  is a diagonal matrix whose entries are 1 for Sj∈  and zero otherwise. 
The first order conditions of the above optimization problem are satisfied by the following system of 
linear equations: 

  [ ] yXβDXX ′=+′ RR
ˆ   λ      [3] 
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 Relative to OLS, RR adds a constant (λ ) to the diagonal entry corresponding to regression 
coefficients that are included in S (i.e., those whose effects are penalized). When either D or λ  equals 
zero, the solution to the above problem is OLS. Adding a constant to the diagonal of the matrix of 
coefficients shrink estimates towards zero. This induces bias but reduces the variance of the estimates. 
And in large-p small-n regressions this may smaller MSE than those of OLS estimates and better 
predictions. 

 A simplified example. Let us consider a simple example where each subject was assigned to one 
of two possible treatments (treatments 1 and 2). The treatment-means parameterization of this model 
is: iiii xxy εββ ++= 2211  where iy  is the response, ix1  is a dummy variable indicator of treatment 1, 

( )12 1 ii xx −=  is a dummy variable indictor of treatment 2, 1β  and 2β the means of treatments 1 and 2, 

respectively, and iε  is a model residual.  The OLS estimates of regression coefficients in this model are: 
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Moreover, ∑
i

2
1ix  and ∑

i

2
2ix  equal the number of individuals in treatment 1 and 2 (denoted as 1n  and 

2n respectively), since ix1  and ix1  are orthogonal∑ =
i

21 0ii xx , and, finally, ∑
i

1 ii yx  and ∑
i

2 ii yx  are 

the sum of the response variable for subjects assigned to treatments 1 and 2, respectively. Therefore,  
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i

y

y

n
n

β
β

  

, from where we conclude that the OLS estimate of the treatment mean are simply the average of the 

phenotypes observed in each treatment, that is 
1

1x:i
1

1iˆ
n

yi∑
==β  and 

2

1x:i
2

2iˆ
n

yi∑
==β . Now, considering the 

RR estimates, according to [3] these will be will be 
















=


















+

+

∑
∑

=

=

1x:i

1x:i

2

1

2

1

2i

1i

ˆ
ˆ

0
0

 
i

i

y

y

n
n

β
β

λ
λ

 

; therefore the RR estimates are 
λ

β
+

=
∑

=

1

1x:i
1

1iˆ
n

yi

and λ
β

+
=
∑

=

2

1x:i
2

2iˆ
n

yi

.  Therefore, adding λ  to the diagonal 

entries of the matrix of coefficients will shrink estimates towards zero. By how much? This will depend 
on the relationship between λ  and sample size. From here we can also see that with fix λ , the amount 
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of shrinkage will decrease as sample size increases. Asymptotically, if we fix λ  and let the number of 
individuals in each treatment approach infinity, RR estimates converge to OLS estimates. 

 Other penalized estimators. Several alternative penalized estimation procedures have 

been proposed, and they differ on the choice of penalty function, ( )βJ . As we discussed above, in RR, 

the penalty is proportional to the sum of squares of the regression coefficients or L2 norm, 

( ) ∑ =
=

p

j jJ
1

2ββ . A more general formulation, known as Bridge regression (Frank and Friedman 1993), 

uses ( )   
1∑ =

=
p

j jJ
γ

ββ with 0>γ . RR is a particular case with 2=γ  yielding RR. Subset selection 

occurs as a limiting case with 0→γ , this penalizes the number of non-zero effects regardless of their 

magnitude, ( ) ( )  01
1∑ =

≠=
p

j jJ ββ .  Another special case, known as LASSO (Least Absolute Angle and 

Selection Operator, (Tibshirani 1996) occurs with 1=γ , yielding the L1 penalty: ( )   
1∑ =

=
p

j jJ ββ . 

Using this penalty induces a solution that may involve zeroing-out some regression coefficients and 
shrinkage estimates of the remaining effects; therefore combining in features of subset selection with 
shrinkage estimation. LASSO has become very popular in several fields of applications. However LASSO 
and subset selection approaches have two important limitations. First, by construction, in these 
methods the solution admits at most n non-zero estimates of regression coefficients. In GS and with 
complex traits, there is no reason to restrict the number of markers with non-zero effect to be limited 
by n (the number of observations). Second, when predictors are correlated, something which occurs in 
GS, methods performing variable selection such as the LASSO are usually outperformed by RR (Hastie, 
Tibshirani, and Friedman 2009). Therefore, in an attempt to combine the good features of RR and of 
Lasso in a single estimation framework (Zou and Hastie 2005)  proposed to use as penalty a weighted 

average of the L1 and L2 norm, that is, for 10 ≤≤α ,  and 

termed the method the Elastic Net (EN), this model involves then two tuning parameters which need to 
be specified, the regularization parameter (λ) and  α . 
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2.2. Computing RR estimates 

 In the following example we present two ways of computing ridge regression estimates. The 
first one implements [3] using matrix operations; the second one uses an iterative procedure. Run this 
last algorithm with 10 and 500 iterations. 

Example 1. Alternative ways of deriving Ridge-Regression Estimates  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

rm(list=ls()) 
## Using Cholesky factor ###################################### 
  library(BLR) 
  data(wheat)  
  X2<-cbind(1,X) 
  y<-Y[,2] 
  C<-crossprod(X2) 
  rhs<-crossprod(X2,y) 
  MSx<-0 ; for(i in 1:ncol(X)){ MSx<-MSx+var(X[,i])} 
  h2<-0.5 
  lambda<-MSx*(1-h2)/h2 
  for(i in 2:ncol(C)){ C[i,i]<-C[i,i]+lambda } 
  CInv<-chol2inv(chol(C)) 
  bHatRR_1<-crossprod(CInv,rhs) 
 
## Using an iterative procedure ################################# 
diagC<-numeric()  
for(i in 1:ncol(X2)){diagC[i]<-sum(X2[,i]^2)+ifelse(i==1,0,lambda) } 
bHatRR_2<-rep(0,ncol(X2)) 
bHatRR_2[1]<-mean(y) 
e<-y-mean(y) 
nIter<-10 
for(i in 1:nIter){ 
 for(j in 1:ncol(X2)){ 
    tmpY<-e+X2[,j]*bHatRR_2[j] 
         rhs<-sum(X2[,j]*tmpY) 
         bHatRR_2[j]<-rhs/diagC[j] 
         e<-tmpY-X2[,j]*bHatRR_2[j] 
 } 
 print(i) 
} 
tmp<-range(c(bHatRR_1[-1],bHatRR_2[-1])) 
plot(bHatRR_1[-1],bHatRR_2[-1],ylim=tmp,xlim=tmp,col=2,main="") 
## Change nIter, set it equal to 500 and then equal to 1000 

 

2.3. Effect of regularization on estimates, goodness of fit and model DF 

In penalized estimation, the regularization parameter (λ ) controls the trade-offs between model 
goodness of fit and model complexity. This affects parameter estimates (their value, and the statistical 
properties of the estimator) model goodness of fit to the training dataset and the ability of the model to 
predict un-observed phenotypes.  
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Model complexity. The complexity of a linear model can be measured by the degree of freedom 
of the model.   In RR, predictions are computed as [ ] yHyXDXXXβXy RRRR =′+′== −1  ˆˆ λ  where 

[ ] XDXXXH ′+′= −1  λRR  is the Hat matrix. If we set 0=λ  we obtain the Hat matrix of OLS: 

[ ] XXXXH ′′= −1  OLS . In linear models degree of freedom are equal to the sum of the diagonal entries 
of H. In OLS this just equals the number of predictors (provided that X is full rank). In RR λ also affects 
DF.  The following R-code fits RR over a grid of values of λ  and evaluates the impact that  has on 
goodness of fit to the training data, prediction accuracy, and model degree of freedom. 
 

Example 2. Effects of regularization on goodness of fit and model DF  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

rm(list=ls()) 
 ##### DATA ############################################# 
 library(BLR) 
 data(wheat) 
 objects() 
 N<-nrow(X) ; p<-ncol(X) 
 y<-Y[,2] 
 set.seed(12345) 
 tst<-sample(1:N,size=150,replace=FALSE) 
 XTRN<-X[-tst,] 
 yTRN<-y[-tst] 
 XTST<-X[tst,] 
 yTST<-y[tst] 
 
 ## FITTING MODEL OVER A GRID OF VALUES OF lambda 
 lambda<-c(5,10,50,100,200,500,700,1000, 2000, 5000,20000) 
 ZTRN<-cbind(1,XTRN) ; ZTST<-cbind(1,XTST) 
 sqCorTRN<-numeric();  sqCorTST<-numeric(); DF<-numeric()  
 BHat<-matrix(nrow=ncol(XTRN),ncol=length(lambda),NA) 
     
 C0<-crossprod(ZTRN)  
 rhs<-crossprod(ZTRN,yTRN) 
 
 for(i in 1:length(lambda)){ #loop over values of lambda 
   C<-C0 
   # adds lambda to the diagonal of C (starts at 2) 
   for(j in 2:ncol(C)){   C[j,j]<-C[j,j]+lambda[i]   }   
   CInv<-chol2inv(chol(C)) 
   sol<-crossprod(CInv, rhs) 
   BHat[,i]<-sol[-1] 
   yHatTRN<-ZTRN%*%sol 
   sqCorTRN[i]<-cor(yTRN,yHatTRN)^2 
   yHatTST<-ZTST%*%sol 
   sqCorTST[i]<- cor(yTST,yHatTST)^2 
   H<-ZTRN%*%CInv%*%t(ZTRN) 
   DF[i]<-sum(diag(H)) 
   print(i) 
  }   
  write(sqCorTST,file="sqCorTST.txt") 
  write(lambda,file="lambda.txt") 
# (Plots in next page) 
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Example 2. (from previous page)  

43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

## PLOT 1: Model Degree of freedom 
  plot(DF~log(lambda),type="o",col=2, 
       xlab= expression(paste(log(lambda))), 
       ylab="DF",ylim=c(0,max(DF)));abline(h=1,lty=2) 
 
  ## PLOT 2: Estimates (shrinkage by marker) 
  marker<-1 # (choose a number between 1 and 1279) 
  plot(BHat[marker,],type="o",col=2, 
       xlab=expression(paste(log(lambda))),ylab="Estimate") 
  abline(h=0) 
  tmp<-range(BHat[,c(1,5)]) 
  ## PLOT 3: Estimates (shrinkage all markers) 
  plot(BHat[,5]~BHat[,1],xlim=tmp,ylim=tmp, 
       xlab='Lambda=5',ylab='Lambda=200',col=2,cex=.5); 
  lines(x=c(-10,10),y=c(-10,10)) 
 
  ## PLOT 4: Goodness of fit to TRN dataset 
  plot(sqCorTRN~log(lambda),type="o",col=2,main="Training data", 
          xlab=expression(paste(log(lambda))),ylab="Squared Corr.") 
 
  ## PLOT 5 Prediction Accuracy 
  plot(sqCorTST~log(lambda),type="o",col=2,main="Testing data", 
          xlab=expression(paste(log(lambda))),ylab="Squared Corr.") 

 

 

2.4. The Hat Matrix of large-p with small-n genomic regressions as a local 
smoother 
  

Above we introduce the hat matrix as applied to the training dataset,

[ ] TRNTRNTRNTRNTRNTRNTRNRRTRNTRN yHyXDXXXβXy =′+′== −1  ˆˆ λ . Similarly, we can defined a hat 

matrix for the testing dataset, [ ] TRNTSTTRNTRNTRNTSTRRTSTTST yHyXDXXXβXy =′+′== −1  ˆˆ λ . In both 

cases, predictions are simply weighted sums of phenotypes of the training dataset, 

∑
∈

=
TRNj

jijTRNiTRN yhy ,,ˆ  and ∑
∈

=
TRNj

jijTSTiTST yhy ,,ˆ ,  where ijh.,  is the (i,j)th entry of either TRNH or TSTH . 

The relative absolute value of each entry, ijh , indicates, according to the model, how informative the 

jth phenotype of the training dataset is for estimating the conditional expectation at the ith point of 
either the training or testing dataset. The following code computes the hat matrix a training and testing 
dataset and plots the one of the rows of TRNH  and of TSTH . 
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Example 3. The Hat Matrix of Ridge Regression 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

rm(list=ls()) 
##### DATA ############################################# 
 library(BLR) 
 data(wheat) 
 objects() 
 N<-nrow(X) ; p<-ncol(X) 
 y<-Y[,2] 
 set.seed(1235) 
 tst<-sample(1:N,size=150,replace=FALSE) 
 XTRN<-X[-tst,] 
 yTRN<-y[-tst] 
 XTST<-X[tst,] 
 yTST<-y[tst] 
 
## FITTING THE MODEL  
 lambda<-200 
 ZTRN<-cbind(1,XTRN) 
 ZTST<-cbind(1,XTST) 
   
 C<-crossprod(ZTRN) 
 for(j in 2:ncol(C)){   C[j,j]<-C[j,j]+lambda}    
 CInv<-chol2inv(chol(C)) 
 TMP<-tcrossprod(CInv,ZTRN) 
 
 HTRN<-ZTRN%*%TMP 
 HTST<-ZTST%*%TMP 
 yHatTRN<-HTRN%*%yTRN 
 yHatTST<-HTST%*%yTRN 
 
## Plot of row 100 of HTRN 
  plot(abs(HTRN[100,]),xlab=' j (TRN)', 
       ylab='h(100 , j)',col=2,main='Training dataset');abline(v=100) 
 
## Plot of row 30 of HTST 
 plot(abs(HTST[30,]),xlab=' j (TRN)', 
       ylab='h(30 , j)',col=2,main='Testing dataset') 
 
 

 

2.5. Bayesian View of Ridge Regression  

 Most penalized can be viewed as posterior modes in certain class of Bayesian models. For 
instance, RR estimates are equivalent to the posterior mode of the vector of regression coefficients in a 
Bayesian model with a Gaussian likelihood and a Gaussian prior for the vector of regression coefficients. 
To see this, recall that that estimates in RR are obtained as the solution to the following optimization 
problem: 

( ) ( ){ }DββXβ-yXβ-yβ ′+′= λ      ˆ
minargRR  
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Multiplying the objective function by -1/2 and switching from minimization to maximization do not 
affect the solution; therefore, 

( ) ( )






 ′′= DββXβ-yXβ-yβ

2
1-  

2
1-    ˆ

maxarg
λRR

 

Let where,  and  are non-negative constants. Replacing above and dividing the objective 

function by maintains the solution unchanged, with this we get:
 

( ) ( )












′−′= DββXβ-yXβ-yβ 22maxarg 2
1  

2
1-    ˆ      

βε σσRR
 

Finally, applying the exponential function to the objective function maintains the solution unchanged, 
therefore: 

( ) ( )

( ) ( )         
2

1exp  
2

1exp         

2
1-  

2
1exp    ˆ

22maxarg

22maxarg
























′−







 ′−=
























′′−=

DββXβ-yXβ-y

DββXβ-yXβ-yβ

βε

βε

σσ

σσRR

 

The first component of the objective function, ( ) ( ) 






 ′−   
2

1exp 2 Xβ-yXβ-y
εσ

, is proportional to a 

Gaussian likelihood, centered at Xβ  and with (co)variance matrix 2
εσI . The second component, 












′− Dββ22

1exp
βσ

, is proportional a Gaussian prior for the regression coefficients, centered at zero 

and with (co)variance matrix 21
βσ−D  . Therefore, estimates obtained with RR are equivalent to the 

posterior mode of regression coefficients in the following Bayesian model.  

[ ] ( )
[ ] ( )





−           ,~|           :Prior 

,~,|  :Likelihood 
212

22

ββ

εε

σσ

σσ

D0β
IXββy

N
N

    [4]

 

The posterior distribution of β  is multivariate normal with a mean (co-variance matrix) equal to 

the solution (inverse of the coefficient matrix) of the following system: [ ] yXβDXX ′=+′ ˆ   λ ; this is 

just the RR equations. This is also the Best Linear Unbiased Predictor (BLUP) of β  given y. 
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Recall that the ratio 2

2

β

ε

σ
σ

 is equivalent to λ  in RR. I a fully-Bayesian models we assign priors to 

each of these variance parameters, this allow inferring these unknowns  from the same training data 
that is used to estimate marker effects. The following example fits a Bayesian RR using the R-package 
BLR (‘Bayesian Linear Regression’), after you run the model: 

- The BLR package returns an list with posterior means and other information, type str(fm) 
and inspect what BLR returns 

- Check the posterior mean of 2
εσ  and 2

βσ  (fm$varE and fm$varBR, respectively), remember 

the ratio of these variances is interpretable as λ  in RR. 

- Examine trace plots 

- Compare prediction accuracy of the fully-Bayesian method versus RR. 

Example 4. Bayesian Ridge Regression Using BLR 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

rm(list=ls()) 
##### DATA (same as Example 2) ####################################### 
 library(BLR) 
 data(wheat) 
 objects() 
 N<-nrow(X) ; p<-ncol(X) 
 y<-Y[,2] 
 set.seed(12345) 
 tst<-sample(1:N,size=150,replace=FALSE) 
 XTRN<-X[-tst,] 
 yTRN<-y[-tst] 
 XTST<-X[tst,] 
 yTST<-y[tst] 
 
## Fits the model 
  prior<-list(varE=list(df=4,S=1),varBR=list(df=5,S=.01)) 
  fm<-BLR(y=yTRN,XR=XTRN,nIter=12000,burnIn=2000,prior=prior) 
 
## Prediction Accuracy: Bayesian vs grid search 
  x<-scan(file="lambda.txt") 
  y<-scan(file="sqCorTST.txt") 
   
  plot(y~log(x),type="o",col=2, 
         xlab=expression(paste(log(lambda))),ylab="Squared Corr.", 
         ylim=c(0.1,.3)) 
 
  abline(v= log(fm$varE/fm$varBR),col=4) 
  abline(h=cor(yTST,XTST%*%fm$bR)^2,col=4) 
 
 
## trace plots 
  plot(scan("varE.dat"),type="o",col=2) 
  abline(h=fm$varE,col=4) 
  abline(v=200,col=4) 
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2.6. G-BLUP 
 

 Here we show the equivalence between estimates (posterior modes) derived from model [4] 
and the so-called G-BLUP (‘Genomic Best Linear Unbiased Predictor’, e.g., VanRaden, 2008). We show 
this using [4] and properties of the multivariate-normal density that are outlined below.  

 

Properties of Multivariate Normal Density 

Let ( )′′′= 21 ,θθθ  be a multivariate normal random vector with expectation 







=









2

1

2

1

μ
μ

θ
θ

E  and 

(co)variance matrix 







=









2221

1211

2

1

ΣΣ
ΣΣ

θ
θ

Cov .  

(1) All marginal densities are also normal densities, specifically:  

( )1111 ,~ Σθθ MVN  and ( )2222 ,~ Σθθ MVN . 

The conditional densities are also normal densities, with mean and (co)variance matrices given 
by the following: 

[ ] ( )22
1

2212121 μθΣΣμθθ −+= −E  and [ ] ( )11
1

1121212 μθΣΣμθθ −+= −E  . [5] 

[ ] 21
1

22121121 ΣΣΣΣθθ −−=Cov  and [ ] 12
1

11212212 ΣΣΣΣθθ −−=Cov  .  [6] 

Above,  { }ijb== −1
112121 ΣΣB   and { }ijb== −1

221212 ΣΣB  are matrix of regression coefficients of the ith 

on the jth random variable of θ .  

The multivariate normal density is closed under linear operations in the sense that linear 
combinations of MVN random variables of the form Tθαδ += are multivariate normal random 
variables, with mean vector and (co)variance matrices given by the following:  

[ ] [ ] TμαθTαδ +=+= EE   ,        [7] 

and (co)variance matrix 

[ ] [ ] TTΣTθTδ ′=′= CovCov   ,       [8] 
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Best Linear Unbiased Predictor (BLUP) 

 We are now ready to derive the conditional expectation of marker effects and of genomic 
values. The conditional expectation is the best predictor in the mean-squared error sense. Also, as we 
show here, in the context of model [4] the conditional expectations of marker effects and of genomic 
values are linear functions of data and are un-biased. Therefore, the conditional expectations of 
genomic values and of marker effects from model [4] are BLUP (‘Best Linear Unbiased Predictor’). 

For ease of notation we omit the intercept and therefore in [4] we set D equal to an identity 
matrix. The model is then described by:  

[ ] ( )
[ ] ( )





          ,~|           :Prior 

,~,|  :Likelihood 
22

22

ββ

εε

σσ

σσ

I0β
IXββy

N
N

     [4b]

 

From [4b] and using [7] and [8], we obtain that the joint density of y  and β : 
























′
+′









22

222

,~
ββ

βεβ

σσ
σσσ

IX
XIXX

0
β
y

MVN
     [9]

 

 Using [5] we get the BLUP of marker effects: 

 [ ] [ ] [ ] yIXXXyIXXXyβ 112222,| −−
+′′=+′′= λσσσσ εββεE    [10] 

which is the posterior mean of β . Here, 22 −= βε σσλ .  Because of the equivalence between the posterior 

mode of β  and the RR estimate, the solution given by [10] is also equivalent to the RR estimate given by 
[3]. Importantly, note that computing the solution using [3] requires inverting a p×p matrix. On the other 
hand, we can obtain the same solution using [10] with inversion of n×n matrix. Expression [10] is linear 
on data and it is unbiased with respect to the prior mean, ( ) 0β =E . To see this we take expectations in 

[10] with respect to y to get [ ]{ } [ ] [ ]yIXXXyβ EEE 12,| −+′′= λσ ε . From [9], [ ] 0y =E ; therefore: 

[ ]{ } 0yβ =2,| εσEE . Therefore, [10] gives the BLUP of marker effects. 

 We now derive the conditional expectation of genomic values given the data. 

 

[ ] [ ]
[ ]

[ ] yGI

yIXXXX

yβXyXβ

11

1

22

                      

                      

,|,|

−−

−

+=

+′′=

=

λ

λ

σσ εε EE

      [11] 
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 Where XXG ′= . This is the so-called G-BLUP of genomic values. Expression [11] is the best predictor 
of genomic value and it is linearly on data. Also, taking expectation with respect to phenotypes 

; therefore [11] is the BLUP of genomic values. 

 The following example computes G-BLUP for the wheat datset, and illustrate the equivalence 
with predictions from the RR. 

Example 5. Ridge Regression and G-BLUP 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

rm(list=ls()) 
### DATA ####################################################### 
  library(BLR) 
  data(wheat) 
  for(i in 1:ncol(X)){X[,i]<-(X[,i]-mean(X[,i]))} 
  y<-Y[,1] 
  h2<-0.5 
  lambda<-ncol(X) 
### Computing RR estimates and prediction using eq. [3] ####### 
  C<-crossprod(X)  
  diag(C)<-diag(C)+lambda  
  CInv<-chol2inv(chol(C)) 
  rhs<-crossprod(X,y) 
  sol<-crossprod(CInv,rhs) 
  yHat_1<-X%*%sol 
   
### GBLUP 
  G<-tcrossprod(X) 
  C<-chol2inv(chol(G))*lambda 
  diag(C)<-diag(C)+1 
  CInv<-chol2inv(chol(C)) 
  yHat_2<-crossprod(CInv,y) 
 
 
### Comparison 
  plot(yHat_2~yHat_1,col=2,xlab='Predicitons from RR equations', 
                           ylab='Predicttions from GBLUP equations') 
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3.1. The Bayesian Alphabet 
 
 

In standard parametric models for genomic selection (GS) phenotypes, , are regressed 

on marker covariates, , using a linear model of the form , where 

 is an effect common to all subjects (i.e., an ‘intercept’),  are marker genotypes 

(usually coded as 0,1,2) ,  are marker effects and  is a model residuals. A standard 

practice for continuous traits is to assume that model residuals are IID normal, this yields 

the following likelihood function: 

Likelihood:  ( ) ( )∏ ∑
=

=
+=

n

i

p

j jiji xyNp
1

1
22 ,, σβµσµ β,y ,   [1] 

where,  is a normal density for the random variable  centered at 

 and with variance . 

 With dense panels, the number of markers (p) vastly exceeds the number of data 

points (n) and because of this penalized or Bayesian shrinkage estimation methods are 

commonly used. In a Bayesian setting, shrinkage of estimates of effects is controlled by 

the choice of prior density assigned to marker effects. The joint prior density of the 

unknowns is commonly structured as follows: 

Prior: 

( ) ( ) ( ) ( )
.

22

1

22 ,,,,, SdfppSdfp
p

j
j jj

σχωσβωσµ ββ
−

= 







∝ ∏ θθβ,   [2] 
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Above, a flat prior was assigned to the intercept,  is a scaled-inverse Chi-

squared density assigned to the residual variance and with df degree of freedom and scale 

equal to S ,  denotes the prior density of the jth marker effect, is a vector 

of parameters indexing the prior density assigned to marker effects,  is the prior 

density assigned to  and  are parameters indexing this density. The marginal prior 

density of marker effects is obtaining by integrating  out, 

.  Note that, a-priori, all marker effects are 

assigned the same marginal prior density; therefore, contrary what it is sometimes said, in 

all members of the Bayesian alphabet, the prior variances of marker effects are the same 

for all markers. 

 Using Bayes rule, the posterior density of model unknowns given the data is 

proportional to the product of the likelihood, given in eq. [1], and the prior density, eq. 

[2], that is: 

Posterior density:  

 

( ) ( )

( ) ( ) ( )
.

22

1

2

1
1

22

,,                        

,,,,

Sdfpp

xyNSdfp

p

j
j

n

i

p

j jiji

jj
σχωσβ

σβµωσµ

ββ
−

=

=
=









×

+∝

∏

∏ ∑

θθ

β, y,

,             [3] 

 

The Bayesian Alphabet. Following the seminal contribution of Meuwissen, Hayes, and 

Goddard (2001)  several linear Bayesian regression methods have been proposed and 

used for simulation and real data analysis. They differed in the choice of prior density 
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assigned to marker effects.  In a Bayesian Ridge regression (BRR), the conditional prior 

assigned of marker effects are IID normal, ( ) ( )22 ,0, ββ σβσβ jj Np
j

=θ  and 

( ) ( )ββββ σχω Sdfp
j

,22−=θ .  

A second group of models, which includes Bayes A (Meuwissen, Hayes, and 

Goddard 2001) and the Bayesian LASSO (BL, Park and Casella 2008) use thick tail 

prior densities (t in Bayes A and Double Exponential in the BL). These priors induce a 

different type of shrinkage than that induced by the BRR.  

A third group of models, which include Bayes B (Meuwissen, Hayes, and 

Goddard 2001)   and the spike-slab models  (Ishwaran and Rao 2005) use priors that are 

mixtures of a peak (or a spike) of mass at (in the vicinity of) zero and of a continuous 

density (e.g., t, or normal). Figure 1 shows the densities of a Gaussian and Double 

Exponential densities and that of a mixture model with a peak of mass at zero and a 

Gaussian slab. The three densities have mean equal to zero and variance equal to one. 



 5 

 
Figure 1. Density of a standard normal random variable (black), of a double-exponential 

random variable (blue) and of a random variable following a mixture density with a mass 

point at zero (with probability 0.8) and a Gaussian process with probability 0.2. All 

variables with zero mean and variance equal to one.  

 

Many of the thick tail distributions, such as the t or the double-exponential 

densities can be represented as infinite mixtures of scaled normal densities. For instance, 

the t-prior density assigned to marker effects in Bayes A   (Meuwissen, Hayes, and 
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Goddard 2001) can be represented as  

where  and  are prior degree of freedom and scale parameters and  

is a scaled-inverse Chi-squared density.  

In the Bayesian LASSO  (Park and Casella 2008) the Double-exponential prior 

density is represented as:  . In the 

fully-Bayesian LASSO,  is treated as unknown and is assigned a  Gamma prior. This 

prior is indexed by two parameters (rate and shape, see help(rgamma) ) which are 

assumed to be known.  Alternative priors for the regularization parameter are discussed in 

de los Campos et al. (2009).  

In Bayes B   (Meuwissen, Hayes, and Goddard 2001)  marker effects are assumed 

to be equal to zero with probability π and with probability (1-π) the effect is assumed to 

be a draw form a t-distribution such as the one described in Bayes A. Model Bayes C 

(Habier et al. 2011) is similar to Bayes B but uses a Gaussian slab instead of the t-density 

used in Bayes B.  

For infinitesimal traits, zeroing-out marker effects, such as in Bayes B or C, may 

harm predictive ability. Therefore, an alternative is to replace the peak of mass at zero 

used in Bayes B or C with a continuous density with small variance. This strategy is 

commonly used in what it is referred as to Spike-Slab models (Ishwaran and Rao 2005); 

for instance one can mix two Gaussian densities, one with very small variance and one 

with larger variance.  

 Choosing hyper-parameters. In the above mentioned models, the parameters 

indexing the prior density of marker effects play a central role in controlling the extent of 
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shrinkage of estimates of markers effect (similar to that of  λ  of the ridge regression. 

These parameters can be chosen in several ways, one of which is to select their values 

based on heritability-based rules.  

Choosing Hyper parameters using heritability based rules. In linear models for 

genomic selection, genetic values are represented as regressions on marker covariates, 

that is ∑=
j

jiji xg β . In these models, marker genotypes are fixed and marker effects are 

random variables drawn from an IID process; therefore:  

( ) ( ) ∑∑ ==
j

ijj
j

iji xVarxgVar 222
βσβ  

where 2
βσ  is the prior variance of marker effects. Summing over individuals and dividing 

by n yields 

   [4] 

where ∑∑−=
i j

ijxnK 21 is the average sum of square of marker genotypes in the dataset, 

and  is the heritability of the trait. Commonly, the model uses an intercept and we 

measure variance at the genomic values as deviations from the center of the sample. 

Therefor, a common practice is to compute K after centering genotypes, that is:
 

 where  is the frequency of the allele coded as one at the jth 

marker. Moreover, if markers are centered and standardized to a unit variance, that is if 

 are used as marker codes in the regression, then K equals the number 

of markers (p). 

 

We can now use [4] to solve for the values of the parameters controlling 

regularization as a function of K ,  2h  and of the phenotypic variance ( ). 
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 Ridge Regression. Recall from the Bayesian standpoint the regularization 

parameter of a ridge regression λ  equals the ratio of the residual variance to the prior 

variance of marker effects, . Replacing this in [4] and solving for λ  we get 

K
h

hK
h

h
2

2

2

2 1
1

−
=⇒=

−
λ

λ
    [5] 

Therefore, according to [5] the larger the noise-signal ratio, the strongest 

shrinkage of estimates should be. Also, K  increases as the number of marker does; 

therefore, according to [5] λ  should be increased as the number of markers does. 

 Bayesian Ridge Regression.  In the Bayesian Ridge regression, instead of 

choosing λ  we need to assign a prior to  and to 2
εσ  . If these priors are scaled-inverse 

chi square, the prior expectations are:  where (.) equals  or . 

Typically we choose  to be a small value, usually greater than 4 to guarantee finite 

prior variance. Then, we can solve for  as a function of , K,  and , so that the 

prior expectation of each of the variance components matches the value we expect 

according to  ,  and [4], 

 

specifically, equating ( )22 1 hp −σ  to ( )SdfE ,2
εσ  we get,  

( ) ( )
2

,1 222

−
==−

ε

ε
εσσ

df
S

SdfEhp  and equating  22hpσ  to ( )βββσ SdfEK ,2×  we get 

 

  

 
                     [6] 

 

 Bayes A. The above formulas can also be used to define the scale parameters in 

Bayes B. 
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Bayesian Lasso. In this model, as originally formulated by (Park and Casella 

2008), marker effects are assigned IID double-exponential priors with rate parameter, 

2

2

εσ
λ  (note, λ  here is a different parameter than that of the ridge regression). The prior 

variance of marker effects is: ; therefore, 22

2 2
λσ

σ

ε

β = . Using 

this in [4] we get: K
h

h
22

2 2
1 λ

=
−

  or  

K
h

h
2

21
2

−
=λ                 [7] 

For the scale parameter of the residual variance we can use formula [6].  

Note. The regularization parameter of the Bayesian Lasso is a function of the 

noise-signal ratio, and also of the number of markers. Specifically we expect K  at a rate 

proportional to the square-root of the number of markers. The same occurs in RR (see 

[5]). 

Bayes B and C. Here, the prior variance of marker effects are where 

 is the proportion of marker effects coming from the zero-state of the mixture and  

is the variance of the ‘slab’ (a Gaussian density in Bayes C and a t in Bayes B); therefore 

we can use the following formulas to chose the scale parameters as functions of df, K,   

 and , 

,  
[8] 

 
 

3.2. Ridge Regression Vs Bayesian Ridge Regression 
 

In this section we compare estimates of marker effects derived from a ridge regression 

using lambda from eq. [5] with those obtained with a Bayesian Ridge Regression using  
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hyper-parameters chosen according to [6].  For the BRR we use the BLR package. Here, 

the prior is provided as a list. There is one component in the list for each of the variance 

parameters. In each component you need to provide prior degree of freedom and scale. 

For more details refer to help(BLR) or see ( Pérez et al. 2010). 

Example 1. Ridge regression Vs Bayesian Ridge Regression 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

  rm(list=ls()) 
  library(BLR) 
  data(wheat) 
  y<-Y[,2] 
  h2<-.2 
  df0<-5 
  for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i]) } 
 
  K<-ncol(X) # after standardization, K=# of markers 
  lambda<-K*(1-h2)/h2 
  Se<-(1-h2)*var(y)*(df0-2) 
  Sb<-h2*var(y)*(df0-2)/K 
  round(Se/Sb,5)==lambda 
   
  ## Ridge Regression 
  X2<-cbind(1,X) 
  C<-crossprod(X2) 
  for(i in 2:ncol(C)){ C[i,i]<- C[i,i]+lambda } 
  CInv<-chol2inv(chol(C)) 
  rhs<-crossprod(X2,y) 
  bHat_RR<-crossprod(CInv,rhs) 
  yHat_RR<-X2%*%bHat_RR 
 
  ## Bayesian Ridge Regression 
  library(BLR) 
  prior<-list(varE=list(df=df0,S=Se) , varBR=list(df=df0,S=Sb)) 
  fmBRR<-BLR(y=y,XR=X,prior=prior, 
             nIter=13000,burnIn=3000, saveAt='BRR_') 
 
  fmBRR$varE/fmBRR$varBR 
  lambda 
 
  tmp<-range(c(bHat_RR[-1],fmBRR$bR)) 
  plot(fmBRR$bR ~bHat_RR[-1],xlim=tmp, 
       ylim=tmp, ,main='Estimates of Marker Effects', 
       xlab='Ridge Regression', ylab='Bayesian Ridge Regression') 
  lines(x=c(-1,1),y=c(-1,1),col=2) 
   
  tmp<-range(c(yHat_RR,fmBRR$yHat)) 
  plot(fmBRR$yHat~yHat_RR,xlim=tmp,ylim=tmp,main='Predictions', 
       xlab='Ridge Regression', ylab='Bayesian Ridge Regression') 
  lines(x=c(-10,10),y=c(-10,10),col=2,lwd=2) 
  ## Change the prior scale (e.g., double it) and evaluate the 
  ## in inferences 
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3.3. Bayesian Lasso: fixed versus random lambda 
 
 
In this example we fit the Bayesian LASSO using BLR. The prior for parameter lambda 

of the BL has four arguments: type, value, rate and shape. If type='fixed' 

lambda is set equal to value and kept fixed. If  type='random' lambda is treated as 

unknown; in this case a gamma prior is assigned to 2λ as described in Park and Casella 

(2008). For more details type help(BLR) in R or see Pérez et al. (2010). We chose 

values of the rate and shape parameters of the gamma prior so that the prior is flat in the 

neighborhood of the value of lambda we derive from eq. [4]. The following code displays 

the prior, run it and evaluates sensitivity with respect to rate and shape. 

 
Example 2. Displaying prior of lambda of the BL           

1 
2 
3 
4 
5 
6 
7 
8 

  h2<-0.5 
  lambda0<-sqrt(2*K*(1-h2)/h2) 
  lambda<-seq(from=0,to=250,by=1) 
  dLambda<-2*lambda*dgamma(x=lambda^2,rate=1e-5,shape=0.53) 
  plot(dLambda~lambda, type='l') 
  abline(v=lambda0,col=2)  
 
# change rate and shape and evaluate sensitivity of the prior 
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Now we fit the BL with fix and random lambda. 
 

Example 3. Bayesian Lasso with fixed and random  
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

  rm(list=ls()) 
  library(BLR) 
  data(wheat) 
  y<-Y[,2] ;  h2<-.5 
  df0<-5 
  for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i]) } 
 
  Se<-(1-h2)*var(y)*(df0-2) 
  lambda0<-sqrt(2*(1-h2)/h2*ncol(X)) 
 
## Bayesian Lasso fixed lambda ################################# 
  prior<-list(varE=list(df=df0,S=Se) , 
             lambda=list(value=lambda0, 
                    type='fixed',rate=1e-5,shape=.53)) 
 
  fmBL_fixed<-BLR(y=y,XL=X,prior=prior, 
                 nIter=12000,burnIn=2000,saveAt='BL_fixed_') 
 
  fmBL_fixed$lambda 
  lambda0 
 
  tmp<-range(c(bHat_RR[-1],fmBL_fixed$bL)) 
  plot(fmBL_fixed$bL ~bHat_RR[-1],xlim=tmp,ylim=tmp) 
  lines(x=c(-1,1),y=c(-1,1),col=2) 
   
  tmp<-range(c(yHat_RR,fmBL_fixed$yHat)) 
  plot(fmBL_fixed$yHat~yHat_RR,xlim=tmp,ylim=tmp) 
  lines(x=c(-10,10),y=c(-10,10),col=2,lwd=2) 
 
  ## Now: change the value of lambda (e.g., 30 and 200) and 
   ##      evaluate the impact on shrinkage of estimates 
 
## Bayesian Lasso random lambda ################################ 
  prior$lambda$type='random' 
 
  fmBL_rand<-BLR(y=y,XL=X,prior=prior, 
                   nIter=12000,burnIn=2000,saveAt='BL_rand_') 
 
  fmBL_rand$lambda 
  lambda0 
 
  tmp<-range(fmBL_rand$bL,fmBL_fixed$bL) 
  plot(fmBL_rand$bL ~fmBL_fixed$bL,xlim=tmp,ylim=tmp) 
  lines(x=c(-1,1),y=c(-1,1),col=2) 
   
  tmp<-range(c(fmBL_rand$yHat,fmBL_fixed$yHat)) 
  plot(fmBL_rand$yHat~fmBL_fixed$yHat,xlim=tmp,ylim=tmp) 
  lines(x=c(-10,10),y=c(-10,10),col=2,lwd=2) 
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3.4. Regression using markers and pedigree 
 

So far we have regressed phenotypes on markers only. The following code gives an 

example of models with and without pedigree. In the wheat dataset, matrix A is an 

additive relationship matrix computed from the pedigree. 

Example 4. Bayesian Lasso with & without pedigree         
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

##### DATA ############################################# 
 rm(list()) 
 library(BLR) 
 data(wheat) 
 objects() 
 y<-Y[,2] 
 set.seed(1235) 
 tst<-sample(1:599,size=150,replace=FALSE) 
 yNA<-y 
 yNA[tst]<-NA 
 
 ## Markers model 
 prior<-list(varE=list(df=df0,S=Se) , 
            lambda=list(value=lambda0,type='random', 
                        rate=1e-5,shape=.53)) 
 
 ## Model with only markers 
  fmM<-BLR(y=yNA,XL=X,prior=prior, 
                 nIter=12000,burnIn=2000,saveAt='BL_M_') 
 
  prior$varU=list(df=df0,S=Se/3) 
  fmPM<-BLR(y=yNA,XL=X,prior=prior,GF=list(A=A,ID=1:599), 
                 nIter=12000,burnIn=2000,saveAt='BL_PM_') 
 
  fmPM$varE/fmM$varE 
  fmPM$lambda/fmM$lambda 
 
  cor(y[tst],fmM$yHat[tst]) 
  cor(y[tst],fmPM$yHat[tst]) 
 
  tmp<-range(c(fmM$bL,fmPM$bL)) 
  plot(fmM$bL ~fmPM$bL,xlim=tmp,ylim=tmp) 
  lines(x=c(-1,1),y=c(-1,1),col=2) 
   
  tmp<-range(c(fmPM$yHat,fmM$yHat)) 
  plot(fmPM$yHat~fmM$yHat,xlim=tmp,ylim=tmp) 
  lines(x=c(-10,10),y=c(-10,10),col=2,lwd=2) 
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4.1. Semi-parametric genome-enabled regression 
 

In a standard regression model, the response, iy , is expressed as the sum of a conditional 

expectation function, ( )ig x ,  and a model residual,  iε , that is ( ) iii gy ε+= x . In 

previous labs we have focused on the case where ( )ig x  is a linear function of marker 

genotypes, that is ( ) ∑ =
=

p

j jiji xg
1

βx . Departures from the linear model could 

theoretically be captured by extending the regression formula with addition of contrasts 

between marker genotypes, for instance dominance (i.e., within-loci interaction of alleles) 

could be modeled using dummy variables of the form , and 

similar contrasts could be used to model interaction of alleles at different loci (i.e., 

epitasis). However, with large p the number of possible interaction terms needed to 

model even modest degree of interactions (e.g., 1s order epistatic interactions) is 

extremely large and the problem becomes intractable.   

 Alternatively, we could try to capture departures from the linear model using 

semi-parametric procedures. This was first suggested in the context of Genomic Selection 

(GS) by  Gianola, Fernando, and Stella (2006) who propose implementing GS using 

various semi-parametric procedures. Since then, several existing semi parametric 

procedures have been evaluated in GS. In this lab we focus on Reproducing Kernel 

Hiblert Spaces (RKHS). Penalized Neural Networks are introduced in LAB 5. 
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4.2. Reproducing Kernel Hilbert Spaces (RKHS) regressions 
 

Reproducing kernel Hilbert spaces (RKHS) methods are used for semi-parametric 

modeling in different areas of application such as scatter-plot smoothing (e.g., smoothing 

spline, Wahba, 1990; spatial smoothing (e.g., Kriging, Cressie 1988); classification 

problems (e.g., support vector, Vapnik 1998), just to mention a few. Gianola, Fernando, 

and Stella (2006) suggested using this methodology for semi-parametric genomic enabled 

prediction. Since then, several authors have discussed and evaluated this methodology in 

a genomic context.  

Estimates in RKHS can be motivated as solution to a penalized optimization 

problem in a RKHS of real-valued functions or, simply, as posterior modes in certain 

class of Bayesian models. Next, we provide an overview of the methodology. Detailed 

discussions of RKHS regressions in the context of genome-enabled prediction can be 

found in Gianola and van Kaam (2008), de los Campos, Gianola, and Rosa 2009) and de 

los Campos et al. (2010).  

 

Penalized Regression in Reproducing Kernel Hilbert Spaces 

In RKHS regressions we define the set of functions, or space, in which we 

perform the regression by choosing a reproducing kernel (RK). Technically, the RK can 

be any positive definite function2

                                                 
2For 

 mapping from pairs of points in input space onto the 

( )iiK ′xx ,  to be positive semi definite it must satisfy ( ) ( ) 0,, ≥∑∑
′

′′′
i i

iiiiii KK xxxxαα  for 

every non-null sequence{ }iα . 
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real line, that is . For reasons that we will discuss later in this 

handout you can also think  as a co-variance function. For example, if the input 

space consists of a pedigree additive relationships constitute a 

valid RK. 

In RKHS regressions the evaluations of functions are expressed as linear 

combinations of the basis functions provided by the reproducing kernel, RK, ( )iiK ′xx , , 

that is ( ) ( ) ii iii Kg ′′ ′∑= αxxx , , and the squared of the norm of the function is given by 

( )∑ ∑ ′′ ′=
i ii iiKg αxx ,2 .  

Stacking the evaluations of the function into a vector yields: Kαg =  and 

Kααg ′=2 , where { }ig=g , ( ){ }iiii KK ′′ == xxK ,  and { }iα=α . 

Estimates in RKHS are usually obtained as the solution to the following penalized 

residual sum of squares (intercept and non-maker effects omitted for ease of notation): 

( ) ( ){ }    ˆ
minarg

KααKαyKαyα ′+−′−= λ    [1] 

above, ( ) ( )KαyKαy −′−  is a residual sum of squares, Kαα′  is a penalty on model 

complexity, which is taken to be the square of the norm of the function and λ  is a 

regularization parameters. 

 The solution to the above optimization problem can be shown to be: 

[ ] yKKKKα ′+′= −1ˆ λ .     [2] 

 Predictions are then obtained as follows:   

[ ] [ ] yKIyKKKKKαK 111ˆ −−− +=′+′= λλ ;   [3] 
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therefore, [ ] [ ] 111 −−− +=′+′ KIKKKKK λλ  is the Hat matrix of RKHS.  

 Model specification in RKHS regression is defined by two main elements3

λ

: the 

choice of the reproducing kernel, this functions provide the basis functions and the inner 

product which define the Hilbert Space, and  which, as in ridge regression, represents a 

shrinkage parameter.  

 

4.3. Scatter plot smoothing with a Gaussian kernel  
 

In the following example we will use a RKHS regression to estimate a conditional 

expectation function non-parametrically. In the example, there is a single predictor, 

[ ]π2,0∈ix  and the true conditional expectation function is ( ) )sin(120 ii xxg += . Data 

was generated as iii xy ε++= )sin(120 where ( )1,0~ N
IID

iε . With this setting, 

approximately 1/3 rd  of the variance of the response is explained by the conditional 

expectation function and 2/3rd by model residuals. 

 In this example we use the Gaussian kernel, 

  ( ) ( ){ }iiii xxdhxxK ′′ ×−= ,exp,  

where: ( )ii xxd ′,  is a distance function which in this example we set to be a squared-

Euclidean distance, ( ) ( )2, iiii xxxxd ′′ −=  , and h  is a bandwidth parameter controlling 

                                                 
3 A third element pertains to the choice of the function used to measure model goodness/lack of fit to the 
training data. Here we focus on the case where lack of fit is measured by the residual sum of squares; other 
common choices are the negative of the log-likelihood, this allows modeling continuous, binary and other 
types of outcomes. For binary outcomes another popular choice is the hinge function, the support vector 
machine (Vapnik 1998)  is a special case of RKHS where the loss-function is chosen to be a hinge function 
(Wahba 1990).  
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how fast the kernel decay as the two points, ( )ii xx ′, , get further apart. In the example we 

evaluate the effects of h  (which defines the RK) and of λ . 

• Run the code with the values of h and λ given in the example. 

• Set h=1/1000, this makes the kernel extremely global, and run the code. 

•  Set h=50, this makes the kernel extremely local, and run the code. 

• Now fix h=1 and change lambda, evaluate ʎ=200, then ʎ=1/100, evaluate results. 

Example 1. Scatter-plot smoothing with a Gaussian kernel  
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

### SIMULATION########################################## 
  set.seed(12345) 
  N<-200 
  x<-seq(from=0,to=2*pi,length=N) 
  signal<-sin(x) 
  error<-rnorm(N) 
  y<-signal+error 
  h<-1 
  lambda<-10 
### DISTANCE FUNCTION AND REPRODUCING KERNEL ####### 
  D<-as.matrix(dist(x,method="euclidean"))^2 
  K<-exp(-h*D) 
  diag(K)<-diag(K) +.001 
 
### FITTING THE MODEL ############################## 
  yStar<-y-mean(y) 
  KInv<-chol2inv(chol(K)) 
  C<-KInv*lambda 
  diag(C)<-diag(C)+1 
  H<-chol2inv(chol(C))  # the Hat matrix 
  uHat<-H%*%(y-mean(y)) 
 
  plot(y~x, main=paste("lambda=",lambda," h=",h,sep="")) 
  lines(x=x,y=signal,col=2,lwd=2) 
  lines(x=x,y=uHat+mean(y),col=4,lwd=2) 
 
## want to make the function less local? set h=1/1000,  
## want to make it extremely local? set h=100 
## Now fix h=1 and change lambda = 200 then lambda= 1/100 
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4.4. Inspecting the Hat Matrix 
 
From eq. [3] predictions are obtained as [ ] HyyKIy =+= −    ˆ 1λ , where, 

{ } [ ] 11  −−+== λKIH ijh , therefore, .  The following code displays the 

entries of the hat matrix of Example 1. You can evaluate the impact of the bandwidth 

parameter on the weights by changing (in Example 1) h. 

Example 2. Displaying the entries of the Hat matrix in RKHS 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

### SIMULATION###################################### 
  rm(list=ls()) 
  set.seed(12345) 
  N<-200 
  x<-seq(from=0,to=2*pi,length=N) 
  signal<-sin(x) 
  error<-rnorm(N) 
  y<-signal+error 
  h<-1 
  lambda<-10 
### DISTANCE FUNCTION AND REPRODUCING KERNEL ####### 
  D<-as.matrix(dist(x,method="euclidean"))^2 
  K<-exp(-h*D) 
  diag(K)<-diag(K) +.001 
 
### Hat Matrix  #################################### 
  yStar<-y-mean(y) 
  KInv<-chol2inv(chol(K)) 
  C<-KInv*lambda 
  diag(C)<-diag(C)+1 
  H<-chol2inv(chol(C))  # the Hat matrix 
### Plotts the ith row of H ######################### 
  row<-50 
  plot(H[row,]~x, main="",xlab="x(j)", 
        type="l", ylab="h(i,j)",col=2) 
  abline(v=x[row],col=4) ; abline(h=0) 
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4.5. Bayesian view of RKHS 
 

The solution to the penalized RKHS regression (see eq. [1]) can be shown to be the same 

than the posterior mode of the vector of regression coefficients in the following Bayesian 

model: 




























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


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+=

− 21

2
22 ,~,  

  

α

ε
ε σ

σ
σσ
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0I

0
α
ε
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Ng            

[4] 

where 22 −= αε σσλ . The proof of the equivalence between the posterior mode of α in the 

Bayesian model described in [4] and the solution given in [2] can be obtained following 

the same steps used in section 2.5 of LAB 2. 

Further, changing variables in [4] from Kα  to Kαg = , and noting from the 

properties of the MVN density (see section 2.6 of LAB 2) that ( )2,~ gMVN σK0g  , where 

22
gσσα = , we obtain an equivalent representation of [4], 


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Therefore, from the Bayesian perspective, the evaluations of functions at points in the 

input space, ( ){ }ig xg =  are viewed as realizations from Gaussian process satisfying: 

( ) ( )[ ] ( )
( ) ( )iiii

ii
ii KK

K
ggCor

′′

′
′ =

xxxx
xx

xx
,,

,
,  .  Here, the RK ( )iiK ′xx ,  is viewed as a 

(co)variance function whcih defines a notion of smoothens of the function with respect to 

points in the input space (genotypes in our case). A high value of ( ) ( )[ ]ii ggCor ′xx ,  

implies that, a-priori, we expect the function to behave smoothly when we jump from ix  

to i′x . At the same time, this means iy  is informative about ( )ig ′x  and that iy ′  informs 

us something about ( )ig x .  

Special cases. Certain parametric models appear as special cases of RKHS 

regression. For instance, if our information set consists of a pedigree and K  is a matrix 

of additive relationship matrix, the model defined by [1] is equivalent to the infinitesimal 

additive model, the so-called Animal Model. The Bayesian ridge regression and GBLUP 

(see section 2.6 of LAB 2) is another example of a parametric model that can be 

represented as a RKHS, this is obtained by setting XXK ′= .  These are examples where 

the RK is chosen so as to represent the types of patterns expected under a parametric 

model. Another alternative is to choose kernels based on their performance (e.g., 

predictive ability). In this lab we will focus on this second approach. 

 

4.6. Genomic-Enabled Prediction Using RKHS  
 

In this section we use the Gaussian kernel for genomic-enabled prediction. To this end, 

we replace the distance function by a genomic-distance. For instance, we can set 
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( ) ( )∑ ′′ −=
j

jiijii xxd 2,xx ; the Gaussian kernel becomes: ( ) ( ){ }iiii dhxxK ′′ ×−= xx ,exp, . 

The function dist() of R takes tow arguments: x which should be a numeric vector or 

matrix, and methods, which should be a string indicating the method fro computing 

distances. By default the Euclidean distance is computed. Type help(dist) for further 

details. The function returns an object, which can be converted to an n×n matrix, 

containing pairwise distance between the rows of X. 

 The example below fits the model over a grid of values of the bandwidth 

parameter (h) and evaluates the effect of it on goodness of fit, model complexity and 

predictive ability.  

• Run the code; 

• Evaluate how goodness of fit and predictive ability changes with h 

• How does 2

2

gσ
σ

λ ε=  changes with h?  
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Example 3. RKHS for Genomic Prediction     
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

  rm(list=ls())  
  setwd('~/Dropbox/Armidale/') 
  load("PROGRAMS/RKHS/RKHS.rda") 
  library(BLR) 
  data(wheat) 
 
 ### DISTANCE MATRIX ############################# 
  D<-as.matrix(dist(X,method="euclidean"))^2 
  D<-D/mean(D) 
  h<-c(1e-2,.1,.4,.8,1.5,3,5) 
   
 ### GENERATES TESTING SET ####################### 
  set.seed(12345) 
  tst<-sample(1:599,size=100,replace=FALSE) 
  y<-Y[,4] 
  yNA<-y 
  yNA[tst]<-NA 
   
 ### FITS MODELS ################################# 
  PMSE<-numeric() ; VARE<-numeric(); VARU<-numeric() ; 
  pD<-numeric(); DIC<-numeric() 
  fmList<-list() 
  for(i in 1:length(h)){ 
    print(paste('Working with h=',h[i],sep='')) 
    # COMPUTES THE KERNEL 
    K<-exp(-h[i]*D) 
    # FITS THE MODEL 
    prefix<- paste(h[i], "_",sep="") 
    fm<-RKHS(y=yNA,K=list(list(K=K,df0=5,S0=2)), 
           nIter=5000,burnIn=1000,df0=5,S0=2,saveAt=prefix) 
    fmList[[i]]<-fm 
    PMSE[i]<-mean((y[tst]-fm$yHat[tst])^2) 
    VARE[i]<-fm$varE 
    VARU[i]<-fm$K[[1]]$varU 
    DIC[i]<-fm$fit$DIC 
    pD[i]<-fm$fit$pD 
  } 
  R2<-1-PMSE/mean((y[tst]-mean(y[-tst]))^2) 
 
 ### PLOTS ###############################  
  plot(VARE~h,xlab="Bandwidth", ylab="Residual Variance",type="o",col=4) 
   
  plot(I(VARE/VARU)~h,xlab="Bandwidth", 
        ylab="variance ratio (noise/signal)",type="o",col=4) 
 
  plot(pD~h,xlab="Bandwidth", ylab="pD",type="o",col=2) 
 
  plot(DIC~h,xlab="Bandwidth", ylab="DIC",type="o",col=2) 
 
  plot(R2~h,xlab="Bandwidth", ylab="R-squared",type="o",col=2) 
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4.7. Kernel Averaging  
 

The choice of the RK (its functional form and the values of parameters such as the 

bandwidth) constitutes the central element of model specification in RKHS regressions. 

There are several ways of choosing a kernel. In parametric models, the RK is chosen to 

represent the type of patterns expected under a particular parametric model (e.g., additive 

infinitesimal, K=A; linear model, K=XX’). Form a non-parametric perspective one can 

choose kernels based on the performance of the model, e.g., predictive ability; an 

illustration of this was provided in the previous example where a validation set was used 

to evaluate predictive ability of RKHS using a Gaussian kernel, over a grid of values of 

the bandwidth parameter.   

A third way is by inferring the kernel from the data. For instance, in a Bayesian 

context one could assign a prior to the bandwidth parameter and infer this parameter 

jointly with other unknowns. While this is appealing, it is computationally demanding for 

at least two reasons: (a) the RK must be re-computed every time a new value of the 

bandwidth parameter is sampled; (b) mixing may be poor. This occurs because, usually, 

variance parameters and the bandwidth parameter are highly correlated at the posterior 

distribution. An alternative which we consider here is to offer the algorithm all candidate 

kernels jointly. For instance, we can make the conditional expectation to be a sum of 

several random effects, { }
kNgg ,...,1 , each of which has its own (co)variance function, the 

model becomes: 
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( ) ( ) ( )
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It can be  shown that, conditional on variance parameters, the above model is 

equivalent to one with a single random effect, g, whose prior distribution is ( )2, gN σK0g  

where: 
kk NN ααα KKKK +++= ...2211  is a weighted sum of the candidate kernels with 

weight given by 2

2

g

g
k

k

σ

σ
α =  and ∑=

k
gg k

22 σσ . Variance parameter here can then be seen 

as weights associated to each kernel which can be inferred from the data. The larger the 

variance associated to a given kernel the larger the contribution of that random effect to 

the conditional expectation We refer to this approach as kernel averaging (KA, de los 

Campos et al., 2010). 

The following example illustrates the use of KA; the sequence of kernels was 

generated using the Gaussian kernel and the values of the bandwidth parameter used in 

our previous example.  

• Run the code below. 

•  What Kernel gets higher weight? 

• Is that the Kernel that gave highest predictive ability in our previous 

example? 

• Compare the predictive ability of KA with that of models fitted in our 

previous example (i.e., single kernel with fixed bandwidth). 
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Example 4. Kernel Averaging     
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40
41 
42 
43 

  rm(list=ls())  
  setwd('~/Dropbox/Armidale/') ; load("PROGRAMS/RKHS/RKHS.rda") 
 
  library(BLR) 
  data(wheat)  
  D<-as.matrix(dist(X,method="euclidean"))^2 
  D<-D/mean(D) 
  h<-c(1e-2,.1,.4,.8,1.5,3,5) 
    
### GENERATES TESTING SET ####################### 
  set.seed(12345) 
  tst<-sample(1:599,size=100,replace=FALSE) 
  y<-Y[,4] 
  yNA<-y 
  yNA[tst]<-NA 
   
### FITS MODELS ################################# 
  PMSE<-numeric() 
  VARE<-numeric() 
  KList<-list() 
  for(i in 1:length(h)){ 
    KList[[i]]<-list(K=exp(-h[i]*D),df0=5,S0=.5) 
  } 
 
## Displays entries of different kernels 
  plot(KList[[1]]$K[100,],ylim=c(0,1),col=2);abline(v=100) 
 
  plot(KList[[5]]$K[100,],ylim=c(0,1),col=2);abline(v=100) 
 
  fmKA<-RKHS(y=yNA,K=KList,thin=10, 
           nIter=25000,burnIn=5000,df0=5,S0=1,saveAt="KA_") 
 
  VARG<-numeric() 
  for(i in 1:length(KList)){  VARG[i]<-fmKA$K[[i]]$varU } 
  weights<-round(VARG/sum(VARG),5) 
 
  PMSE<-mean((y[tst]-fmKA$yHat[tst])^2) 
  R2_KA<-1-PMSE/mean((y[tst]-mean(y[-tst]))^2) 
 
  # compare with results obtained in the previous example 
  # take a look at the trace plots of variance parameters 
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4.8. Pedigree + Marker Models 
 

The following code compares the entries of a pedigree-based additive relationship matrix 

versus that of two marker-based genomic relationships. The first one (XX’, denoted as 

XXt ) is the co-variance structure corresponding to a linear regression on marker-

covariates with IID normal marker effects (what we have called the Bayesian Ridge 

Regression). The second one (denoted as K) is a Gaussian kernel. 

Example 5. Pedigree Vs marker based relationship matrices   
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

 rm(list=ls())  
 library(BLR) 
 setwd('~/Dropbox/Armidale/') ; load("PROGRAMS/RKHS/RKHS.rda") 
 data(wheat) ; for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i]) } 
 
 D<-as.matrix(X,method='euclidean')^2 
 D<-D/mean(D) 
 K<-exp(-2*D) 
 G<-tcrossprod(X)/ncol(X) 
  
 ## plot of entries of XXt versus A 
 tmpX<-as.vector(A) 
 tmpY<-as.vector(G) 
 tmp<-range(c(tmpX,tmpY)) 
 plot(tmpY~tmpX,xlab='A',ylab='G',cex=0.3,col=2,xlim=tmp,ylim=tmp) 
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Example 6. RKHS with markers and pedigree   
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

 rm(list=ls())  
 library(BLR) 
 setwd('~/Dropbox/Armidale/') ; load("PROGRAMS/RKHS/RKHS.rda") 
 data(wheat) ; for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i]) } 
 
### Generates Testing Sets ###################### 
    set.seed(12345) 
    tst<-sample(1:599,size=100,replace=FALSE) 
    y<-Y[,4] ; yNA<-y; yNA[tst]<-NA; KList<-list() 
   
### First the pedigree-model #################### 
    KList[[1]]<-list(K=A,df0=5,S0=.2) 
    fmP<-RKHS(y=yNA,K=KList,thin=10, 
           nIter=6000,burnIn=1000,df=5,S0=1,saveAt="P_") 
    PMSE<- mean((y[tst]-fmP$yHat[tst])^2) 
    R2_P<-1-PMSE /mean((y[tst]-mean(y[-tst]))^2) 
 
### Now Markers ################################# 
    G<-tcrossprod(X)/ncol(X) 
    KList[[1]]<-list(K=G,df0=5,S0=.2) 
    fmM<-RKHS(y=yNA,K=KList,thin=10, 
              nIter=6000,burnIn=1000,df=5,S0=1,saveAt="M_") 
    PMSE<- mean((y[tst]-fmM$yHat[tst])^2) 
    R2_M<-1-PMSE /mean((y[tst]-mean(y[-tst]))^2) 
 
### Now Markers and pedigree ################### 
    KList[[1]]<-list(K=A,df0=5,S0=.1) 
    KList[[2]]<-list(K=G,df0=5,S0=.1) 
 
    fmPM<-RKHS(y=yNA,K=KList,thin=10, 
           nIter=6000,burnIn=1000,df=5,S0=1,saveAt="PM_") 
    PMSE<- mean((y[tst]-fmPM$yHat[tst])^2) 
    R2_PM<-1-PMSE /mean((y[tst]-mean(y[-tst]))^2) 
 
## Now Lets add XXt#XXt ################### 
    KList[[1]]<-list(K=A,df0=5,S0=.1) 
    KList[[2]]<-list(K=G,df0=5,S0=.05) 
    KList[[3]]<-list(K=I(G^2),df0=5,S0=.05) 
 
    fmPM2<-RKHS(y=yNA,K=KList,thin=10, 
           nIter=15000,burnIn=5000,df=5,S0=1,saveAt="PM2_") 
    PMSE<- mean((y[tst]-fmPM2$yHat[tst])^2) 
    R2_PM2<-1-PMSE /mean((y[tst]-mean(y[-tst]))^2) 
 
    library(graphics) 
    barplot(height=c(R2_P,R2_M,R2_PM,R2_PM2), 
            names.arg=c('P','M','PM','PM2'), ylab='R-sq. TRN set',col=2) 
## Take a look at trace plots of variance parameters 



17 
 

References 
 

de los Campos, G., D. Gianola, G. J. M. Rosa, K. A Weigel, and J. Crossa. 2010. “Semi-

parametric Genomic-enabled Prediction of Genetic Values Using Reproducing 

Kernel Hilbert Spaces Methods.” Genetics Research 92 (04): 295–308. 

de los Campos, G., D. Gianola, and G. J.M Rosa. 2009. “Reproducing Kernel Hilbert 

Spaces Regression: a General Framework for Genetic Evaluation.” Journal of 

Animal Science 87 (6): 1883. 

Cressie, N. 1988. “Spatial Prediction and Ordinary Kriging.” Mathematical Geology 20 

(4): 405–421. 

Gianola, D., and J. B van Kaam. 2008. “Reproducing Kernel Hilbert Spaces Regression 

Methods for Genomic Assisted Prediction of Quantitative Traits.” Genetics 178 

(4): 2289. 

Gianola, Daniel, Rohan L. Fernando, and Alessandra Stella. 2006. “Genomic-Assisted 

Prediction of Genetic Value With Semiparametric Procedures.” Genetics 173 (3) 

(July 1): 1761-1776. doi:10.1534/genetics.105.049510. 

Vapnik, V. N. 1998. “Statistical Learning Theory.” 

Wahba, G. 1990. “Spline Methods for Observational Data.” SIAM: Philadelphia. 

 

 



1 

 

Statistical Methods for Genome-Enabled Prediction, 

LAB 5: 

Penalized Neural Networks1

 ( 

 
gcampos@uab.edu ) 

 

Contents 
 

5.1. Introduction ........................................................................................................................................... 2 

5.2. Scatterplot smoothing using a penalized NN ......................................................................................... 5 

5.3. Penalized Neural Network Using Pre-selected Markers ........................................................................ 7 

5.4. Penalized Neural Networks Using Marker-derived Basis Functions as Inputs ...................................... 8 

References .................................................................................................................................................... 9 

 

 

 

 

 

 

 

 

                                                           
1 Suggestions made by Paulino Pérez are gratefully acknowledged.  

mailto:gcampos@uab.edu�


2 

 

 

 

5.1. Introduction 
 In linear regression models the conditional expectation is represented as a weighted sum of input 

variables, . Many non-linear patterns can be represented linearly by appropriate 

choice of basis functions: where,  are the basis functions, which 

map from the input variables onto the real line. An example of these are the polynomial basis functions: 

( ){ }M
m

m
iim xx 0  ===Φ ϕ . For instance, if M=2 we have the 2nd degree polynomial basis functions, 

{ } , 1, 2
ii xx=Φ ; therefore, ( )   2

210 iiii xxyE βββ ++=x . Other common examples of non-linear basis 

functions are the power, logarithm and exponential functions. With this types of basis functions each of 
the regression coefficients affect the behavior of the conditional expectation in the entire input space, and 
this may limit the ability of a model to capture the local behavior of the conditional expectation. 

 Local basis functions can be used to model a conditional expectation within certain regions of the 
input space. Splines represent an example of this. In a spline, polynomial basis functions are used to 
represent the regression function within boundaries defined by a set of knots. The Gaussian kernel 

discussed in LAB4 is another example of a local basis function, here ( )
2

,, mih
mim eh txtx −−

=ϕ   where  mt  is 

a focal point and  is a bandwidth parameter which controls how fast the basis function decay as ix gets 

further apart from the focal point. Model specification in this case pertains to the choice of focal points 
(how many and where in input space should be placed) and of the bandwidth parameter. In the RKHS 
regressions of LAB4,  the strategy was to ‘offer’ the model a large set of basis functions (one per subject in 

the sample) generated by setting 11 xt = , 22 xt = ,…, nn xt = ; therefore ( ) ∑ =′

−−
′

′×=
n

i

h
iii

iieyE
1

2
xxx α

. This strategy may induce over-fitting and this was confronted by using shrinkage estimation procedures. 
This is approach is also used in smoothing spline (Craven and Wahba 1978; Wahba 1991).  

 Non-linear basis functions such as the ones described above offer great potential for capturing 
potentially complex patterns between input and output variables; however, the set of basis functions 
needs to be defined a-priori.  In Neural Networks (NN) the basis functions used for regression are inferred 
(i.e., are data driven), this gives NN great potential for capturing potentially complex patterns.   

One of the simplest NNs is the single hidden layer feed-forward NN. This NN can be thought as 
non-linear regressions consisting of two steps (Hastie, Tibshirani, and Friedman 2009): in the first one (or 

hidden layer) the basis functions are inferred, and in the second one (or output layer) the output, , is 

regressed on the basis function inferred in the hidden layer. A graphical representation of such NN is given 
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in Figure 1. The term feed-forward is used to highlight that in these NNs information flows from inputs 
(the ix ’s) to output (the Iy ’s), other NN allow feedbacks. 

 

Figure 1. Graphical Representation of Single Hidden Layer Feed-Forward Neural Network for a Continuous 

Response ( ) and p predictor variables ( ). The network contains M neurons. At each neuron, 

linear combinations of the predictors ( ) are inferred and subsequently activated 

.  These basis functions are then used in the output layer to regress the output variable 

using a linear model ( ). 

 

As illustrated in Figure 1, in the hidden layer M basis functions, , are 

inferred (one at each neuron). Each of these basis functions consist of a linear score, 

, activated by a non-linear activation function, .  
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In the output layer, the outcome, iy , is regressed on the basis functions using an additive model. 

The example of Figure 1 is for a continuous response; in many applications with NN the outcome is either 
binary or polychotomous. In those cases an additional activation functions are added in the output layer. 
Note that, if the activation function of the hidden and output layers are identity functions (i.e., 

 the model of Figure 1 becomes a standard multiple linear regression model. Moreover, if 

we set the  to be the basis functions of a reproducing kernel (see LAB4), the NN of Figure 1 becomes 

the RKHS regression. Therefore, we can view the NN of figure 1 as a general framework that includes the 
linear model and the RKHS as special cases.  

The activation functions of the hidden layers map from the real line onto the [0,1] interval, and a 

common choice is to set this to be a sigmoid function. For instance we could use ( )
mizmim e

z ×−+
= θφ

1
1

  for 

some 0>θ . 

Architecture of a Neural Network. The elements that define model specification in NN are: (a) the 
choice of input variables, (b) the type of network (e.g., feed-forward), (c) the number of layers, (d) the 
number of neurons per layer, and (d) the choice of activation functions. In general the term ‘architecture’ 
of the network is used to referred to the choices made in (b)-(d). 

Penalized Neural Networks. The set of parameters to be estimated in the NN of Figure 1 include: 
all the intercepts and regression coefficients at each neurons, the parameters of the activation functions, 
and the intercept and regression coefficients of the output layer. With large p, and with several neurons, 
the total number of parameters to be estimated can be huge. This, together with the intrinsic flexibility of 
the NN, can easily yield over-fitting and poor predictive performance. To prevent this, a common strategy 
is to fit the neural network using penalized methods such as those discussed in LAB2. Therefore, in a 
penalized NN, parameters are estimated by minimizing an objective function consisting of a lack-of fit 
function (e.g., a residual sum of squares) plus a penalty on model complexity. Any of the penalties 
discussed in LAB 2 can be used; however, a common choice is to set the penalty to be the of regression 
coefficients (usually intercepts are not penalized).  

In what remains of the lab we illustrate the use of penalized NN using a beta version of the R-
package trainbr. This package was developed and kindly shared by Paulino Perez. 
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5.2. Scatterplot smoothing using a penalized NN  
 

The following example illustrates the use of penalized NN for scatter-plot smoothing.  

Example 1: Scatter-plot smoothing Using a Neural Network 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

  rm(list=ls());library(trainbr) ; library(splines) 
### SIMULATION (same as the one used in Ex. 1 of LAB4) ##### 
  set.seed(12345) 
  N<-200 
  x<-seq(from=0,to=2*pi,length=N) 
  signal<-sin(x) 
  error<-rnorm(N) 
  y<-signal+error 
   
  # for train-br the oucome variable needs to be standardized to [0,1]  
  yStd<-normalize(y) 
  signalStd<-2*(signal-min(y))/(max(y)-min(y))-1 
   
## Various parametric models 
  lm1<-lm(y~x) 
  poly3<-lm(yStd~x+I(x^2)+I(x^3)) 
## Natural spline with 4 knots 
   X<-ns(x=x,df=4) 
  fmNS<-lm(yStd~X)   
## Neural Networks with 1,2,3 and 5 nuerons 
  NN1<-trainbr(y=yStd,X=as.matrix(x),neurons=1) 
  yHatNN_1<-predictions.nn(X=as.matrix(x),theta=NN1$theta, neurons=1) 
 
  NN2<-trainbr(y=yStd,X=as.matrix(x),neurons=2) 
  yHatNN_2<-predictions.nn(X=as.matrix(x),theta=NN2$theta, neurons=2) 
   
  NN3<-trainbr(y=yStd,X=as.matrix(x),neurons=3) 
  yHatNN_3<-predictions.nn(X=as.matrix(x),theta=NN3$theta, neurons=3) 
   
  NN4<-trainbr(y=yStd,X=as.matrix(x),neurons=4) 
  yHatNN_4<-predictions.nn(X=as.matrix(x),theta=NN4$theta, neurons=4) 
   
  NN5<-trainbr(y=yStd,X=as.matrix(x),neurons=5) 
  yHatNN_5<-predictions.nn(X=as.matrix(x),theta=NN5$theta, neurons=5) 
   
#(continues next page) 

 

 

Example 1: Scatter-plot smoothing Using a Neural Network 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

# (FROM PREVIOUS PAGE) 
## R-Squared ######################################################## 
  R2_lm<-1-mean((signalStd-predict(lm1))^2)/var(signalStd) 
  R2_ply3<-1- mean((signalStd-predict(poly3))^2)/var(signalStd) 
  R2_NS<-1- mean((signalStd-predict(fmNS))^2)/var(signalStd) 
  R2_NN<-numeric() 
  R2_NN[1]<-1-mean((signalStd-yHatNN_1)^2)/var(signalStd) 
  R2_NN[2]<-1-mean((signalStd-yHatNN_2)^2)/var(signalStd) 
  R2_NN[3]<-1-mean((signalStd-yHatNN_3)^2)/var(signalStd) 
  R2_NN[4]<-1-mean((signalStd-yHatNN_5)^2)/var(signalStd) 
  R2_NN[5]<-1-mean((signalStd-yHatNN_5)^2)/var(signalStd) 
   
## Plots ###########################################################  
  plot(yStd~x,col=1,cex=.5) 
  lines(x=x,y=signalStd,lwd=2,col=2) 
  lines(x=x,y=yHatNN_3,col=4,lwd=4,lty=2) 
 
  plot(R2_NN~I(1:5), 
       xlab='Number of Neurons',ylab= 'R2(Pred. vs signal',type='o' 
       , col=4) 
  abline(h=R2_NS,col=4,lty=2) 

  

 

Example 1 illustrates the flexibility that NNs have in terms of capturing complex patters: starting from a 
single predictor, the NN generated complexity by inferring multiple basis functions which were able to 
capture the non-linear patterns between inputs and outputs very well. The example uses a single 
predictor, but as illustrated in Figure 1 the method could also be applied to multiple-predictors. However, 
with large p and with multiple neurons, the computational requirements increase substantially.  
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5.3. Penalized Neural Network Using Pre-selected Markers  
  In Example 2 we first select the top p markers from single marker regressions and subsequently 
offer these markers to a NN with 3 neurons.  

Example 2: Penalized Neural Network Applied to Pre-selected Markers 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

rm(list=ls()) 
### DATA ############################################# 
 library(BLR) ; library(trainbr) ;  data(wheat) 
 N<-nrow(X) ; p<-ncol(X) 
 y<-Y[,4] 
 y<-normalize(y) 
 set.seed(1235) 
 tst<-sample(1:N,size=150,replace=FALSE) 
 XTRN<-X[-tst,] ; yTRN<-y[-tst] 
 XTST<-X[tst,] ;  yTST<-y[tst] 
### SINGLE MARKER REGRESSIONS ######################## 
 pValues<-numeric() 
 for(i in 1:p){ 
 fm<-lm(yTRN~XTRN[,i]) 
 pValues[i]<-summary(fm)$coef[2,4] 
 print(paste('Fitting Marker ',i,'!',sep='')) 
 } 
 nMarkers<-75 
 selSNPs<-order(pValues)[1:nMarkers] 
 XTRN<-XTRN[,selSNPs] 
 XTST<-XTST[,selSNPs] 
   
### Neural Network ################################### 
  NN<-trainbr(y=yTRN,X=XTRN,neurons=4, epochs=100) 
  yHatNN<-predictions.nn(X=XTST,theta=NN$theta, neurons=4) 
  cor(yHatNN,y[tst]) 

## Change the number of pre-selected markers (line 22) and number of    
## Neurons (lines 28 and 29) and experiment. 
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5.4. Penalized Neural Networks Using Marker-derived Basis Functions as Inputs 
 In Example 2 we pre-selected markers, another strategy consist of first mapping the input 
information into some basis functions (e.g., using a reproducing kernel or using genomic relationships) and 
then applying the NN to these basis functions. For instance, Gianola et al. (2011) suggested using the 
additive relationships as basis functions, by so doing we reduce the number of input variables of the NN 
from p to n. In Example 3 we illustrate this approach by using as inputs to the NN marker-derived principal 
components. 

Example 3: Penalized Neural Network Applied to Marker-derived Principal Components 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

rm(list=ls()) 
### DATA ############################################# 
 library(BLR) ;library(trainbr) ; data(wheat) 
 for(i in 1:ncol(X)){ X[,i]<-X[,i]-mean(X[,i])} 
 N<-nrow(X) ; p<-ncol(X) 
 y<-Y[,4] 
 y<-normalize(y) 
 ## Pcs 
 SVD<-svd(X,nu=599,nv=0) 
 PC<-SVD$u ; for(i in 1:ncol(PC)){ PC[,i]<-PC[,i]*SVD$d[i] } 
 plot(PC[,1:2],col=4) 
 set.seed(1235) 
 tst<-sample(1:N,size=150,replace=FALSE) 
 yTRN<-y[-tst] 
 yTST<-y[tst] 
 PCTrn<-PC[-tst,] 
 
 PCTst<-PC[tst,] 
 
 nPC<-300 
 NN<-trainbr(y=yTRN,X=PCTrn[,1 :nPC],neurons=3, epochs=150)   
 yHatNN<-predictions.nn(X=PCTst[,1:nPC],theta=NN$theta,             
             neurons=c(length(NN$theta)-1)) 
 cor(yHatNN,yTST) 
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6.1. Introduction 

Prediction is a central problem in plant and animal breeding and in many other domains. It is natural to 
compare models based on their ability to predict future outcomes. Validation methods aim at estimating 
the distribution (or features of it, e.g., the variance) of prediction errors.   

Prediction error. Let { }iiTRN yS x,=  denote the available training data, M  a model (or 

algorithm) and { }newnewy x,  an un-observed data point that we want to predict. The algorithm processes 

the training sample and derives a prediction: ( )TRNnewnew SMy ,,ˆ x . Example: using training data, TRNS , 
and a linear model (M) we estimate marker effects and then we use the estimated marker effects and 
the genotypes of candidates of selection ( newx ) to derive predictions. The prediction error is 

. Model performance can then be assessed using features of the distribution of 
prediction errors.   

Validation methods. Deriving a closed form for the distribution of prediction errors requires 
making assumptions about the true data generating process. In practice we do not know such process 
and models are, at best, good approximations.  However, if we are able to draw a large number of 
samples from the desired prediction errors , we can then estimate features of the density of 

prediction errors using Monte Carlo methods. For instance, given a large number of sample of prediction 
errors we could estimate the proportion of variance of future phenotypes accounted for by predictions 

using an R-squared type statistic: . 

In practice we have only a finite sample of data and most validation methods emulate the 
sampling process by sampling data points using some type of resampling method. There are different 
types of prediction errors, and the design of the validation scheme will determine what type of 
prediction errors are we describing. 

Conditional error. Typically, we want to estimate the distribution of the prediction error given 
the training sample, that is, 

( )TRNnew Sp ε̂ . Here, prediction errors are random variables because they 
are functions of yet-to-be-observed genotypes and phenotypes. Intuitively, we can obtain draws from 
the distribution of conditional errors by first fitting the model (only once) to the available TRN sample 
and subsequently evaluating the prediction accuracy of the model we derived by sampling testing 
samples.  

Marginal prediction errors are obtained by averaging the density of conditional errors over all 
possible realizations of the training sample: ( ) ( )[ ] ( ) ( ) TRNTRNTRNnewTRNnewnew SSpSpSpEp ∂== ∫ εεε ˆˆˆ  .  

Intuitively we can estimate the marginal distribution of prediction error with re-sampling of both raining 
and testing datasets.  
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In most applications, our interest is to estimate the density of conditional errors; however this 
density is difficult to estimate and most of the methods we will see estimate ( )newp ε̂  (Hastie, Tibshirani, 
and Friedman 2009).  

 

6.2. Alternative Validation Schemes 

Training-Testing (TRN-TST) Validation 

If sample size is large we can simply assign some individuals for training (TRN) and some for testing 
(TST). We use TRN to fit the model and derive prediction errors from TST. We have done so in previous 
labs by partitioning at random the wheat dataset into TRN and TST. If the prediction problem of interest 
has certain structure (e.g., ancestors will be used for training with the goal of predicting performance of 
progeny) the partition of the data into TRN and TST should reflect such structure. This has been done, 
for instance for validation of methods for genomic selection in dairy cattle. Unfortunately we can’t do 
this with the wheat dataset because we lack a pedigree. 

Cross-validation (CV) 

One disadvantage of the TRN/TST design above described is that individuals are either used for training 
or testing. When the total sample size is large this is not a problem; however, with small sample size one 
would like to use all individuals both for training and testing CV allows this. In CV individuals are 
randomly assigned to disjoint sets using an index, for example, in 2-fold CV each individual is assigned to 
either 1st or  2nd fold. Then, a TRN/TST evaluation is done for every fold. In those evaluations, individuals 
assigned to that fold are regarded as TST set and the remaining ones as TRN set. The following R-code 
implements a 5-fold CV using the wheat dataset.  
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Example 1: 5-fold CV   

1 
2 
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4 
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21 
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23 
24 
25 
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27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

###  LOADS DATA  ############################# 
  rm(list=ls());  library(BLR);  data(wheat) 
  y<-Y[,4]  
  for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i]) } 
  h2<-0.5 ; lambda<-(1-h2)/h2*ncol(X) 
### ASSIGNMENT TO FOLDS (5-fold CV) ########### 
  set.seed(124292) 
  sets<-sample(1:5,size=nrow(X),replace=TRUE) 
  yHatCV_RR<-rep(NA,length(y)) 
  yHatCV_0<- rep(NA,length(y)) 
  varE<-numeric() 
  indexH<-rep(NA,length(y)) 
  for(fold in 1:5){ 
    tst<-which(sets==fold) # here we partition the data 
    C<-crossprod(X[-tst,]) 
    for(j in 1:ncol(C)){ C[j,j]<- C[j,j]+lambda } 
 
    CInv<-chol2inv(chol(C)) 
    H<-X[tst,]%*%CInv%*%t(X[-tst,]) 
    indexH[tst]<-rowSums(abs(H)>.15) # count entries > 0.15 in H 
    yHatCV_RR[tst]<- H%*%y[-tst] 
    yHatCV_0[tst]<-mean(y[-tst]) 
     print(fold) 
  } 
 
 sqErrorRR<-(y-yHatCV_RR)^2 
 sqError0<-(y-yHatCV_0)^2 
 
 PMSE_RR<-tapply(X=sqErrorRR,FUN=mean,INDEX=sets) 
 PMSE_0<-tapply(X=sqError0,FUN=mean,INDEX=sets) 
 R2<-1-PMSE_RR/PMSE_0 # compare to cor(y,yHatCV)^2 
 sqrt(R2) 
 
## Three different ways of computing R2: discuss! 
  cor(y,yHatCV_RR)^2 
  1-var(y-yHatCV_RR)/var(y) 
  1-sum((y-yHatCV_RR)^2)/sum((y-yHatCV_0)^2) 
 
## Relationships between entries of hat matrix and pred. errors 
tapply(FUN=mean,X=sqErrorRR,INDEX=indexH) 
 
plot(sqErrorRR~indexH,ylab='Sq.Error',xlab='Index',col=2,cex=.5) 

   

NOTE 1. While CV is commonly used in statistics and computer science, one needs to be aware that CV is 
not always an appropriate validation design. For instance, as previously mentioned, in breeding 
applications the prediction problem usually consists of inferring genetic values of candidates to 
selection. This prediction problem involves a generational order that is not considered in a standard CV 
with random assignment of individuals to folds. This may or may not induce biases, but one needs to be 
aware that CV is not the solution to any validation problem. 
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NOTE 2. The observed the variability in PMSE and R-squared across partitions of the CV reflects 
uncertainty associated to the sampling of TRN and TST sets. Evaluating such uncertainty is very 
important, especially when the number of records in the TRN and/or TST set is small. Note however, 
that ideally we would like to hold the training data fixed and evaluate the uncertainty associated to 
sampling of un-observed data (i.e., TST) only. 

NOTE 3. We also observed that sq.-error diminishes as ‘local sample size’, measured, for example using 
the entries of the hat matrix, increases.  

 

Replicated Training-Testing  

In CV the number of folds affects the size of the training and testing datasets and the number of 
replicates of estimates of prediction accuracy. For instance, in a 5-fold CV the size of the TRN (TST) 
datasets is 80% (20%) of that of the available data and we only obtain 5 estimates of prediction accuracy 
(one per fold), this is a very small number if we wish to construct a confidence interval on estimates of 
prediction accuracy. An alternative is to replicate TRN-TST experiments a large number of times, each 
time re-assigning at random subjects into TRN and TST samples. The following R-code illustrates this 
with 30 replicates (example in next page). 
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Example 3: Replicated TRN-TST partitions   

1 
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28 
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31 
32 
33 
34 
35 

rm(list=ls()) 
##### DATA ############################################# 
 library(BLR) 
 data(wheat) 
 N<-nrow(X) ; p<-ncol(X)  
 for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i]) } 
 y<-Y[,2] 
 nTst<-150 
 nRep<-30 
 set.seed(1235) 
 COR<-matrix(nrow=nRep,ncol=3,NA) 
 colnames(COR)<-c('lambda=10', 'lambda=1279', 'lambda=5000') 
 lambda<-c(10,1279,10000) 
 
 for(i in 1:nRep){ 
     print(paste('TRN-TST Replicate ',i,sep='')) 
     tst<-sample(1:N,size=nTst,replace=FALSE) 
     XTRN<-X[-tst,] 
     yTRN<-y[-tst] 
     XTST<-X[tst,] 
     yTST<-y[tst] 
     ZTRN<-cbind(1,XTRN) 
     ZTST<-cbind(1,XTST) 
     rhs<-crossprod(ZTRN,yTRN) 
     C0<-crossprod(ZTRN) 
      for(j in 1:3){ 
       C<-C0  
       for(k in 2:ncol(C)){ C[k,k]<-C[k,k]+lambda[j] }    
       CInv<-chol2inv(chol(C)) 
       sol<- CInv%*%rhs        
       yHatTST<- ZTST%*%sol 
       COR[i,j]<-cor(yTST,yHatTST) 
     }  
 } 
## Plots in next page 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

### PLOTS (Results from previous page)  
## One way of looking at the problem (not quite correct) 
  x<-rep(lambda,nRep) 
  boxplot(as.vector(COR)~x,xlab=expression(paste(lambda)), 
          ylab='Correlation') 
 
## A better way 
  plot(y=COR[,2],x=COR[,1],xlim=range(COR),ylim=range(COR), 
       xlab=expression(paste(lambda[10])), 
       ylab=expression(paste(lambda[1279])),main='Correlation',col=2) 
  abline(a=0,b=1,col=4) 
 
  plot(y=COR[,3],x=COR[,2],xlim=range(COR),ylim=range(COR), 
     xlab=expression(paste(lambda[1279])), 
     ylab=expression(paste(lambda[10000])),main='Correlation',col=2) 
  abline(a=0,b=1,col=4) 
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6.3. Between sub-population prediction  

So far we have assigned lines from training and testing completely at random. In this example we 
explore the impacts of training and validating in different subpopulations.   

Example 3: Across sub-population prediction 

1 
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21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

rm(list=ls()) 
##### DATA ############################################# 
 library(BLR) 
 data(wheat) ;  
 for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i])}  
 
## Clustering based on q principal components 
 q<-2 # number of PCs used for clustering 
 for(i in 1:ncol(X)){X[,i]<-X[,i]-mean(X[,i])} 
 SVD<-svd(X,nu=q,nv=0) 
 myClusters<-kmeans(x=SVD$u%*%diag(SVD$d[1:q]),centers=2) 
 
## Ploting principal components 
 tmp<-which(myClusters$cluster==1) 
 plot(x=SVD$u[tmp,1],y=SVD$u[tmp,2], ylim=range(SVD$u[,2]),  
      xlim=range(SVD$u[,1]), col=2, xlab='1st PC', ylab='2nd PC'  ) 
 points(x=SVD$u[-tmp,1],y=SVD$u[-tmp,2],col=4) 
 
## Fitting models 
 prior=list(varE=list(df=5,S=1), 
           lambda=list(type='random',value=20,rate=1e-5,shape=.53)) 
 
 group1<-myClusters$cluster==1 
 y<-Y[,4] 
 yNA1<-y 
 yNA1[which(group1)]<-NA 
 yNA2<-y 
 yNA2[which(!group1)]<-NA 
 
## Training in sub-population 1 
 fm1<-BLR(y=yNA1,XL=X,nIter=7000,burnIn=2000,prior=prior,saveAt='1_') 
  
 # training in sub-population 2 
 fm2<-BLR(y=yNA2,XL=X,nIter=7000,burnIn=2000,prior=prior,saveAt='2_') 
 
## Across group prediction 
  cor(X[which(group1),]%*%fm1$bL,y[which(group1)]) 
  cor(X[which(!group1),]%*%fm2$bL,y[which(!group1)]) 
 
## Estimates of marker effects 
plot(fm1$bL~fm2$bL,col=2) 
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6.4. Across environment prediction using single-trait models  

In this example we address the problem of across environment (or trait prediction), this appear, for 
example when we want to select individuals based on expected performance in an environment in 
which these genotypes have not been evaluated.  Most of the models we have discussed so far can be 
extended to accommodate multiple traits. Here, we explore the problem of prediction across correlated 
environments using single-trait models alone or combined using an ad-hoc procedure. A fully multi-
environment evaluation of genome-enabled prediction methods for this dataset is presented in 
Burgueño, de los Campos, and Crossa (2012).  

Example 4: Across environment prediction 

1 
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22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

rm(list=ls()) 
##### DATA ############################################# 
 library(BLR)  
 data(wheat) 
 for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i])}  
 round(cor(Y),3) # 
 
 prior=list(varE=list(df=5,S=1), 
           lambda=list(type='random',value=20,rate=1e-5,shape=.53)) 
 
## Training models in environments 1-4 
 fm<-list() 
 for(i in 1:4){ 
    fm[[i]]<-BLR(y=Y[,i],XL=X,nIter=7000,burnIn=2000, 
             prior=prior,saveAt=paste('E_',i,sep='')) 
 
 } 
 
## 1st strategy 
 COR<-matrix(nrow=4,ncol=4,NA) 
 colnames(COR)<-paste('TRN_',1:4,sep='') 
 rownames(COR)<-paste('TST_',1:4,sep='') 
 for(i in 1:4){ 
     for(j in 1:4){ 
         if(i!=j){ COR[i,j]<-cor(Y[,i],fm[[j]]$yHat)         } 
     } 
 }  
## 2nd strategy (a bit of cheating) 
 covP<-cov(Y) 
 W<-matrix(ncol=4,nrow=4,0) 
 wCor<-rep(NA,4) 
 for(i in 1:4){ 
     W[i,-i]<-covP[i,-i]%*%solve(covP[-i,-i]) 
     TMP<-cbind(fm[[1]]$yHat,fm[[2]]$yHat,fm[[3]]$yHat,fm[[4]]$yHat) 
     wCor[i]<-cor(Y[,i],TMP%*%W[i,]) 
} 
## compare COR & wCor 
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