Genome Enabled Prediction Methods: Laboratory
Gustavo de los Campos

(gcampos@uab.edu)

Contents
Lab 1: Linear Models
1.1. Linear models and ordinary least SQUAres (45 MiN)......cccceiieeeieeeniieesieeereeesieeecreeeseeesreesreesssreessreeens 2
Deriving ordinary least-squares (OLS) estimate using existing R-fuNCtionsccccveveecirveeeccineeecennenn. 2
=T TV o o Tl =Te (U Y ST 4
1.2. The ‘Curse’ of DIMensionality (45 MIN).....cueiciieiie et ese et ste e e tee e srae e saaeesseeenraeesaseenns 5
1.3. Confronting the challenges posed by highly dimensional predictors(45 min)ccccoceeeeeieeeeecveeeenee. 6
SUDSET SEIECTION ...ttt st s e s bt e e be e e sa b e e sbe e e sabeesabeesabeeesnreesabeeenneeas 7
Y o 14T 01 T T [g - 1 Lo o SRR 8
REFEIEINCES ..ttt h ettt sttt e bt e bt e bt e s bt e sheesh b e sate s ate s beeabe e beeabeesbeesaeesaeesateeane 9
LAB 2: Shrinkage Estimation
2.1, PeNAlized ESTIMAtES ...oecveeiiieiieieerite ettt st st st st et b e b e s b e e s sane s 2
2.2, COMPUEING RR ESTIMATES ..uviiiiiiiiiiiiiiieiee ettt e e e s sttt e e e s s st aeeeeesssssssabesaeeesssansssssnaeasesnan 5
2.3. Effect of regularization on estimates, goodness of fit and model DF..........ccccevvciieiieciieei e 5
2.4. The Hat Matrix of large-p with small-n genomic regressions as a local smoother..........cccccvveiviinennns 7
2.5. Bayesian View Of RidZE REGIrESSION....cciicuiiii it ccieee ettt ee ettt e e st e e st e e e sbteeeesbaeeesenbeeeesantaeasanns 9
2.6, GBLUP e aa e aaaaaaatatatanaanantnt bt nt bt bttt ba bt bnbnbnbennbnbnrnnnnnen 12
RETEIENCES ..ottt ettt e st e st e e bt e e s abe e s bt e e aat e e sabeesabeesabeeesabeesabeeeabeeesabeesabeeeneeas 14

Lab 3: The Bayesian Alphabet

3.1. The Bayesian AlPhabet........uoi it e e s bae e e s sbaeeesnes 2
3.2. Ridge Regression Vs Bayesian Ridge REZIreSSiON.......c.ueiivcuiieeieciiieecciiee et eree et e e e vaee e e 9
3.3. Bayesian Lasso: fixed versus random 1ambda.........ccceeiiiiiiiiiiiieiciiee e 11
3.4. Regression using markers and PEAIGIEEccoccuviiiicciiie ettt et saae e 13
REFEIEINCES ..ttt b e h e sttt st et b e bt e s bt e sbeesaeesatesabesabeeabeebeebeen 14

Lab 4:Semi-parametric Genomic Regression Using Reproducing Kernel
Hilbert Spaces Methods

4.1. Semi-parametric genome-enabled regreSSioNccueveiciie e e 1
4.2. Reproducing Kernel Hilbert Spaces (RKHS) regressions..........ccveecveeecieeecveecieecreeesieeeevee e 2
4.3. Scatter plot smoothing with @ Gaussian Kernel ..o 4
4.4, Inspecting the Hat MatriXcooiciiiiiiieie et e et e e e e e a e e e enraeeean 6
4.5. Bayesian VIeW Of RKHS ...ttt et e e st e e et e e e esaea e e e enraeaean 7
4.6. Genomic-Enabled Prediction UsSing RKHScoouiiiiiiie et 9
4.7, KEINEI AVEIAZING ...veeiiiiiiieeeitiee ettt e ettt e e e cte e e e ette e e eaaee e s e aaeeeesasteeessabteeeesraeesenteeesassesesansens 11
4.8. Pedigree + Marker IMOEIS........ouuiiiiiieiece ettt e s nre e e e e 14

S =YL= (=T 16

LAB 5: Penalized Neural Networks

5.0 INTFOTUCTION .ttt sttt sttt ettt et e bt e sbe e sbeesaeesaeesmteemeeeneeenseenreens
5.2. Scatterplot smoothing using @ PeNalized NNcccciiii it rrre e e e e s enreee s
5.3. Penalized Neural Network Using Pre-selected IMarkersccueeeeciieeeecieeeeciieeeeciteeeecreeeeeveeeeenneee s
5.4. Penalized Neural Networks Using Marker-derived Basis Functions as INputs..........ccccecevveeeecieeeeenneenn.

[=YL A L= SRR

LAB 6: Validation Methods

6.1, INTFOTUCKION ..ottt st st sttt et b e e b e b e bt e s beesbeesaeesanesaneens 2
6.2. Alternative Validation SChEmMESccooiiiiiiice e 2
6.3. Between sub-population prediction ... e e 6
6.4. Across environment prediction using single-trait models........ccccoceveviviieicccie e, 7

=Y =YL L= 8

Statistical Methods for Genome-Enabled Prediction,
LAB 1;
Linear Models

(gcampos@uab.edu)

Contents
1.1. Linear models and ordinary least squares (45 MiN)........cccecvieriiiiieee et eerre e srr e e s eeaaeeeeans
Deriving ordinary least-squares (OLS) estimate using existing R-functionscccceecveeeiiiieeeccciee e,
=T L LV o o Yol =Te (1] g YRS
1.2. The ‘Curse’ of DIMensionality (45 MIN) ...t e e sstr e e e ssatreeesenteeeesentaeaesans
1.3. Confronting the challenges posed by highly dimensional predictors(45 min)ccccceeveeevveeeireeennen.
SUDSEE SEIECTION ..ttt sttt r e b e s ae e san e s an e s r e b e neeenees
SHIINKAEZE ESTIMATION Leiiieiiiee ittt e e ettt e e e st a e e e saataeeeeaateeessantaeessantaeessasseeessansseeesnns
REFEIEINCES ...ttt ettt e b e bt e s ae e st st e e bt e bt e b e e s st e s ae e e et e et e et e e b e e nh e e nanesanesane e

! Suggestions made by Daniel Gianola are gratefully acknowledged.

mailto:gcampos@uab.edu�

1.1. Linear models and ordinary least squares (45 min)

Consider the following model:
p -
Yo =u+) % B+ e i=(1..n)
j=1

where: Y, is the phenotype of the i™ individual, 4 is an effect common to all individuals (an
“intercept”), X; are covariates (e.g., marker genotypes), ﬁj is the effect of the j* covariate and & isa

model residual. In matrix notation the model is expressed as:
y=Xp+¢ [1]

where: y = {yi }is a vector of phenotypes, X = {1, Xl,...,Xp} is an incidence matrix for the vector of

regression coefficients, p = (,u, By ﬂp) and € = {gi } is a vector of model residuals.

The ordinary least squares estimate of f is the solution to the following optimization problem:

ﬁOLS arg:min Z(yl - z XIJ ﬁ] J

2
whereZ:(yi - Z X B J is a residual sum of squares. The first order conditions of [2] are satisfied by
i i

ﬁOLS = [xlx]_lx'y .

Deriving ordinary least-squares (OLS) estimate using existing R-functions. The
OLS estimate of B can be obtained using the function Im(), which fits a linear model by OLS.

Alternatively, we can compute the solution using matrix operations. The code below simulates data for
regression [1], and fits the linear model using Im().

Example 1. Deriving Ordinary L east Squares estimates using Im()

rm(list=1s())
SIMULATES DATA FOR A LINEAR MODEL
set.seed(12345)
n<-100
p<-6
set.seed(12345)
X<-matrix(nrow=n,ncol=p,
data=rbinom(n=n*p,p=.5,size=1))
beta<-rnorm(p,mean=0,sd=2)
ERROR<-rnorm(n=n,sd=1,mean=0)
y<-124 +X%*%beta+ERROR # note %*% computes matrix product

FITS THE MODEL USING Im() #HAHHHAHHHHIHH
fm<-Im(y~X)
summary (fm)
bHatl<-fm$coeff

#(continues below)

In the system of equations
[X'X]Bos = Xy 2]

we will refer to C = [X'X] as the matrix of coefficients and to rhs= X'y as the right-hand side of the
system. The matrix of coefficients can be computed using C<-t(X)%*%X, or, equivalently,
C<-crossprod(X). Similarly, the right-hand-side can be computed using rhs<-t(X)%*%y, or,
equivalently, rhs<-crossprod(X,y). crossprod() is usually faster. The system can be
solved using the function solve(), as illustrated below.

Example 2. Deriving Ordinary L east Squares Using Matrix Oper ations

(continued from Example 1)

FITS LINEAR MODEL USING MATRIX OPERATIONS ####HHHH#HIHHHIHHHE
X2<-cbind(1,X) ## note a vector of 1ls is added type head(X)
C<-crossprod(X2)
rhs<-crossprod(X2,y)
bHat2<-solve(C,rhs)

(continues in Example 3)

The matrix of coefficients is symmetric and positive definite. The cholesky decomposition of this
matrix (U) is an upper-triangular matrix satisfying C=U’U. U can then be used to invert C using
chol2inv() function (see below). This is usually faster than using function solve(). Other
factorizations of C, such as the eigen-value decomposition, eigen(), or the QR decompositions,
qr(), can also be used to invert C as well. An example using the cholesky decomposition of C is given
below.

Example 3. Inversion of positive definite matrices using the Cholesky factorization

(continued from Ex. 1 and 2)
X2<-cbind(1,X) # note a vector of 1s is added type head(X)
C<-crossprod(X2)
rhs<-crossprod(X2,y)
U<-chol (C) # computes the Cholesky decomposition
Clnv<-chol2inv(U) # obtains the inverse from a Cholesky decomp.
bHat3<-Clnv%*%rhs
compare bHatl, bHat2, bHat3
round(cbind(bHatl,bHat2,bHat3),4)

(continues In example 4)

Iterative procedures. |n practice, when p is large, the system of equation is solved using
some type of iterative methods. Here is one possible algorithm. Suppose that we know all but the ;"
regression coefficient, then, from the data-equation we can write:

I
Yi = Exikﬁk tE
k=1

I

y, = Exikﬁk +x,0,+¢
kst f
i?

¥i— Exikﬁk = x.tjﬁj +&;

Fow §

Vitepy = X3 € B3]

P
where: Jjj(fj) =y, —inkﬁkis an off-set formed by subtracting from the original phenotypes the
k#j

P

contribution to the conditional expectation of all but the /" predictor, that is ijkﬂk . The OLS estimate
k=i

of /3, in [3]is simply

. injj;i(—f')
S Y “

i

A back-fitting algorithm can then be formed by iterating over regression coefficients using [4].
This is implemented in the following R-code.

e Run the code. How do estimates computed using the above-described algorithm compare with
the exact solution?

e Change nlter (the number of iterations) from 2 to 30 and compare.

Example 4. Deriving Ordinary L east Squares Using | terative Procedures

Computes OLS using a back-fitting algorithm

SSx<-colSums(X272) # the diagonal elements of X’X

nlter<-2 # number of iterations of the algorithm

bHat4<-rep(0,ncol (X2)) # initialvalues bj=zero

bHat4[1]<-mean(y) # initial values mu=mean(y)

e<-y-mean(y) # initial model residuals

for(i in 1l:nlter){ # loop for iterations of the algorithm
for(§ in l:ncol(X2)){ # loop over predictors

yStar<-e+X2[,j]*bHat4[j] # Tforming off-sets
bHat4[j]<- sum(X2[,j]*yStar)/SSx[j] # eq. [4]
e<-yStar-X2[,j]*bHat4[]] # updates residuals
¥
¥

compare bHatl, bHat2, bHat3, bHat4
round(cbind(bHatl,bHat2,bHat3,bHat4),4)

1.2. The ‘Curse’ of Dimensionality (45 min)

~ ~\2
The mean-squared error (MSE) of an estimator is: MSE(@): E[(H—H) :| where @ is the true

value of the parameter and @ is the estimator, which is a function of the data (X and y in the regression
example discussed above). The expectation in the MSE formula is taken with respect to all possible
samples of data. Commonly X is treated as fixed and the expectation is taken only with respect to
possible realizations of y given X.

~ A\ A~
The MSE can be decomposed in two components: MSE(@): [19— E(Q)] +Var(0) , where
[19— E(é)J and Var (é) are the bias and variance of the estimator.

The expectation of the OLS estimate of regression coefficients in [1] is:

ElBows|X =[x X]* X Ely]

= [X'X]"X'E[XB +¢]
= XX X'XB + [X'X] ' XEle]
=B +[X'X]" X 'E[e]

When model [1] holds, E[s] =0, therefore: ElﬁOLS XJ: B . In words, if the linear model holds, OLS

gives unbiased estimates of regression coefficients. The second term of the MSE formula, Var(é), is a

frequentist measure of uncertainty and reflects variability of the estimator over repeated sampling. The
asymptotic (co)variance matrix of OLS estimates of regression coefficients, given X, s,

Var (B): [X'X]*&?, where c?is the variance of model residuals. This is also the finite-sample co-
variance matrix of estimates under normality. Therefore, the MSE of the estimate of the jth regression
coefficient is C'o? where CV is the jth diagonal entry of the inverse of the matrix of coefficients, that

is C* = [X'X]_l. This element decreases with sample size. In the following example we study how MSE
of estimates of regression coefficients changes with n and p.

Example 5. Effectsof n and p on Mean-Squared Error of OL S estimates

rm(list=1s())
n<-seq(from=100,to=300,by=10) # vector defining sample size
p<-seq(from=5,to=80,by=4) # vector defining number of predictors
x<-rbinom(prob=.5,n=max(p)*max(n),size=1) # sample predictors
X<-matrix(nrow=max(n) ,ncol=max(p),data=x)
varE<-1
VAR<-matrix(nrow=length(n),ncol=length(p),NA)
colnames(VAR)<-p
rownames(VAR)<-n
for(i in 1:length(n)){ # loop over sample size
for(in 1:length(p)){ # loop over number of predictors

tmpX<-X[1:n[i],1:pJ11

C<-crossprod(tmpX)

Clnv<-chol2inv(chol (C))

VARL[T,jl<-mean(diag(CInv))*varkE #average variance of estimates

}
b
plot Variance (equal to MSE in this case) Vs. n and p
persp(z=VAR,x=n,y=p,xlab=""Sample Size",
ylab=""Number of Predictors",zlab="MSE(bj)",col=2)

NOTE. When p>n, the OLS estimate is not unique because X'X is singular. Nevertheless,
predictions, § = X[X'X] X'y, are unique; here [X'X] is a generalized inverse of X'X . The function
ginv() of library(MASS) can be used to compute a Moore-Penrose generalized inverse. The
function svd() can be used to compute the singular value decomposition of X from where ¥ can also
be computed.

In genomic models p>n, because of this, estimation methods other than OLS are required. In the
following sections we consider alternative methods.

1.3. Confronting the challenges posed by highly dimensional predictors (45
min)

In this section we discuss two different approaches designed to confront the challenges posed
by ‘large p with small n’ regressions. In the first one (subset selection) we design an algorithm to select k
out of p (k<=p) predictors; our final model will include only these k predictors. Subset selection is a
commonly used practice, and it is based on the idea that ‘highly dimensional predictors are dangerous’;
therefore, the approach seeks to reduce the number of predictors. The second approach (shrinkage
estimation) uses all available predictors and confronts the challenges posed by regressions with p>n by
using shrinkage estimation methods. We illustrate this approach using ridge regression. In both

examples we use a genomic dataset made available with R-package BLR (‘wheat’). This dataset contains
4 phenotypes evaluated in 599 wheat lines that were genotyped for 1,279 markers. In the examples we
use 450 lines for training and evaluate the prediction accuracy of each of the methods on the remaining
149 lines (testing).

Subset selection. The problem of selecting k out of p (k<p) predictors can be viewed as a
model comparison problem. Ideally, we would fit all possible models and select the one that is best
according to some model comparison criterion (e.g., AIC, Akaike Information Criterion, Akaike 1973). In
practice, when p is large fitting all possible models is not feasible. Instead model search algorithms are
used. A very simple search algorithm consists of regressing the response in each of the predictors one at
a time (‘single marker regression’). Each of these regressions yields a measure of association between
markers and phenotypes (e.g., a p-value). Then, we can form our final model by using the first k
predictors ranked according to the association measure. This approach is commonly used in Genome
Wide Association Studies (GWAS). The following example fits models with k predictors (k=1,...,300)
chosen based on the marginal association between markers and phenotypes. The examples use the
‘wheat dataset’ of the BLR package of R (G. de los Campos and Pérez 2010; Paulino Pérez et al. 2010).

Example 6. Subset selection using p-values derived from single-marker regressions

rm(list=1s())
HHEHHH DATA HUHHHHHHHHHH AR AR AR AR AR A
library(BLR)
data(wheat)
objects()
N<-nrow(X) ; p<-ncol(X)
y<-YL.2]
set.seed(1235)
tst<-sample(1:N,size=150, replace=FALSE)
XTRN<-X[-tst,] ; YTRN<-y[-tst]
XTST<-X[tst,] ; yTST<-y[tst]
Hit##H# SINGLE MARKER REGRESSIONS ##HH#HHHHH IR
pValues<-numeric()
for(i in 1:p){
fm<-Im(yTRN~XTRN[, i])
pValues[i]<-summary(fm)$coef[2,4]
print(paste("Fitting Marker ",i,".",sep=""))

by
plot(-log(pValues,base=10),cex=.5,col=2)
#Ht##H VARIABLE SELECT ION ###H#H#HHHHH

myRanking<-order(pValues)

sqCor<-numeric()

for(i in 1:300){
tmplndex<- myRanking[1:i]
Tm<-Im(yTRN~XTRN[, tmpIndex])
bHat<-coef(fm)[-1] ; bHat<-ifelse(is.na(bHat),0,bHat)
yHat<-as.matrix(XTST[, tmpIndex])%*%bHat
sqCor[i]<-cor(yTST,yHat)"2
print(paste("Fitting Model with ",i," markers!®,sep=""))

}
plot(sqCor,type="0",col=2,ylab="Squared Correlation”,
xlab="Number of markers®,ylim=c(0, .28))

Shrinkage estimation. We have seen that when n is small and p is large OLS estimates have
high variance, and therefore high MSE. In addition, when p is large relative to n, over-fitting may occur,
yielding poor predictive ability. Penalized estimates of regression coefficients are designed to confront
these problems. The main idea is to reduce MSE by reducing the variance of the estimator, even at the
expense of introducing bias. We will cover penalized estimation procedures in more detail in Lab 2; here
we briefly illustrate their performance using Ridge Regression (Hoerl and Kennard 1970). Recall that in
the linear model of eq. 1

y=Xp+¢ (1]

the OLS estimates of regression coefficients are the solution to the following systems of equations
[X’X]BOLS = X'y 12]

The RR estimates has a very similar form, we simply add a constant to the diagonal of the matrix
of coefficients, that is:

[X'X+D [Bee = X'y (5]

where A is a constant and D is a diagonal matrix with zero in its first diagonal entry (this, to avoid
shrinking the estimate of the intercept) and ones in the remaining diagonal entries and zeroes
everywhere else. When either A equals zero, the solution to the above problem is OLS. Adding a
constant to the diagonal entries of the coefficient matrix makes it non-singular and shrinks the estimates
of regression coefficients other than the intercept towards zero. This induces bias but reduces the
variance of the estimates; in large-p with small-n problems this may reduce MSE of estimates and may
yield more accurate predictions. The following R-code computes RR estimates.

Example 7. Ridge Regression

MSx<-0

for(i in 1:ncol (XTRN)){ MSx<-MSx+mean((XTRN[, i]-mean(XTRN[,i]))"2)}
h2<-0.5

lambda<-round(MSx*(1-h2)/h2)

TMP<-cbind(1,XTRN)

C<-crossprod(TMP)

rhs<-crossprod(TMP,yTRN)

for(i in 2:ncol(C)){ C[i,i]<-C[i,i]+lambda } #adds a constant to diag
Clnv<-chol2inv(chol (C))

bHatRR<-crossprod(Clnv,rhs)

yHatRR<-cbind(1,XTST)%*%bHatRR

tmp<-cor(yHatRR,yTST)""2

lines(x=c(0,30),y=rep(tmp,2),col=4, lwd=2)
lines(x=c(150,300),y=rep(tmp,2),col=4, lwd=2)

text(x=90,y=tmp, label=expression(paste("RR (lambda=",lambda, ")")),col=4)

References

Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In Second
international symposium on information theory, 1:267-281.

de los Campos, G., and P. Pérez. 2010. BLR: Bayesian linear regression. R package version 1.2.
http://cran.r-project.org/web/packages/BLR/index.html.

Hoerl, A. E, and R. W Kennard. 1970. “Ridge regression: Biased estimation for nonorthogonal problems.”
Technometrics 12 (1): 55-67.

Pérez, Paulino, Gustavo de los Campos, José Crossa, and Daniel Gianola. 2010. “Genomic-Enabled
Prediction Based on Molecular Markers and Pedigree Using the Bayesian Linear Regression
Package in R.” The Plant Genome Journal 3 (2): 106-116.
doi:10.3835/plantgenome2010.04.0005.

Statistical Methods for Genome-Enabled Prediction,
LAB 2;
Shrinkage Estimation®

(gcampos@uab.edu)

Contents
P O =Y oY [P A=Y B 0] g = L TR

2.2. COMPUTING RR @STIMATES . .uutiiiiiiiiiiiiiiiiiiitiiiitit ettt e et et et st et et e eatetaeseesssesssaessseesesannens
2.3. Effect of regularization on estimates, goodness of fit and model DF............cccceeeeeciiiiiiiieee e,
2.4. The Hat Matrix of large-p with small-n genomic regressions as a local smoother............ccccccuveeenneee.
2.5. Bayesian View Of RidZE REEIESSION.....ciicuiiiiiiiiie ettt ettt et e s e e e s sbee e e s sbee e e e snbeeeeesanees
2.6, GBLUP ..ttt e a—a e e —a—ata—atatn—atnsntntntnt st st ntn e s entntntntntnentntnensnnnnnnnrnrnnnnnnns

] T =] Lo LT T TR

NOTE: In many examples in this lab we use Bayesian methods. In those examples we make inferences based
on a relatively small number of samples and this is done due to time constraints. In practice, accurate
inferences require much more samples.

! Suggestions made by Daniel Gianola are gratefully acknowledged.

mailto:gcampos@uab.edu�

2.1. Penalized Estimates

Ordinary least squares (OLS) and Maximum likelihood (ML) are examples of estimation methods
in which estimates are derived by maximizing the fitness (as measured by the residual sum of squares or
likelihood function) of the model to the training data. When the number of predictors (p) is large
relative to sample size (n) this is not a good strategy: estimates can have high mean-squared error (MSE)
and over-fitting may occur. Penalized estimates are obtained as the solution to an optimization problem
that balances two components: how well the model fits the data and how-complex the model is. The
general form of the optimization problem is:

A

B = {Ly.B)+AIp)} [1]

argmin
B

where, L(y, B) is a loss function that measure lack of fit of the model to the data, J(B) is a measure of

model complexity and A > 0 is a regularization parameter controlling the trade-offs between fitness
and model complexity.

Ridge Regression (Hoerl and Kennard 1970) is a particular case of [1] and is obtained by setting

2
L(y,B) to be a residual sum of squares L(y,ﬁ)=2[yi —injﬂj] and J([}) to be the sum of
i]

square of the regression coefficients; typically, some of the regression coefficients (e.g., the intercept)

are not penalized; therefore, J(B) = Zﬂf where S define the set of coefficients to be penalized.
jeS

ﬁarg:mm Z(quﬂj +2) B} [2]

When A — o the solution is f; = 0. On the other extreme, as 4 =0 the solution is the OLS
estimates of . In matrix notation problem [2] can be represented as:

Bew = {(y-XB)'(y-XB)MB'Dﬁ}

argmin

where: (y - XB) (y Xﬁ Z(y, quﬁ J is a RSS and B'Dp = Zﬂf is a sum of squares of the

jeS
regression coefficients. Here, D is a dlagonal matrix whose entries are 1 for | € S and zero otherwise.

The first order conditions of the above optimization problem are satisfied by the following system of
linear equations:

[X'X+2D B = Xy 3]

Relative to OLS, RR adds a constant (A) to the diagonal entry corresponding to regression
coefficients that are included in S (i.e., those whose effects are penalized). When either D or A equals
zero, the solution to the above problem is OLS. Adding a constant to the diagonal of the matrix of
coefficients shrink estimates towards zero. This induces bias but reduces the variance of the estimates.
And in large-p small-n regressions this may smaller MSE than those of OLS estimates and better
predictions.

A simplified example. Let us consider a simple example where each subject was assigned to one
of two possible treatments (treatments 1 and 2). The treatment-means parameterization of this model

is:Y, = X; B, + X, B, + & where Y, is the response, X;; is a dummy variable indicator of treatment 1,
Xy = (1— Xil) is a dummy variable indictor of treatment 2, £, and [3,the means of treatments 1 and 2,

respectively, and &; is a model residual. The OLS estimates of regression coefficients in this model are:

IR DR T ARPRS

Moreover, ZXE and ZX; equal the number of individuals in treatment 1 and 2 (denoted as n, and
i i

N, respectively), since X; and X,; are orthogonaIZX1i Xy, =0, and, finally, leiyi and ZXZi y, are
i i i

the sum of the response variable for subjects assigned to treatments 1 and 2, respectively. Therefore,

n 0lg) |2
AR

Xy =1

, from where we conclude that the OLS estimate of the treatment mean are simply the average of the

zyi A zyi

=1 iXg =1

phenotypes observed in each treatment, that is b= n and B, = n. - Now, considering the
1 2

RR estimates, according to [3] these will be will be

nl"’ﬁ“ 0 Bl _ izgllyi
0 n,+4]43 B <Zyi

iX g =

ZYi ZYi

. N ixg=1 o iy =1 . .
; therefore the RR estimates are f;, = IXll—and B, = Xy . Therefore, adding A to the diagonal
n +4 n, +4
entries of the matrix of coefficients will shrink estimates towards zero. By how much? This will depend
on the relationship between A and sample size. From here we can also see that with fix A4, the amount

of shrinkage will decrease as sample size increases. Asymptotically, if we fix A and let the number of
individuals in each treatment approach infinity, RR estimates converge to OLS estimates.

Other penalized estimators. Several alternative penalized estimation procedures have
been proposed, and they differ on the choice of penalty function, J(B) As we discussed above, in RR,

the penalty is proportional to the sum of squares of the regression coefficients or L2 norm,

J(B) = Zleﬂ]z . A more general formulation, known as Bridge regression (Frank and Friedman 1993),

uses J(B): ZLH,BJ Hy with ¥ > 0. RR is a particular case with y = 2 yielding RR. Subset selection
occurs as a limiting case with ¥ — 0, this penalizes the number of non-zero effects regardless of their

magnitude, J(B) = Zjill(ﬂj # O) . Another special case, known as LASSO (Least Absolute Angle and

Selection Operator, (Tibshirani 1996) occurs with ¥ =1, yielding the L1 penalty: J _1Hﬂ H

Using this penalty induces a solution that may involve zeroing-out some regression coefficients and
shrinkage estimates of the remaining effects; therefore combining in features of subset selection with
shrinkage estimation. LASSO has become very popular in several fields of applications. However LASSO
and subset selection approaches have two important limitations. First, by construction, in these
methods the solution admits at most n non-zero estimates of regression coefficients. In GS and with
complex traits, there is no reason to restrict the number of markers with non-zero effect to be limited
by n (the number of observations). Second, when predictors are correlated, something which occurs in
GS, methods performing variable selection such as the LASSO are usually outperformed by RR (Hastie,
Tibshirani, and Friedman 2009). Therefore, in an attempt to combine the good features of RR and of
Lasso in a single estimation framework (Zou and Hastie 2005) proposed to use as penalty a weighted

laz/ﬁ’

termed the method the Elastic Net (EN), this model involves then two tuning parameters which need to

average of the L1 and L2 norm, that is, for 030‘51,.](a'z

be specified, the regularization parameter (A) and « .

2.2. Computing RR estimates

In the following example we present two ways of computing ridge regression estimates. The
first one implements [3] using matrix operations; the second one uses an iterative procedure. Run this
last algorithm with 10 and 500 iterations.

Example 1. Alternative ways of deriving Ridge-Regression Estimates

rm(list=ls())
Usi ng Chol esky fact or ######HHHHHHBHHHHHHHBHHHHHH I
I'i brary(BLR)
dat a(wheat)
X2<-chi nd(1, X)
y<-Y[, 2]
C<-crossprod(X2)
rhs<-crossprod(X2,y)
Msx<-0 ; for(i in 1:ncol (X)){ MsSx<-Msx+var(X[,i])}
h2<-0.5
| ambda<- Msx* (1- h2)/ h2
for(i in 2:ncol (Q){ di,i]<-Ci,i]+l anbda }
Cl nv<-chol 2i nv(chol (Q))
bHat RR_1<-crossprod(Cl nv, rhs)

Using an iterative procedure ##H#HBHBHBHBHIHBHHHHHHBHBHBHBHBHS
di agC<- nuneri c()
for(i in 1:ncol (X2)){diagC[i]<-sum(X2[,i]"2)+ifelse(i==1,0,!|anbda) }
bHat RR_2<-rep(0, ncol (X2))
bHat RR_2[1] <- nean(y)
e<-y-nean(y)
nlter<-10
for(i in L:nlter){
for(j in 1:ncol (X2)){
tnpY<-e+X2[,j]*bHat RR_2[]]
rhs<-sum(X2[,j]*tmY)
bHat RR 2[j]<-rhs/diag(j]
e<-tnmpY-X2[,j]*bHat RR_2[j]
}
print(i)
}
t np<-range(c(bHatRR_1[-1], bHat RR_2[-1]))
pl ot (bHat RR 1[-1], bHat RR 2[-1], yl i m=t np, xI i met mp, col =2, nai n="")
Change nlter, set it equal to 500 and then equal to 1000

2.3. Effect of regularization on estimates, goodness of fit and model DF

In penalized estimation, the regularization parameter (A1) controls the trade-offs between model
goodness of fit and model complexity. This affects parameter estimates (their value, and the statistical
properties of the estimator) model goodness of fit to the training dataset and the ability of the model to
predict un-observed phenotypes.

Model complexity. The complexity of a linear model can be measured by the degree of freedom
of the model. In RR, predictions are computed as § = XBpe = X[X'X +AD | *X'y = H iy where

Hee = X[XX +AD [*X" is the Hat matrix. If we set 1 =0 we obtain the Hat matrix of OLS:

Hos = X[XX X" In linear models degree of freedom are equal to the sum of the diagonal entries

of H. In OLS this just equals the number of predictors (provided that X is full rank). In RR A also affects
DF. The following R-code fits RR over a grid of values of 4 and evaluates the impact that 4 has on
goodness of fit to the training data, prediction accuracy, and model degree of freedom.

Example 2. Effects of regularization on goodness of fit and model DF

rm(list=ls())
#it#i# DATA HHBHHHBHHHBHHHBHHH B H AR H B H R R
I'i brary(BLR)
dat a(wheat)
obj ect s()
N<-nrowm X) ; p<-ncol (X
y<- Y[’ 2]
set. seed(12345)
t st <-sanpl e(1: N, si ze=150, r epl ace=FALSE)
XTRN<- X[- t st]
YTRN<-y[-tst]
XTST<- X[tst,]
yTST<-y[tst]

FI TTI NG MODEL OVER A GRI D OF VALUES OF | anbda

| anbda<- c(5, 10, 50, 100, 200, 500, 700, 1000, 2000, 5000, 20000)
ZTRN<- cbi nd(1, XTRN) ; ZTST<-chbi nd(1, XTST)

sqCor TRN<- nuneric(); sqCor TST<-nuneric(); DF<-numeric()
BHat <- mat ri x(nrow=ncol (XTRN), ncol =l engt h(| anbda) , NA)

CO<- crosspr od(ZTRN)
rhs<-crossprod(ZTRN, yTRN)

for(i in 1:1ength(lanbda)){ #l oop over values of |anbda

C-Q0
adds | anmbda to the diagonal of C (starts at 2)
for(j in 2:ncol (Q){ dj.jl1<-dj,j]+ anbda[i] }
Cl nv<-chol 2i nv(chol (C))
sol <-crossprod(Cl nv, rhs)
BHat[,i]<-sol[-1]
yHat TRN<- ZTRNY %s ol
sqCor TRN[i] <- cor (YTRN, yHat TRN) ~2
yHat TST<- ZTST% %sol
sqCor TST[i]<- cor(yTST, yHat TST) ~2
H<- ZTRNYS %Cl nv% % (ZTRN)
DF[i] <-sun(di ag(H))
print(i)

}

write(sqCorTST,fil e="sqCor TST. txt")

write(lanbda, file="I|anbda.txt")

(Plots in next page)

Example 2. (from previous page)

PLOT 1. Mbdel Degree of freedom
p! ot (DF~l og(l anbda) , t ype="0", col =2,
xl ab= expressi on(paste(l og(l anbda))),
yl ab="DF", yli mrc(0, max(DF))); abl i ne(h=1,|ty=2)

PLOT 2: Estimates (shrinkage by nmarker)
marker<-1 # (choose a nunber between 1 and 1279)
pl ot (BHat [mar ker,], type="0", col =2,
x| ab=expressi on(paste(l og(lanbda))), yl ab="Esti nate")
abl i ne(h=0)
t np<-range(BHat[,c(1,5)])
PLOT 3. Estimates (shrinkage all markers)
pl ot (BHat [, 5] ~BHat [, 1], xI i met np, yl i met np,
x|l ab=' Lanbda=5", yl ab=' Lanbda=200" , col =2, cex=.5);
Il i nes(x=c(-10,10),y=c(-10,10))

PLOT 4. Goodness of fit to TRN dataset
pl ot (sqCor TRN~I og(| anbda) , t ype="0", col =2, mai n="Tr ai ni ng data",
x| ab=expressi on(paste(l og(l anbda))), yl ab="Squared Corr.")

PLOT 5 Prediction Accuracy
pl ot (sqCor TST~I og(| anbda) , t ype="0", col =2, mai n="Testi ng data",
x| ab=expr essi on(past e(l og(l anbda))), yl ab="Squared Corr.")

2.4. The Hat Matrix of large-p with small-n genomic regressions as a local
smoother

Above we introduce the hat matrix as applied to the training dataset,
~ ~ , -1 - .
Yy = KrauBrr = Xray [Xran Xrry + 4D] XirvYray = HreyY ey - Similarly, we can defined a hat

matrix for the testing dataset, Y o = XTSTﬁRR = Xrar [Xy Xmy + AD [' X4enY = Hrgr Yy - In both

cases, predictions are simply weighted sums of phenotypes of the training dataset,

Virni = ZhTRN‘ij Yy, and Vrsri = ZhTS”j Y, , where h; is the (i,j)" entry of either H o or Hg .

j€TRN JETRN

The relative absolute value of each entry,

y

jth phenotype of the training dataset is for estimating the conditional expectation at the ith point of

, indicates, according to the model, how informative the

either the training or testing dataset. The following code computes the hat matrix a training and testing

dataset and plots the one of the rows of H, and of H g .

Example 3. The Hat Matrix of Ridge Regression

r(list=ls())
#H###H DATA HEHHAHHHHHHHHHH R H R H R R R R R R R
I'i brary(BLR)
dat a(wheat)
obj ect s()
N<-nrow X) ; p<-ncol (X)
y<-Y[, 2]
set.seed(1235)
t st <-sanpl e(1: N, si ze=150, r epl ace=FALSE)
XTRN<- X[-t st ,]
YTRN<-y[-t st]
XTST<- X[tst,]
yTST<-y[tst]

FI TTI NG THE MODEL
| anbda<- 200
ZTRN<- cbi nd(1, XTRN)
ZTST<-chi nd(1, XTST)

C<-crossprod(ZTRN)

for(j in 2:ncol (Q)){ dj,jil<-dj,j]+ anbda}
Cl nv<- chol 2i nv(chol (C))

TMP<-t crossprod(Cl nv, ZTRN)

HTRN<- ZTRNY% 96T VP
HTST<- ZTST% 9%TVP

yHat TRN<- HTRNY % TRN
yHat TST<- HTST% % TRN

Plot of row 100 of HTRN
pl ot (abs(HTRN[100, 1), xlab=" j (TRN)',
yl ab="h(100 , j)', col =2, mai n=' Trai ni ng dataset'); abline(v=100)

Plot of row 30 of HTST
pl ot (abs(HTST[30,]),xlab=" j (TRN)',
ylab="h(30 , j)',col =2, nmai n=' Testing dataset')

2.5. Bayesian View of Ridge Regression

Most penalized can be viewed as posterior modes in certain class of Bayesian models. For
instance, RR estimates are equivalent to the posterior mode of the vector of regression coefficients in a
Bayesian model with a Gaussian likelihood and a Gaussian prior for the vector of regression coefficients.
To see this, recall that that estimates in RR are obtained as the solution to the following optimization
problem:

A

Bre = {(y-XB)'(y-Xﬁ)MB'Ds}

argmin

Multiplying the objective function by -1/2 and switching from minimization to maximization do not
affect the solution; therefore,

Brr = {-%(y-XB)'(y-XB)-ﬂ%B'DB}

argmax

2
o 2 2
Let A= Z where, o, and O';), are non-negative constants. Replacing above and dividing the objective
o}
B

function by O'? maintains the solution unchanged, with this we get:

1
2
20 5

P = {-zlz(y-xm'(y-xs)— B’DB}
g max O'g

Finally, applying the exponential function to the objective function maintains the solution unchanged,
therefore:

~ 1 ' 1,
Bre =, exp{— 707 (v - XB) (y - XB)- 207 p DB}
1 / 1,
= exp{—2 - (y-XB) (y-XB)}exp{— ZBDB}
argmax O'g Zo'ﬂ

1

2
20;

The first component of the objective function, exp{— (y - XB) (y - XB) } , is proportional to a

Gaussian likelihood, centered at Xp and with (co)variance matrix | 0'52 . The second component,

1
exp| — B'DB |, is proportional a Gaussian prior for the regression coefficients, centered at zero
202
B

and with (co)variance matrix Dflaé . Therefore, estimates obtained with RR are equivalent to the

posterior mode of regression coefficients in the following Bayesian model.

{Likelihood: v18.52]~ N(xp,152)

Pior: [Blo?]~N(0,D62) a

The posterior distribution of B is multivariate normal with a mean (co-variance matrix) equal to

the solution (inverse of the coefficient matrix) of the following system: [XX+ AD]ﬁ = X'y ; thisis
just the RR equations. This is also the Best Linear Unbiased Predictor (BLUP) of B giveny.

2

Recall that the ratio 0—; is equivalentto A in RR. | a fully-Bayesian models we assign priors to
Op

each of these variance parameters, this allow inferring these unknowns from the same training data

that is used to estimate marker effects. The following example fits a Bayesian RR using the R-package

BLR (‘Bayesian Linear Regression’), after you run the model:

The BLR package returns an list with posterior means and other information, type str(fm)

and inspect what BLR returns

- Check the posterior mean of Jf and (7; (fmS$varE and fmSvarBR, respectively), remember

the ratio of these variances is interpretable as A4 in RR.
- Examine trace plots

- Compare prediction accuracy of the fully-Bayesian method versus RR.

Example 4. Bayesian Ridge Regression Using BLR

r(list=ls())
#H##H DATA (sanme as Exanpl e 2) #H###HHAHBHHAHHBHIHHBHHHH BT
l'ibrary(BLR)
dat a(wheat)
obj ect s()
N<-nrow X) ; p<-ncol (X)
y<-Y[, 2]
set . seed(12345)
tst<-sanpl e(1: N, si ze=150, r epl ace=FALSE)
XTRN<- X[-t st,]
YTRN<-y[-t st]
XTST<- X[tst,]
yTST<-y[tst]

Fits the nodel
prior<-list(varE=list(df=4,S=1), varBR=list(df=5,S=.01))
f - BLR(y=yTRN, XR=XTRN, nl t er =12000, bur nl n=2000, pri or =pri or)

Prediction Accuracy: Bayesian vs grid search
x<-scan(file="Ianbda.txt")
y<-scan(file="sqCor TST.txt")

pl ot (y~l og(x), type="0o", col =2,
x| ab=expr essi on(past e(l og(l anbda))), yl ab="Squared Corr.",
ylimec(0.1,.3))

abli ne(v= | og(fnvar E/ f nfvar BR), col =4)
abl i ne(h=cor (yTST, XTST% % n$bR) 2, col =4)

trace plots
pl ot (scan("varE.dat"), type="0", col =2)
abl i ne(h=f nvar E, col =4)
abl i ne(v=200, col =4)

10

2.6. G-BLUP

Here we show the equivalence between estimates (posterior modes) derived from model [4]
and the so-called G-BLUP (‘Genomic Best Linear Unbiased Predictor’, e.g., VanRaden, 2008). We show
this using [4] and properties of the multivariate-normal density that are outlined below.

Properties of Multivariate Normal Density

' 0
Let 0 = (9'1,9'2) be a multivariate normal random vector with expectation E{ 1} = {ul} and

2 | P

0 Y. X

(co)variance matrix COV|: 1} = { 1 12} .
9, X, Xy

(1) All marginal densities are also normal densities, specifically:

0, ~MVN(0,,X,,)and 8, ~ MVN(9,,X,,)

The conditional densities are also normal densities, with mean and (co)variance matrices given
by the following:

E[91|92]: B, + 212):2(92 - llz) and E[92|91]: n, + 2212111(91 - l‘l) . (5]
COV[91|92]: Ty~ EpT 5T, and COV[92|91]: Ty~ EnZnZy, - [6]

Above, B, =X, %= {b } and B, =X,X, = {bij } are matrix of regression coefficients of the ith

1j
on the jth random variable of 0.

The multivariate normal density is closed under linear operations in the sense that linear
combinations of MVN random variables of the form 0 = a + T 0 are multivariate normal random
variables, with mean vector and (co)variance matrices given by the following:

E[6]=0+TE[B]=a+Tn , [7]
and (co)variance matrix

Cov[3]=TCov[e]T' =TZT" , [8]

11

Best Linear Unbiased Predictor (BLUP)

We are now ready to derive the conditional expectation of marker effects and of genomic
values. The conditional expectation is the best predictor in the mean-squared error sense. Also, as we
show here, in the context of model [4] the conditional expectations of marker effects and of genomic
values are linear functions of data and are un-biased. Therefore, the conditional expectations of
genomic values and of marker effects from model [4] are BLUP (‘Best Linear Unbiased Predictor’).

For ease of notation we omit the intercept and therefore in [4] we set D equal to an identity
matrix. The model is then described by:

{ Likelihood : [y |B,af]~ N(XB,107)

Prior : EARN A [4b]

From [4b] and using [7] and [8], we obtain that the joint density of y and B :

m~ VN O{xxv; +lo? xcﬂ

r __2 2
Xaﬂ |O'ﬁ.

(9]

Using [5] we get the BLUP of marker effects:

EBly.o?]=X'a2[XX'02 +102]y =X [xx"+ ATy (10]

which is the posterior mean of B. Here, 4 = 0820';2. Because of the equivalence between the posterior

mode of § and the RR estimate, the solution given by [10] is also equivalent to the RR estimate given by

[3]. Importantly, note that computing the solution using [3] requires inverting a pxp matrix. On the other
hand, we can obtain the same solution using [10] with inversion of nxn matrix. Expression [10] is linear

on data and it is unbiased with respect to the prior mean, E([i) = 0. To see this we take expectations in
[10] with respect to y to get E{E[ﬂ |y,052]}= X'[XX"+ 2] Ely]. From [9], Ely]=0; therefore:
E{E[B | y,af]}: 0. Therefore, [10] gives the BLUP of marker effects.

We now derive the conditional expectation of genomic values given the data.
E[XBly.o?|- xE1y.07]
= XX'[XX"+ Al "y
=+ 16"y

(11]

12

Where G = XX'. This is the so-called G-BLUP of genomic values. Expression [11] is the best predictor
of genomic value and it is linearly on data. Also, taking expectation with respect to phenotypes

—1 =1
E {[I+AG"] y}=[I+AG"] E {y}=0; therefore [11] is the BLUP of genomic values.

The following example computes G-BLUP for the wheat datset, and illustrate the equivalence

with predictions from the RR.

Example 5. Ridge Regression and G-BLUP

r(list=ls())
DATA H#HHHBHHBHHAHHRHHRHHRHHRH R H SR PSR H SRR RH R R R R R]
l'ibrary(BLR)
dat a(wheat)
for(i in L:incol (X)){X[,i]<-(X[,i]-mean(X,i]))}
y<-Y[, 1]
h2<-0.5
| anbda<- ncol (X)
Conputing RR estimates and prediction using eq. [3] ######AH
C<-crossprod(X)
di ag(C) <-di ag(C) +l anbda
Cl nv<- chol 2i nv(chol (C))
rhs<-crossprod(X y)
sol <-crossprod(Cl nv, rhs)
yHat _1<- X% %sol

GBLUP
C<-tcrossprod(X)
C<-chol 2i nv(chol (G) *I anbda
di ag(C) <-diag(C +1
Cl nv<- chol 2i nv(chol (C))
yHat 2<-crossprod(Clnv,y)

Conpari son
pl ot (yHat 2~yHat 1, col =2, x|l ab=" Predi citons from RR equati ons',
yl ab="Predi ctti ons from GBLUP equati ons')

13

References

Frank, I.E., and J.H. Friedman. 1993. “A Statistical View of Some Chemometrics Regression Tools.”
Technometrics: 109-135.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Second Edition. 2nd ed. 2009. Corr. 3rd printing 5th Printing.
Springer.

Hoerl, A. E, and R. W Kennard. 1970. “Ridge Regression: Biased Estimation for Nonorthogonal
Problems.” Technometrics 12 (1): 55-67.

Tibshirani, R. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical
Society. Series B (Methodological) 58 (1): 267-288.

Zou, H., and T. Hastie. 2005. “Regularization and Variable Selection via the Elastic Net.” Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 67 (2): 301-320.

14

Satistical Methods for Genome-Enabled Prediction,
Lab 3:
The Bayesian Alphabet *

(gcampos@uab.edu)
Contents
3.1. The Bayesian AlPhabet ... 2
3.2. Ridge Regression Vs Bayesian Ridge RegreSSioN.........ccccuveiveriiieieenesieseeseseeseeas 9
3.3. Bayesian Lasso: fixed versus random lambda............c.ccccevviviiienieciccecne e 11
3.4. Regression using markers and pedigree..........covvveiveieiieerieeie e 13
RETEIBINCES ...ttt ettt b e b e et bt be b be e be e e nreas 14

NOTE: In many examples in this lab we use Bayesian methods. In those examples we make i
inferences based on a relatively small number of samples and this is done due to time constraints.
! In practice, accurate inferences require much more samples.

! Suggestions made by Daniel Gianola are gratefully acknowledged.

mailto:gcampos@uab.edu�

3.1. The Bayesian Alphabet

In standard parametric models for genomic selection (GS) phenotypes, v,, are regressed

P
on marker covariates, {x,}, using a linear model of the form y, =+ x,f3, +¢,, where

J=
1 is an effect common to all subjects (i.e., an ‘“intercept’), {xg} are marker genotypes
(usually coded as 0,1,2) , { ﬁj} are marker effects and &, is a model residuals. A standard

practice for continuous traits is to assume that model residuals are 11D normal, this yields

the following likelihood function:
Likelihood: ply|uB,o?)=]] N(yi|,u+zjilxij o), [1]
i=1
where, N(yiy+2f_lx1j j,az) is a normal density for the random variable y, centered at

r . . 3
p+zj=lxijﬁj and with variance o~.

With dense panels, the number of markers (p) vastly exceeds the number of data
points (n) and because of this penalized or Bayesian shrinkage estimation methods are
commonly used. In a Bayesian setting, shrinkage of estimates of effects is controlled by
the choice of prior density assigned to marker effects. The joint prior density of the
unknowns is commonly structured as follows:

Prior:

plu.B. o[S,0)c {lﬂl plg,[0,,.o% Jolo, \w)}z‘z (o7l 5) 2

j=

Above, a flat prior was assigned to the intercept, ;{2(02

c#,S) is a scaled-inverse Chi-

squared density assigned to the residual variance and with df degree of freedom and scale

equal to S, p(ﬁj\ﬂﬁ,o:’) denotes the prior density of the jth marker effect, 9, is a vector

of parameters indexing the prior density assigned to marker effects, p(efj a)) is the prior

density assigned to@, and @ are parameters indexing this density. The marginal prior

density ~of marker effects is obtaining by integrating © out,

A
p(ﬁj‘az,a))=fp(ﬁj\ﬂﬁj,oz)p(eﬁj‘w)aem. Note that, a-priori, all marker effects are

assigned the same marginal prior density; therefore, contrary what it is sometimes said, in
all members of the Bayesian alphabet, the prior variances of marker effects are the same
for all markers.

Using Bayes rule, the posterior density of model unknowns given the data is
proportional to the product of the likelihood, given in eq. [1], and the prior density, eq.
[2], that is:

Posterior density:

p(,u,B,O'Z‘y, df ,S,a))oc ﬁ N(yi |ﬂ+zjilxii 1,0'2)

i=1

: , [3]
X {1} p(ﬂj ‘Oﬂj o’)p(eﬂj ‘w)};{z ((72 ‘df , S).

The Bayesian Alphabet. Following the seminal contribution of Meuwissen, Hayes, and
Goddard (2001) several linear Bayesian regression methods have been proposed and

used for simulation and real data analysis. They differed in the choice of prior density

assigned to marker effects. In a Bayesian Ridge regression (BRR), the conditional prior

assigned of marker effects are IID normal, p(ﬂj‘eﬂj,az): N(ﬂj‘o,o-;) and

p(eﬂj ‘a)): x° (af,‘dfﬁ ' Sﬂ)'

A second group of models, which includes Bayes A (Meuwissen, Hayes, and
Goddard 2001) and the Bayesian LASSO (BL, Park and Casella 2008) use thick tail
prior densities (t in Bayes A and Double Exponential in the BL). These priors induce a
different type of shrinkage than that induced by the BRR.

A third group of models, which include Bayes B (Meuwissen, Hayes, and
Goddard 2001) and the spike-slab models (Ishwaran and Rao 2005) use priors that are
mixtures of a peak (or a spike) of mass at (in the vicinity of) zero and of a continuous
density (e.g., t, or normal). Figure 1 shows the densities of a Gaussian and Double
Exponential densities and that of a mixture model with a peak of mass at zero and a

Gaussian slab. The three densities have mean equal to zero and variance equal to one.

-
o
o
o
o
oL
=%
=
o
o
o
o
o
I I I I I I

Bi
Figure 1. Density of a standard normal random variable (black), of a double-exponential
random variable (blue) and of a random variable following a mixture density with a mass
point at zero (with probability 0.8) and a Gaussian process with probability 0.2. All

variables with zero mean and variance equal to one.

Many of the thick tail distributions, such as the t or the double-exponential
densities can be represented as infinite mixtures of scaled normal densities. For instance,

the t-prior density assigned to marker effects in Bayes A (Meuwissen, Hayes, and

Goddard 2001) can be represented asr(ﬂj‘dj;,Sﬁ): IN(ﬂj

0,05) 27, Sy)0,

where df, and S, are prior degree of freedom and scale parameters and Ve (afi

;)

is a scaled-inverse Chi-squared density.

In the Bayesian LASSO (Park and Casella 2008) the Double-exponential prior
2
density is represented as: DE(ﬁ}ﬁZ’gj)sz(ﬁ}O,O'jT?)Exp[Tj%]aO';. In the

fully-Bayesian LASSO, A’ is treated as unknown and is assigned a Gamma prior. This
prior is indexed by two parameters (rate and shape, see hel p(r gamm)) which are
assumed to be known. Alternative priors for the regularization parameter are discussed in
de los Campos et al. (2009).

In BayesB (Meuwissen, Hayes, and Goddard 2001) marker effects are assumed
to be equal to zero with probability = and with probability (1-x) the effect is assumed to
be a draw form a t-distribution such as the one described in Bayes A. Model Bayes C
(Habier et al. 2011) is similar to Bayes B but uses a Gaussian slab instead of the t-density
used in Bayes B.

For infinitesimal traits, zeroing-out marker effects, such as in Bayes B or C, may
harm predictive ability. Therefore, an alternative is to replace the peak of mass at zero
used in Bayes B or C with a continuous density with small variance. This strategy is
commonly used in what it is referred as to Spike-Slab models (Ishwaran and Rao 2005);
for instance one can mix two Gaussian densities, one with very small variance and one
with larger variance.

Choosing hyper-parameters. In the above mentioned models, the parameters

indexing the prior density of marker effects play a central role in controlling the extent of

shrinkage of estimates of markers effect (similar to that of A of the ridge regression.
These parameters can be chosen in several ways, one of which is to select their values
based on heritability-based rules.

Choosing Hyper parameters using heritability based rules. In linear models for

genomic selection, genetic values are represented as regressions on marker covariates,

thatis g, = inj B; - In these models, marker genotypes are fixed and marker effects are
i

random variables drawn from an 11D process; therefore:

Var(g,)= Y xvar (g,)=} 3 %

where 02 is the prior variance of marker effects. Summing over individuals and dividing

by nyields

Yy =2tk (4
where K =n"> " x is the average sum of square of marker genotypes in the dataset,
]

and A° is the heritability of the trait. Commonly, the model uses an intercept and we
measure variance at the genomic values as deviations from the center of the sample.

Therefor, a common practice is to compute K after centering genotypes, that is:

K :n—IZZ(xﬁ —29}.) where g is the frequency of the allele coded as one at the jth

J

marker. Moreover, if markers are centered and standardized to a unit variance, that is if

¥ =—=__J _ are used as marker codes in the regression, then K equals the number
of markers (p).

We can now use [4] to solve for the values of the parameters controlling

regularization as a function of K h? and of the phenotypic variance (cr;;).

Ridge Regression. Recall from the Bayesian standpoint the regularization

parameter of a ridge regression A equals the ratio of the residual variance to the prior

variance of marker effects, oﬁo- * . Replacing this in [4] and solving for 4 we get

h? K 1-h?
e

[5]

Therefore, according to [5] the larger the noise-signal ratio, the strongest
shrinkage of estimates should be. Also, K increases as the number of marker does;
therefore, according to [5] A should be increased as the number of markers does.

Bayesian Ridge Regression. In the Bayesian Ridge regression, instead of

choosing 4 we need to assign a prior to 0'; andto o . If these priors are scaled-inverse

chi square, the prior expectations are: E(O'_zaj‘,S):% where (.) equals g or &.

Typically we choose df to be a small value, usually greater than 4 to guarantee finite
prior variance. Then, we can solve for S as a function of df, K, O'; and /*, so that the

prior expectation of each of the variance components matches the value we expect

according to o, , /2* and [4],

specifically, equating af)(l— h2) to E(af df , S) we get,

0';(1— hz): E(ag2

df,S): dfsg_z and equating o;h” to K x E(a[i‘dfﬂ,sﬂ) we get

S, =(1-#)o;, (df,~2)

o’ 6
S, = ;p(dﬁg—2) o

Bayes A. The above formulas can also be used to define the scale parameters in

Bayes B.

Bayesian Lasso. In this model, as originally formulated by (Park and Casella

2008), marker effects are assigned IID double-exponential priors with rate parameter,

2
— (note, A here is a different parameter than that of the ridge regression). The prior

68
i £ marker effects is: Var(8|4t 0% =02 =275« therefore. Z2 — 2 Usi
variance of marker effects Is: ai”(ﬁ}‘ ,O'S)—O'ﬁ— ?, there ore, ?—? Slng
h2
:EK or

this in [4] we get:
4] we get:y s 7

1-h?
[7]

For the scale parameter of the residual variance we can use formula [6].

Note. The regularization parameter of the Bayesian Lasso is a function of the
noise-signal ratio, and also of the number of markers. Specifically we expect K at a rate
proportional to the square-root of the number of markers. The same occurs in RR (see
[5D).

=

Bayes B and C. Here, the prior variance of marker effects are a; = l—ﬁlwhere
-7

o 1s the proportion of marker effects coming from the zero-state of the mixture and o—;
is the variance of the ‘slab’ (a Gaussian density in Bayes C and a t in Bayes B); therefore

we can use the following formulas to chose the scale parameters as functions of df, K, o—;;

h* and r,
~ (1 -)cr; W’ 1 8]

%= a -2 Sﬂ:K(dfﬁ—z)(l—z)

3.2. Ridge Regression Vs Bayesian Ridge Regression

In this section we compare estimates of marker effects derived from a ridge regression

using lambda from eq. [5] with those obtained with a Bayesian Ridge Regression using

hyper-parameters chosen according to [6]. For the BRR we use the BLR package. Here,
the prior is provided as a list. There is one component in the list for each of the variance
parameters. In each component you need to provide prior degree of freedom and scale.

For more details refer to hel p(BLR) or see (Pérez et al. 2010).

Example 1. Ridgeregression Vs Bayesian Ridge Regression

r(list=ls())

I'i brary(BLR)

dat a(wheat)

y<-Y[, 2]

h2<-.2

df 0<-5

for(i in L:ncol (X)){ X[,i]l<-(X[,i]l-nmean(X[,i]))/sd(X,i]) }

K<-ncol (X) # after standardi zation, K=# of markers
| ambda<- K*(1- h2)/ h2

Se<- (1- h2)*var (y)*(df 0- 2)

Sh<-h2*var (y)*(df 0-2)/ K

round(Se/ Sh, 5) ==l anbda

Ri dge Regression

X2<- chi nd(1, X)

C<-crossprod(X2)

for(i in 2:ncol (Q){ di,i]l<- di,i]+l anbda }
Cl nv<-chol 2i nv(chol (C))

rhs<-crossprod(X2,vy)

bHat RR<-crossprod(Clnv, rhs)

yHat _RR<- X29% 9%bHat _RR

Bayesi an Ri dge Regression
l'ibrary(BLR)
prior<-list(varE=list(df=df0, S=Se) , varBR=li st (df=df 0, S=Sh))
f MBRR<- BLR(y=y, XR=X, pri or=pri or,
nl t er =13000, bur nl n=3000, saveAt='BRR ')

f mBRR$var E/ f nBRR$var BR
| anbda

t mp<-range(c(bHat _RR[- 1], f mBRR$bR))
pl ot (f MBRR$bR ~bHat _RR[- 1], xI i m=t np,

ylinmetnp, ,main="Estimtes of Marker Effects’',

x| ab=" Ri dge Regression', ylab="Bayesi an R dge Regression')
lines(x=c(-1,1),y=c(-1,1), col =2)

t np<-range(c(yHat _RR, f "BRR$yHat))
pl ot (f mMBRR$yHat ~yHat _RR, x| i net np, yl i m=t np, mai n=' Predi cti ons'

x| ab=" Ri dge Regression', ylab='"Bayesi an R dge Regression')
i nes(x=c(-10,10),y=c(-10,10), col =2, | wd=2)
Change the prior scale (e.g., double it) and evaluate the
in inferences

10

3.3. Bayesian Lasso: fixed versus random lambda

In this example we fit the Bayesian LASSO using BLR. The prior for parameter lambda
of the BL has four arguments: t ype, val ue, rate andshape.Iftype='fi xed

lambda is set equal to val ue and kept fixed. If t ype='random lambda is treated as
unknown; in this case a gamma prior is assigned to A°as described in Park and Casella
(2008). For more details type hel p(BLR) in R or see Pérez et al. (2010). We chose
values of the rate and shape parameters of the gamma prior so that the prior is flat in the
neighborhood of the value of lambda we derive from eq. [4]. The following code displays

the prior, run it and evaluates sensitivity with respect to rate and shape.

Example 2. Displaying prior of lambda of the BL

h2<-0.5

| anbdaO<-sqrt (2*K*(1- h2)/ h2)

| anbda<- seq(from=0, t 0=250, by=1)

dLanbda<- 2*| anbda* dganma(x=l anbda”2, r at e=le- 5, shape=0. 53)
pl ot (dLanbda~l anbda, type='1")

abl i ne(v=Il anbda0, col =2)

change rate and shape and evaluate sensitivity of the prior

11

Now we fit the BL with fix and random lambda.

Example 3. Bayesian L asso with fixed and random

r(list=ls())

I'i brary(BLR)

dat a(wheat)

y<-Y[,2] ; h2<-.5

df 0<-5

for(i in L:ncol (X)){ X[,i]l<-(X[,i]l-mean(X[,i]))/sd(X,i]) }

Se<- (1-h2) *var (y) *(df 0- 2)
| anbdaO<-sqrt (2*(1-h2)/ h2*ncol (X))

Bayesi an Lasso fixed | anbda #######HHAHFHHBHHAHTHHBHHBHTHHAHH
prior<-list(varE=list(df=df0, S=Se) ,
| anmbda=l i st (val ue=l anbdaO
type='fixed' ,rate=le-5, shape=.53))

fnBL_fi xed<- BLR(y=y, XL=X, pri or=pri or
nl t er =12000, bur nl n=2000, saveAt =' BL_fi xed_")

f mBL_f i xed$l anbda
| anbdaO

t np<-range(c(bHat _RR[- 1], f mBL_fi xed$bL))
pl ot (f nBL_fi xed$bL ~bHat RR[- 1], x| i met np, yl i met np)
lines(x=c(-1,1),y=c(-1,1),col =2)

t np<-range(c(yHat _RR fnBL_fi xed$yHat))
pl ot (f mBL_fi xed$yHat ~yHat _RR, x| i met np, yl i mrt np)
I'i nes(x=c(-10,10), y=c(-10, 10), col =2, | wd=2)

Now. change the value of |anbda (e.g., 30 and 200) and
eval uate the inpact on shrinkage of estimates

Bayesi an Lasso random | anbda ######HHAH#HHBHHBHTHHBHHBHTHHAHH
pri or $l anbda$t ype='r andont

f mBL_r and<- BLR(y=y, XL=X, pri or =pri or
nlter=12000, bur nl n=2000, saveAt ="' BL_rand_")

f nBL_r and$l anbda
| ambda0

t mp<-range(f nBL_r and$blL, f nBL_fi xed$bL)
pl ot (f mBL_rand$bL ~f nBL_fi xed$bL, xI i n¥t np, yl i nFt np)
lines(x=c(-1,1),y=c(-1,1), col =2)

t mp<-range(c(fnBL_rand$yHat, f nBL_fi xed$yHat))
pl ot (f mBL_r and$yHat ~f nBL_f i xed$yHat , xI i net np, yl i n¥t np)
i nes(x=c(-10,10), y=c(-10, 10), col =2, | wd=2)

12

3.4. Regression using markers and pedigree

So far we have regressed phenotypes on markers only. The following code gives an
example of models with and without pedigree. In the wheat dataset, matrix A is an

additive relationship matrix computed from the pedigree.

Example 4. Bayesian L asso with & without pedigree

#it#iH DATA #H#HHHH R R
r(list())
I'i brary(BLR)
dat a(wheat)
obj ect s()
y<- Y[’ 2]
set.seed(1235)
t st <-sanpl e(1: 599, si ze=150, r epl ace=FALSE)
yNA<-y
yNA[t st] <- NA

Mar kers nodel
prior<-list(varE=list(df=df0, S=Se) ,
| anbda=l i st (val ue=l anbda0, t ype='randomni ,
rat e=zle- 5, shape=. 53))

Model with only narkers
f mvk- BLR(y=yNA, XL=X, pri or=pri or,
nlter=12000, bur nl n=2000, saveAt="BL_M ')

prior $var U=l i st (df =df 0, S=Se/ 3)
f mPM<- BLR(y=yNA, XL=X, pri or=prior, G-=li st (A=A, | D=1: 599),
nl t er =12000, bur nl N=2000, saveAt ="' BL_PM ')

f rPMpvar E/ f mMBvar E
f nPMBI anbda/ f MVl anbda

cor(y[tst], fmvbyHat[tst])
cor(y[tst], fnPMpyHat [tst])

t mp<-range(c(f mvibL, f rPMBbL))
pl ot (f mvBbL ~f mPMBbL, xI i met mp, yl i met np)
lines(x=c(-1,1),y=c(-1,1),col =2)

t np<-range(c(f nPMbyHat , f rVbyHat))
pl ot (f nPMByHat ~f mvbyHat , xI i n¥t np, yl i n¥t np)
I'i nes(x=c(-10,10), y=c(-10, 10), col =2, | wd=2)

13

References

Habier, D., R. Fernando, K. Kizilkaya, and D. Garrick. 2011. “Extension of the Bayesian
Alphabet for Genomic Selection.” BMC Bioinformatics 12 (1): 186.

Ishwaran, H., and J. S Rao. 2005. “Spike and Slab Variable Selection: Frequentist and
Bayesian Strategies.” The Annals of Satistics 33 (2): 730-773.

Meuwissen, T H, B J Hayes, and M E Goddard. 2001. “Prediction of Total Genetic Value
Using Genome-wide Dense Marker Maps.” Genetics 157 (4) (April): 1819-1829.
Park, T., and G. Casella. 2008. “The Bayesian Lasso.” Journal of the American Satistical

Association 103 (482): 681-686.

Pérez, Paulino, Gustavo de los Campos, José Crossa, and Daniel Gianola. 2010.
“Genomic-Enabled Prediction Based on Molecular Markers and Pedigree Using the
Bayesian Linear Regression Package in R.” The Plant Genome Journal 3 (2): 106-
116. doi:10.3835/plantgenome2010.04.0005.

14

Statistical Methods for Genome-Enabled Prediction,
Lab 4:
Semi-parametric Genomic Regression Using Reproducing
Kerne Hilbert Spaces M ethods'

(gcampos@uab.edu)
Contents
4.1. Semi-parametric genome-enabled regreSSioNoovveeieeeiieiiee e 2
4.2. Reproducing Kernel Hilbert Spaces (RKHS) regressionsccocvveevveresieeseeniennnns 3
4.3. Scatter plot smoothing with a Gaussian Kernel............ccooevv i 5
4.4, InSPecting the HAt MatriXcccoiiiiieiiie et 7
4.5. Bayesian VIEW OF RKKHS ..o 8
4.6. Genomic-Enabled Prediction Using RKHS ... 9
O T 4 T ANV o o OSSP 12
4.8. Pedigree + Marker MOGEISc.ooeiiiiiiiii e 15
RETEIBINCES ...ttt ettt b ettt bt e be et st be et nneas 17

NOTE: In many examples in this lab we use Bayesian methods. In those examples we
make inferences based on a relatively small number of samples and this is done due to
time constraints. In practice, accurate inferences require much more samples.

! Suggestions made by Daniel Gianola are gratefully acknowledged.

mailto:gcampos@uab.edu�

4.1. Semi-parametric genome-enabled regression

In a standard regression model, the response, ., is expressed as the sum of a conditional
expectation function, g(x;), and a model residual, &, that is y, =g(x,)+¢& . In

previous labs we have focused on the case where g(x,) is a linear function of marker

genotypes, that is g(xi):sz:lx”ﬂj . Departures from the linear model could

theoretically be captured by extending the regression formula with addition of contrasts

between marker genotypes, for instance dominance (i.e., within-loci interaction of alleles)

could be modeled using dummy variables of the form dy.={1 if x,=1;0 ow}, and

similar contrasts could be used to model interaction of alleles at different loci (i.e.,
epitasis). However, with large p the number of possible interaction terms needed to
model even modest degree of interactions (e.g., 1s order epistatic interactions) is
extremely large and the problem becomes intractable.

Alternatively, we could try to capture departures from the linear model using
semi-parametric procedures. This was first suggested in the context of Genomic Selection
(GS) by Gianola, Fernando, and Stella (2006) who propose implementing GS using
various semi-parametric procedures. Since then, several existing semi parametric
procedures have been evaluated in GS. In this lab we focus on Reproducing Kernel

Hiblert Spaces (RKHS). Penalized Neural Networks are introduced in LAB 5.

4.2. Reproducing Kernel Hilbert Spaces (RKHS) regressions

Reproducing kernel Hilbert spaces (RKHS) methods are used for semi-parametric
modeling in different areas of application such as scatter-plot smoothing (e.g., smoothing
spline, Wahba, 1990; spatial smoothing (e.g., Kriging, Cressie 1988); classification
problems (e.g., support vector, Vapnik 1998), just to mention a few. Gianola, Fernando,
and Stella (2006) suggested using this methodology for semi-parametric genomic enabled
prediction. Since then, several authors have discussed and evaluated this methodology in
a genomic context.

Estimates in RKHS can be motivated as solution to a penalized optimization
problem in a RKHS of real-valued functions or, simply, as posterior modes in certain
class of Bayesian models. Next, we provide an overview of the methodology. Detailed
discussions of RKHS regressions in the context of genome-enabled prediction can be
found in Gianola and van Kaam (2008), de los Campos, Gianola, and Rosa 2009) and de

los Campos et al. (2010).

Penalized Regression in Reproducing Kernel Hilbert Spaces
In RKHS regressions we define the set of functions, or space, in which we
perform the regression by choosing a reproducing kernel (RK). Technically, the RK can

be any positive definite function? mapping from pairs of points in input space onto the

*For K(Xi ,Xi,) to be positive semi definite it must satisfy ZZai ai,K(X- X;)K(Xi ,Xi,)z 0 for
T

every non-null sequence {ai }

real line, that is K(xpr)i{(x,-»xf')_’m}- For reasons that we will discuss later in this
handout you can also think K(xr_,xr.,) as a co-variance function. For example, if the input

space consists of a pedigree additive relationships X (1D, D,) =a(ID,,ID,) constitute a

valid RK.
In RKHS regressions the evaluations of functions are expressed as linear

combinations of the basis functions provided by the reproducing kernel, RK, K(o X)

that is g(x z K(x,,X,), , and the squared of the norm of the function is given by

lof" =22 32 Klx;.x,

Stacking the evaluations of the function into a vector yields: g=Ka and

lo]* = 'K, whereg={g, }, K = {K,, = K(x,,x,)} and & ={a, }.

1 i’
Estimates in RKHS are usually obtained as the solution to the following penalized

residual sum of squares (intercept and non-maker effects omitted for ease of notation):

i = |(y-Ka)(y-Ka)+ daKa | [1]

argmin

above, (y—Ka)’(y—Ka) is a residual sum of squares, a’Ka is a penalty on model

complexity, which is taken to be the square of the norm of the function and 1 is a
regularization parameters.

The solution to the above optimization problem can be shown to be:
=[K'K+AK]*K'y. [2]
Predictions are then obtained as follows:

Ka=K[KK+K]'Ky =]+ "y [3]

therefore, K[K 'K + AK J*K "= [l + AK *]" is the Hat matrix of RKHS.

Model specification in RKHS regression is defined by two main elements®: the
choice of the reproducing kernel, this functions provide the basis functions and the inner
product which define the Hilbert Space, and 4 which, as in ridge regression, represents a

shrinkage parameter.

4.3. Scatter plot smoothing with a Gaussian kernel

In the following example we will use a RKHS regression to estimate a conditional
expectation function non-parametrically. In the example, there is a single predictor,
% €[0,27z] and the true conditional expectation function is g(x.) =120 +sin(x;) . Data

11D
was generated as y, =120 +sin(x;) + & where & ~ N(0,1). With this setting,

approximately 1/3™ of the variance of the response is explained by the conditional
expectation function and 2/3 by model residuals.
In this example we use the Gaussian kernel,
K (%, %) =exp{~hxd(x,x)}

where: d(x,x.) is a distance function which in this example we set to be a squared-

Euclidean distance, d(x;,x.)=(x —x.)* , and h is a bandwidth parameter controlling

® A third element pertains to the choice of the function used to measure model goodness/lack of fit to the
training data. Here we focus on the case where lack of fit is measured by the residual sum of squares; other
common choices are the negative of the log-likelihood, this allows modeling continuous, binary and other
types of outcomes. For binary outcomes another popular choice is the hinge function, the support vector
machine (Vapnik 1998) is a special case of RKHS where the loss-function is chosen to be a hinge function
(Wahba 1990).

how fast the kernel decay as the two points, (xi , x,) get further apart. In the example we

evaluate the effects of h (which defines the RK) and of 1.
¢ Run the code with the values of h and A given in the example.
e Set h=1/1000, this makes the kernel extremely global, and run the code.
e Set h=50, this makes the kernel extremely local, and run the code.

e Now fix h=1 and change lambda, evaluate £&=200, then £=1/100, evaluate results.

Example 1. Scatter-plot smoothing with a Gaussian kernel

S| MULAT| ONB#ERHHARHH AR HH AR H AR H AR H AR SRR R
set.seed(12345)
N<- 200
x<-seq(frome0, t 0=2*pi, | engt h=N)
si gnal <-si n(x)
error<-rnormN)
y<-si gnal +error
h<-1
| anbda<- 10
DI STANCE FUNCTI ON AND REPRODUCI NG KERNEL
D<-as. matri x(di st(x, met hod="eucl i dean"))"2
K<- exp(-h*D)
di ag(K) <-di ag(K) +.001

FI TTI NG THE MODEL ####H##AHHAHHAHHBHHBHHHHHBHHRHHH
yStar<-y-mean(y)
Kl nv<- chol 2i nv(chol (K))
C<- Kl nv*| anbda
di ag(C) <-diag(C +1
H<-chol 2i nv(chol (C)) # the Hat matrix
uHat <- H# % y- nean(y))

pl ot (y~x, mai n=paste("|anbda=",|anbda," h=", h, sep=""))
i nes(x=x, y=si gnal, col =2, | wd=2)
i nes(x=x, y=uHat +mean(y), col =4, | wd=2)

want to nake the function |less |ocal ? set h=1/1000,
want to nake it extrenely |ocal? set h=100
Now fix h=1 and change | anbda = 200 then | anbda= 1/100

4.4. Inspecting the Hat Matrix

From eq. [3] predictions are obtained as 9:[I+K*l/1]y=Hy , Where,

H ={hij}=[| +K‘12.]_1, therefore, grj:Zhyyj . The following code displays the
J

entries of the hat matrix of Example 1. You can evaluate the impact of the bandwidth

parameter on the weights by changing (in Example 1) h.

Example 2. Displaying the entries of the Hat matrix in RKHS
S| MULAT| ONBHHHHH T

r(list=ls())
set . seed(12345)
N<- 200

x<-seq(frome0, t 0=2*pi, | engt h=N)
si gnal <-si n(x)
error<-rnornm(N)
y<-si gnal +error
h<-1
| anbda<- 10
DI STANCE FUNCTI ON AND REPRODUCI NG KERNEL
D<-as. matri x(di st (x, met hod="eucl i dean"))"2
K<- exp(-h*D)
di ag(K) <-di ag(K) +.001

#i## Hat Natri x #EH#HAHAHR TR R R R R
ySt ar <-y-nmean(y)
Kl nv<- chol 2i nv(chol (K))
C<- Kl nv*| anbda
di ag(C) <-diag(C +1
H<-chol 2i nv(chol (C)) # the Hat matrix
#i## Plotts the ith row of H ######H#HHHHHHHHRTRTRTRITHHHS

r ow<- 50
pl ot (H row,] ~x, main="",6xlab="x(j)",
type="I1", ylab="h(i,j)", col =2)

abl i ne(v=x[row], col =4) ; abline(h=0)

4.5. Bayesian view of RKHS

The solution to the penalized RKHS regression (see eg. [1]) can be shown to be the same
than the posterior mode of the vector of regression coefficients in the following Bayesian

model:
([y=Ka+¢

g, lo? 0
o.,04 |~ N[O, 0 K-lg?

o

N

L
[4]

where 1 =c’0,”. The proof of the equivalence between the posterior mode of a in the

Bayesian model described in [4] and the solution given in [2] can be obtained following
the same steps used in section 2.5 of LAB 2.

Further, changing variables in [4] from Ka to g=Ka, and noting from the
properties of the MVN density (see section 2.6 of LAB 2) that g ~ MVN(O, Kaé) , Where

o’ =o¢, we obtain an equivalent representation of [4],

e

y=g+e
o> 0

0 KGS

A
32

[5]

Therefore, from the Bayesian perspective, the evaluations of functions at points in the

input space, gz{g(xi)} are viewed as realizations from Gaussian process satisfying:

K(x;, %)

VKOG XK (%) |

(co)variance function whcih defines a notion of smoothens of the function with respect to

Cor[g(x,) o(x,)] = Here, the RK K(x,,x,) is viewed as a

points in the input space (genotypes in our case). A high value of Cor[g(x;), g(x;)]
implies that, a-priori, we expect the function to behave smoothly when we jump from x,
to x, . At the same time, this means vy, is informative about g(x,) and that y, informs
us something about g(x;).

Special cases. Certain parametric models appear as special cases of RKHS
regression. For instance, if our information set consists of a pedigree and K is a matrix
of additive relationship matrix, the model defined by [1] is equivalent to the infinitesimal
additive model, the so-called Animal Model. The Bayesian ridge regression and GBLUP
(see section 2.6 of LAB 2) is another example of a parametric model that can be
represented as a RKHS, this is obtained by setting K = XX". These are examples where
the RK is chosen so as to represent the types of patterns expected under a parametric
model. Another alternative is to choose kernels based on their performance (e.g.,

predictive ability). In this lab we will focus on this second approach.

4.6. Genomic-Enabled Prediction Using RKHS

In this section we use the Gaussian kernel for genomic-enabled prediction. To this end,

we replace the distance function by a genomic-distance. For instance, we can set

d(x;,x;)= Z(xij — X4 J? ; the Gaussian kernel becomes: K (x;, %)= exp{-hx d(x;,x;)}.
j

The function di st () of R takes tow arguments: x which should be a numeric vector or
matrix, and methods, which should be a string indicating the method fro computing
distances. By default the Euclidean distance is computed. Type hel p(di st) for further
details. The function returns an object, which can be converted to an nxn matrix,
containing pairwise distance between the rows of X.

The example below fits the model over a grid of values of the bandwidth
parameter (h) and evaluates the effect of it on goodness of fit, model complexity and
predictive ability.

¢ Run the code;

e Evaluate how goodness of fit and predictive ability changes with h

N

e Howdoes 1= g

2~ changes with h?

Oy

10

Example 3. RKHS for Genomic Prediction

r(list=ls())

setwd(' ~/ Dropbox/ Arm dal e/ ")

| oad(" PROGRAMS/ RKHS/ RKHS. r da")
I'i brary(BLR)

dat a(wheat)

DI STANCE NATRI X #####H##HHHHHHHHHHHHH SRR RS
D<-as. matri x(di st (X, met hod="eucl i dean"))”"2
D<- D/ nean(D)
h<-c(le-2,.1,.4,.8,1.5,3,5)

GENERATES TESTI| NG SET #######H#HAH#HHHAHHIHIHHHH
set.seed(12345)
t st <-sanpl e(1: 599, si ze=100, r epl ace=FALSE)
y<- Y[’ 4]
yNA<-y
yNA[tst] <-NA

FI TS MODELS ######HHHH# R HHHH TR HHH T
PMBE<- numeric() ; VARE<-numeric(); VARU-numeric()
pD<-numeric(); DI C<-nuneric()
frlist<-list()
for(i in 1:length(h)){

print(paste('Wrking with h=",h[i],sep=""))
COWPUTES THE KERNEL
K<-exp(-h[i]*D)
FITS THE MODEL
prefix<- paste(h[i], "_",sep="")
f me- RKHS(y=yNA, K=l i st (1i st (K=K, df 0=5, S0=2)),
nl t er =5000, bur nl Nn=1000, df 0=5, S0=2, saveAt =pr ef i x)
frlist[[i]]<-fm
PVSE[i] <-mean((y[tst]-fnbyHat[tst])"2)
VARE[i] <-f nfvar E
VARU[i] <-fnBK[[1]] $var U
DICi]<-fnfit$DI C
pD[i]<-fnsfit$pD
}
R2<-1- PMSE/ nean((y[tst]-nean(y[-tst]))"2)

#i## PLOTS ####HH#HHHHHAH IR TR
pl ot (VARE~h, x| ab="Bandwi dt h", yl ab="Resi dual Variance",type="0", col =4)

pl ot (1 (VARE/ VARU) ~h, x| ab="Bandw dt h",
yl ab="variance ratio (noise/signal)",type="0", col =4)

pl ot (pD~h, xI ab="Bandwi dt h", yl ab="pD", type="0", col =2)
pl ot (DI C~h, xI ab="Bandwi dt h", ylab="DI C', type="0", col =2)

pl ot (R2~h, xl ab="Bandwi dt h", yl ab="R-squared", type="0", col =2)

11

4.7. Kernel Averaging

The choice of the RK (its functional form and the values of parameters such as the
bandwidth) constitutes the central element of model specification in RKHS regressions.
There are several ways of choosing a kernel. In parametric models, the RK is chosen to
represent the type of patterns expected under a particular parametric model (e.g., additive
infinitesimal, K=A; linear model, K=XX"). Form a non-parametric perspective one can
choose kernels based on the performance of the model, e.g., predictive ability; an
illustration of this was provided in the previous example where a validation set was used
to evaluate predictive ability of RKHS using a Gaussian kernel, over a grid of values of
the bandwidth parameter.

A third way is by inferring the kernel from the data. For instance, in a Bayesian
context one could assign a prior to the bandwidth parameter and infer this parameter
jointly with other unknowns. While this is appealing, it is computationally demanding for
at least two reasons: (a) the RK must be re-computed every time a new value of the
bandwidth parameter is sampled; (b) mixing may be poor. This occurs because, usually,
variance parameters and the bandwidth parameter are highly correlated at the posterior
distribution. An alternative which we consider here is to offer the algorithm all candidate
kernels jointly. For instance, we can make the conditional expectation to be a sum of

several random effects, {gl,...,g,\,k } each of which has its own (co)variance function, the

model becomes:

12

Ny
y=1u+) g, +
k=1

Ny
p(s,gl,...,g,\,k 052, asl,..,ast): N(a|0, I af)H N(gk|0, K kaék)
k=1
It can be shown that, conditional on variance parameters, the above model is

equivalent to one with a single random effect, g, whose prior distribution is N(g|0, Kaé)

where: K =Ko, +K,a, +...+K N, O, 18 @weighted sum of the candidate kernels with

2
O-gk
2

Oy

weight given by «, =

and a; = Zaék . Variance parameter here can then be seen
k

as weights associated to each kernel which can be inferred from the data. The larger the
variance associated to a given kernel the larger the contribution of that random effect to
the conditional expectation We refer to this approach as kernel averaging (KA, de los
Campos et al., 2010).

The following example illustrates the use of KA; the sequence of kernels was
generated using the Gaussian kernel and the values of the bandwidth parameter used in
our previous example.

¢ Run the code below.

e What Kernel gets higher weight?

e Is that the Kernel that gave highest predictive ability in our previous
example?

e Compare the predictive ability of KA with that of models fitted in our

previous example (i.e., single kernel with fixed bandwidth).

13

Example 4. Kernel Averaging

r(list=ls())
setwd(' ~/ Dropbox/ Armi dal e/') ; | oad("PROGRAMS/ RKHS/ RKHS. r da")

I'ibrary(BLR)

dat a(wheat)

D<-as. matrix(di st (X, net hod="eucl i dean"))"2
D<- D/ nean(D)

h<-c(le-2,.1,.4,.8,1.5,3,5)

GENERATES TESTI NG SET ######H###H#HBHH#HHHHHBHH#HH
set. seed(12345)
t st <-sanpl e(1: 599, si ze=100, r epl ace=FALSE)
y<-Y[, 4]
yNA<-y
yNA[t st] <- NA

#H## FI TS MODELS #####H#HHHHAH A HAH IR H R R
PMSE<- nuneri c()
VARE<- nuneri c()
KLi st<-list()
for(i in 1:1ength(h)){
KList[[i]]<-list(K=exp(-h[i]*D), df0=5, SO=.5)

Di splays entries of different kernels
pl ot (KLi st[[1]] $K[100,],ylimec(0, 1), col =2); abl i ne(v=100)
pl ot (KLi st[[5]]$K[100,], ylimec(0, 1), col =2); abl i ne(v=100)

f MKA<- RKHS(y=yNA, K=KLi st , t hi n=10,
nl t er =25000, bur nl n=5000, df 0=5, S0=1, saveAt ="KA ")

VARG<- nuneri c()
for(i in l:length(KList)){ VARFIi]<-fnKA$K[[i]]$varU }
wei ght s<-r ound(VARG sun(VARG , 5)

PVSE<- mean((y[tst]-fnKASyHat[tst])"2)
R2_KA<-1-PMBE/ nean((y[tst]-mean(y[-tst]))"2)

conpare with results obtained in the previous exanple
take a look at the trace plots of variance paraneters

14

4.8. Pedigree + Marker Models

The following code compares the entries of a pedigree-based additive relationship matrix
versus that of two marker-based genomic relationships. The first one (XX , denoted as
XXt) is the co-variance structure corresponding to a linear regression on marker-
covariates with 11D normal marker effects (what we have called the Bayesian Ridge

Regression). The second one (denot ed as K) is a Gaussian kernel.

Example5. Pedigree Vs marker based relationship matrices

rm(list=ls())

I'i brary(BLR)

setwd(' ~/ Dropbox/ Armi dal e/"') ; | oad("PROGRAMS/ RKHS/ RKHS. r da")

data(wheat) ; for(i in 1l:ncol (X)){ X ,i]l<-(X[,i]l-mean(X[,i]))/sd(X,i]) }

D<-as. matri x(X, met hod=' eucl i dean') "2
D<- DY nean(D)

K<- exp(-2*D)

G-tcrossprod(X)/ncol (X)

plot of entries of XXt versus A

t mpX<-as. vector (A

t npY<-as. vector (Q

t np<-range(c(tnpX tnpY))

pl ot (t mpY~t mpX, xl ab=" A" , yl ab=" G , cex=0. 3, col =2, xI i m=t np, yl i met mp)

15

Example 6. RKHS with markersand pedigree

r(list=ls())

I'i brary(BLR)

setwd(' ~/ Dropbox/ Armidal e/') ; | oad("PROGRAVS/ RKHS/ RKHS. r da")

data(wheat) ; for(i in Ll:ncol (X){ X ,i]l<-(X,i]l-mean(X[,i]))/sd(X,i]) }

Cenerates Testing Sets #H##H#HHHAHHHBHHHBHHHBHHH
set. seed(12345)
t st <- sanpl e(1: 599, si ze=100, r epl ace=FALSE)
y<-Y[,4] ; yNA<-y; yNA[tst]<-NA, KList<-list()

First the pedigree-nodel #####HHARHHTRHHTRHHY
KLi st[[1]]<-1ist(K=A, df 0=5, SO=. 2)
f mP<- RKHS(y=yNA, K=KLi st, t hi n=10,
nlt er=6000, bur nl n=1000, df =5, S0=1, saveAt="P_")
PMBE<- mean((y[tst]-fnP$yHat[tst])"2)
R2_P<-1-PMSE /nmean((y[tst]-nmean(y[-tst]))"2)

Now Mar Ker s ####BHHHHHHHIHHHHHHH TR
G<-tcrossprod(X)/ ncol (X
KLi st[[1]]<-list(K=G df 0=5, SO=. 2)
f mvk- RKHS(y=yNA, K=KLi st , t hi n=10
nl t er =6000, bur nl Nn=1000, df =5, S0=1, saveAt ="M ")
PMBE<- nmean((y[tst]-fnmMbyHat[tst])"2)
R2_Mk-1-PMSE /mean((y[tst]-mean(y[-tst]))"2)

Now Markers and pedi gr ee ######H#HHAHHTHHAHHE
KLi st[[1]]<-1ist(K=A, df 0=5, S0=. 1)
KLi st[[2]]<-1ist(K=G, df 0=5, SO0=. 1)

f mPMc- RKHS(y=yNA, K=KLi st , t hi n=10,

nl t er =6000, bur nl N=1000, df =5, S0=1, saveAt="PM ")
PVSE<- nmean((y[tst]-fnPMbyHat[tst])"2)
R2_PMk-1- PMSE /nean((y[tst]-nean(y[-tst]))"2)

Now Let's add XXt #XXt HHHHHHHHHEHHIRIHE
KLi st[[1]]<-1i st (K=A df 0=5, SO=. 1)
KLi st[[2]]<-1i st (K=G df 0=5, SO=. 05)
KLi st[[3]]<-1ist (K=l (G2), df 0=5, SO=. 05)

f mMPMR<- RKHS(y=yNA, K=KLi st , t hi n=10,

nlt er=15000, bur nl n=5000, df =5, SO0=1, saveAt ="PM2_")
PMBE<- mean((y[tst]-fnPMe$yHat[tst])"2)
R2_PM2<-1- PMSE /nean((y[tst]-nean(y[-tst]))"2)

I'i brary(graphics)
bar pl ot (hei ght=c(R2_P,R2. M R2_ PM R2_PM2) ,
nanes.arg=c('P',"M,"'PM,'PM"), ylab="R-sq. TRN set', col =2)
Take a |l ook at trace plots of variance paraneters

16

References

de los Campos, G., D. Gianola, G. J. M. Rosa, K. A Weigel, and J. Crossa. 2010. “Semi-
parametric Genomic-enabled Prediction of Genetic Values Using Reproducing
Kernel Hilbert Spaces Methods.” Genetics Research 92 (04): 295-308.

de los Campos, G., D. Gianola, and G. J.M Rosa. 2009. “Reproducing Kernel Hilbert
Spaces Regression: a General Framework for Genetic Evaluation.” Journal of
Animal Science 87 (6): 1883.

Cressie, N. 1988. “Spatial Prediction and Ordinary Kriging.” Mathematical Geology 20
(4): 405-421.

Gianola, D., and J. B van Kaam. 2008. “Reproducing Kernel Hilbert Spaces Regression
Methods for Genomic Assisted Prediction of Quantitative Traits.” Genetics 178
(4): 2289.

Gianola, Daniel, Rohan L. Fernando, and Alessandra Stella. 2006. “Genomic-Assisted
Prediction of Genetic Value With Semiparametric Procedures.” Genetics 173 (3)
(July 1): 1761-1776. doi:10.1534/genetics.105.049510.

Vapnik, V. N. 1998. “Statistical Learning Theory.”

Wahba, G. 1990. “Spline Methods for Observational Data.” SIAM: Philadel phia.

17

Statistical Methods for Genome-Enabled Prediction,
LAB 5:

Penalized Neural Networks!

(gcampos@uab.edu)

Contents

T8 B [Ao Yo [0 4T o I TSSO TORTORITOR
5.2. Scatterplot smoothing using @ PeNAliZEd NNcccci o i e rre e e e e s enrr e e e e e e e
5.3. Penalized Neural Network Using Pre-selected Markers. ... rieeeeeiiccccieieeee e eeecreieee e eeecveeeee e e
5.4. Penalized Neural Networks Using Marker-derived Basis Functions as INputsccccccceeeeeveecccvceeeeennn.

R T =] oL TR

! Suggestions made by Paulino Pérez are gratefully acknowledged.

mailto:gcampos@uab.edu�

5.1. Introduction

In linear regression models the conditional expectation is represented as a weighted sum of input

14
variables, E(ny}_):E lefﬁf' Many non-linear patterns can be represented linearly by appropriate
J=d

M M
choice of basis functions: E(yf‘xi) = 2 qﬁ(xr_)wm where, { ¢, (xj) } are the basis functions, which

m=0 srr=1

map from the input variables onto the real line. An example of these are the polynomial basis functions:
M

D= {(om(xi): X" }m:O' For instance, if M=2 we have the 2™ degree polynomial basis functions,

D= {1, X, X }; therefore, E(yi |Xi)= By + BX + B,X . Other common examples of non-linear basis

functions are the power, logarithm and exponential functions. With this types of basis functions each of
the regression coefficients affect the behavior of the conditional expectation in the entire input space, and
this may limit the ability of a model to capture the local behavior of the conditional expectation.

Local basis functions can be used to model a conditional expectation within certain regions of the
input space. Splines represent an example of this. In a spline, polynomial basis functions are used to
represent the regression function within boundaries defined by a set of knots. The Gaussian kernel

i

—h i~tm .
discussed in LAB4 is another example of a local basis function, here (pm(xi) . h): e bt where t_ is

a focal point and / is a bandwidth parameter which controls how fast the basis function decay as X; gets

further apart from the focal point. Model specification in this case pertains to the choice of focal points

(how many and where in input space should be placed) and of the bandwidth parameter. In the RKHS

regressions of LAB4, the strategy was to ‘offer’ the model a large set of basis functions (one per subject in
2

the sample) generated by setting t, = X,,t, = X,,..,t, =X, ; therefore E(yi |Xi)= Zin,:lai, X (-:‘41H)(i |

. This strategy may induce over-fitting and this was confronted by using shrinkage estimation procedures.

This is approach is also used in smoothing spline (Craven and Wahba 1978; Wahba 1991).

Non-linear basis functions such as the ones described above offer great potential for capturing
potentially complex patterns between input and output variables; however, the set of basis functions
needs to be defined a-priori. In Neural Networks (NN) the basis functions used for regression are inferred
(i.e., are data driven), this gives NN great potential for capturing potentially complex patterns.

One of the simplest NNs is the single hidden layer feed-forward NN. This NN can be thought as
non-linear regressions consisting of two steps (Hastie, Tibshirani, and Friedman 2009): in the first one (or

hidden layer) the basis functions are inferred, and in the second one (or output layer) the output, y, is

regressed on the basis function inferred in the hidden layer. A graphical representation of such NN is given

2

in Figure 1. The term feed-forward is used to highlight that in these NNs information flows from inputs

(the X;’s) to output (the Y, ’s), other NN allow feedbacks.

M
Output y = bo +Z

=

zZ w +&
1 Tmim i

r Y
A

Hiaden z,=9, (”‘..—'} : ' S ¢m(_“w’] : ' - =0y (”J.f.-')
Layer 1 t t
£ & r
u, = b, -I—Z X Wy, u,=b+ Z X W Uy, = by + Z xWyy

Input X

11 * *

Figure 1. Graphical Representation of Single Hidden Layer Feed-Forward Neural Network for a Continuous

Response (yi) and p predictor variables (xh_,...,xz_p). The network contains M neurons. At each neuron,

. N . r . .

linear combinations of the predictors (z . =b _+ E x. w .)areinferred and subsequently activated
mi mo j=1 4 m

z = ¢m (Hm) . These basis functions are then used in the output layer to regress the output variable

A
using a linear model (yi_ = bo +Z W +£I_).
m=

P
As illustrated in Figure 1, in the hidden layer M basis functions, qom(bmo+z_ lxijwny_), are
I

inferred (one at each neuron). Each of these basis functions consist of a linear score,

P . . — .
u =b + E X w ., activated by a non-linear activation function, ¢ ()
mi mo j=1 4 m m

In the output layer, the outcome, Y,, is regressed on the basis functions using an additive model.

The example of Figure 1 is for a continuous response; in many applications with NN the outcome is either
binary or polychotomous. In those cases an additional activation functions are added in the output layer.
Note that, if the activation function of the hidden and output layers are identity functions (i.e.,

gom(ufm):ufm the model of Figure 1 becomes a standard multiple linear regression model. Moreover, if

we set the @ () to be the basis functions of a reproducing kernel (see LAB4), the NN of Figure 1 becomes

the RKHS regression. Therefore, we can view the NN of figure 1 as a general framework that includes the
linear model and the RKHS as special cases.

The activation functions of the hidden layers map from the real line onto the [0,1] interval, and a

common choice is to set this to be a sigmoid function. For instance we could use ¢5m(Zmi) = oot for
+e "

some @ > 0.

Architecture of a Neural Network. The elements that define model specification in NN are: (a) the
choice of input variables, (b) the type of network (e.g., feed-forward), (c) the number of layers, (d) the
number of neurons per layer, and (d) the choice of activation functions. In general the term ‘architecture’
of the network is used to referred to the choices made in (b)-(d).

Penalized Neural Networks. The set of parameters to be estimated in the NN of Figure 1 include:
all the intercepts and regression coefficients at each neurons, the parameters of the activation functions,
and the intercept and regression coefficients of the output layer. With large p, and with several neurons,
the total number of parameters to be estimated can be huge. This, together with the intrinsic flexibility of
the NN, can easily yield over-fitting and poor predictive performance. To prevent this, a common strategy
is to fit the neural network using penalized methods such as those discussed in LAB2. Therefore, in a
penalized NN, parameters are estimated by minimizing an objective function consisting of a lack-of fit
function (e.g., a residual sum of squares) plus a penalty on model complexity. Any of the penalties
discussed in LAB 2 can be used; however, a common choice is to set the penalty to be the of regression
coefficients (usually intercepts are not penalized).

In what remains of the lab we illustrate the use of penalized NN using a beta version of the R-
package t r ai nbr . This package was developed and kindly shared by Paulino Perez.

5.2. Scatterplot smoothing using a penalized NN

The following example illustrates the use of penalized NN for scatter-plot smoothing.

Example 1. Scatter-plot smoothing Using a Neural Network

rm(list=ls());library(trainbr) ; library(splines)
S| MULATI ON (sanme as the one used in Ex. 1 of LAB4)
set. seed(12345)
N<- 200
x<-seq(from=0, t 0=2*pi, | engt h=N)
si gnal <-si n(x)
error<-rnornmN)
y<-si gnal +error

for train-br the ouconme variable needs to be standardized to [0, 1]
yStd<-normali ze(y)
signal Std<-2*(signal-mn(y))/(max(y)-mn(y))-1

Various paranmetric nodels
| mi<-1 m(y~x)
pol y3<-1 m(ySt d~x+l (x"2) +I (x*3))
Natural spline with 4 knots
X<- ns(x=x, df =4)
f MNS<- | m(ySt d~X)
Neural Networks with 1,2,3 and 5 nuerons
NN1<-trai nbr (y=yStd, X=as. matri x(x), neurons=1)
yHat NN_1<- predi ctions. nn(X=as. matri x(x), t het a=NN1$t het a, neurons=1)

NN2<-t rai nbr (y=ySt d, X=as. matri x(x), neurons=2)
yHat NN_2<-predi ctions. nn(X=as. matri x(x),theta=NN2$t heta, neurons=2)

NN3<-trai nbr (y=yStd, X=as. mat ri x(x), neur ons=3)
yHat NN_3<-predi ctions. nn(X=as. matri x(x),theta=NN3%t heta, neurons=3)

NN4<-trai nbr (y=yStd, X=as. matri x(x), neur ons=4)
yHat NN_4<- predi cti ons. nn(X=as. matri x(x),t het a=NN4$t het a, neur ons=4)

NN5<-trai nbr (y=yStd, X=as. mat ri x(x), neur ons=5)
yHat NN_5<- predi ctions. nn(X=as. matri x(x),theta=NN5$t het a, neurons=5)

#(conti nues next page)

Example 1. Scatter-plot smoothing Using a Neural Network

(FROM PREVI QUS PAGCE)

R- Squar ed #HH#H#HHAHHHHBHHBHTHHBHHBHTHHBHHHH TR
R2_I mx- 1- mean((si gnal Std-predict(lnl))”2)/var(signal Std)
R2_pl y3<-1- nean((signal Std-predict(poly3))~2)/var(signal Std)
R2_NS<-1- nean((signal Std-predict(fnNS))~2)/var(signal Std)
R2_NN<- nuneri c()
R2_NN[1] <- 1- nean((si gnal St d- yHat NN_1) ~2)/ var (si gnal St d)
R2_NN[2] <- 1- nean((si gnal St d- yHat NN_2) ~2)/ var (si gnal St d)
R2_NN[3] <- 1- nean((si gnal St d- yHat NN_3) ~2)/ var (si gnal St d)
R2_NN 4] <- 1- mean((si gnal St d-yHat NN_5) ~2)/ var (si ghal St d)
R2_NN[5] <- 1- mean((si gnal St d-yHat NN_5)~2)/ var (si ghal St d)

Pl ot s #HAHHHBHEHSHHHHHHHHHHRH TR R R R R R R
pl ot (yStd~x, col =1, cex=. 5)
I i nes(x=x, y=signal Std, | wd=2, col =2)
I i nes(x=x, y=yHat NN_3, col =4, | wd=4, | t y=2)

pl ot (R2_NN~I (1: 5),
x| ab=" Nurmber of Neurons',ylab='R2(Pred. vs signal', type='0o'
, col =4)

abl i ne(h=R2_NS, col =4, | t y=2)

Example 1 illustrates the flexibility that NNs have in terms of capturing complex patters: starting from a
single predictor, the NN generated complexity by inferring multiple basis functions which were able to
capture the non-linear patterns between inputs and outputs very well. The example uses a single
predictor, but as illustrated in Figure 1 the method could also be applied to multiple-predictors. However,
with large p and with multiple neurons, the computational requirements increase substantially.

5.3. Penalized Neural Network Using Pre-selected Markers

In Example 2 we first select the top p markers from single marker regressions and subsequently

offer these markers to a NN with 3 neurons.

Example 2: Penalized Neural Network Applied to Pre-selected Markers

r(list=ls())

#it#t DATA #HHHAHHHBHHHBHHH B H AR H TR H PR PR TR R H
library(BLR) ; library(trainbr) ; data(wheat)
N<-nrowm X) ; p<-ncol (X)
y<-Y[. 4]

y<-normalize(y)
set.seed(1235)
t st <-sanpl e(1: N, si ze=150, r epl ace=FALSE)
XTRN<- X[-tst,] ; YyTRN<-y[-tst]
XTST<-X[tst,] ; yTST<-y[tst]
S| NGLE MARKER REGRESSI ONS #####H###H#HHHHHBHHHHHHHH
pVal ues<- nuneri c()
for(i in 1:p){
frx-1 M yTRN-XTRN , i])
pVal ues[i] <-summary(fm $coef[2, 4]
print(paste('Fitting Marker ',i,"'!" sep=""))
}
nMar ker s<- 75
sel SNPs<- order (pVal ues) [1: niar ker s]
XTRN<- XTRN[, sel SNPs]
XTST<- XTST[, sel SNPs]

Neur al Networ k ####H#H#BHHHHHHHBHHHHHH AR HH TR
NN<- t r ai nbr (y=yTRN, X=XTRN, neur ons=4, epochs=100)
yHat NNk- predi cti ons. nn(X=XTST, t het a=NN$t het a, neur ons=4)
cor(yHat NN, y[tst])

Change the nunber of pre-selected nmarkers (line 22) and nunber of
Neurons (lines 28 and 29) and experinment.

5.4. Penalized Neural Networks Using Marker-derived Basis Functions as Inputs

In Example 2 we pre-selected markers, another strategy consist of first mapping the input

information into some basis functions (e.g., using a reproducing kernel or using genomic relationships) and

then applying the NN to these basis functions. For instance, Gianola et al. (2011) suggested using the

additive relationships as basis functions, by so doing we reduce the number of input variables of the NN

from p to n. In Example 3 we illustrate this approach by using as inputs to the NN marker-derived principal

components.

Example 3: Penalized Neural Network Applied to Marker-derived Principal Components

r(list=ls())
#it#t DATA HHHHAHHHBHHHBHHH B H AR H PR H PR PR TR R H
library(BLR) ;library(trainbr) ; data(wheat)
for(i in L:ncol (X)){ X[,i]<-X[,i]-mean(X[,i])}
N<-nrow(X) ; p<-ncol (X)
y<-Y[, 4]
y<-nornal i ze(y)
Pcs
SVD<- svd(X, nu=599, nv=0)
PC<-SVD$u ; for(i in 1l:ncol (PC){ PC,i]<-PC,i]*SVvD$d[i] }
pl ot (PC, 1: 2], col =4)
set.seed(1235)
tst<-sanpl e(1l: N, si ze=150, r epl ace=FALSE)
YTRN<-y[-tst]
yTST<-y[tst]
PCTrn<-P(-tst,]

PCTst<-P(t st ,]

nPC<- 300

NN<-t rai nbr (y=yTRN, X=PCTrn[, 1 : nPC], neurons=3, epochs=150)

yHat NN<- pr edi cti ons. nn(X=PCTst [, 1: nPC] , t het a=NN$t het a,
neurons=c(| engt h(NN$t het a) - 1))

cor (yHat NN, yTST)

References

Craven, P., and G. Wahba. 1978. “Smoothing Noisy Data with Spline Functions.” Numerische Mathematik
31 (4): 377-403.

Gianola, D., H. Okut, K. Weigel, and G. Rosa. 2011. “Predicting Complex Quantitative Traits with Bayesian
Neural Networks: a Case Study with Jersey Cows and Wheat.” BMC Genetics 12 (1): 87.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Second Edition. 2nd ed. 2009. Corr. 3rd printing 5th Printing. Springer.

Wahba, G. 1991. “Spline Functions for Observational Data.” SIAM, Philadelphia, PA.

Statistical Methods for Genome-Enabled Prediction,
LAB 6:
Validation M ethods!

(gcampos@uab.edu)

Contents
Lo (014 o T [¥ T o] o W PP U PP VRPN
6.2. Alternative Validation SChEMESoi it
6.3. Between sub-population prediction ... e
6.4. Across environment prediction using single-trait Models.........oooccviiiieeii e,
REFEIEINCES ..ttt ettt et e bt e s bt e s ht e s a b e e abe e bt e bt e bt e eae e e ateeabeeabeeabeeabeesbeesatesaneeabeeane

i NOTE: In many examples in this lab we use Bayesian methods. In those examples we make inferences based |

1

on a relatively small number of samples and this is done due to time constraints. In practice, accurate
inferences require much more samples. |

! Suggestions made by Daniel Gianola are gratefully acknowledged.

mailto:gcampos@uab.edu�

6.1. Introduction

Prediction is a central problem in plant and animal breeding and in many other domains. It is natural to
compare models based on their ability to predict future outcomes. Validation methods aim at estimating
the distribution (or features of it, e.g., the variance) of prediction errors.

Prediction error. Let Sy ={yi,xi} denote the available training data, M a model (or
algorithm) and {ynaN,XneW} an un-observed data point that we want to predict. The algorithm processes

the training sample and derives a prediction: f/naN(Xnew, M, Siry) Example: using training data, Sy,
and a linear model (M) we estimate marker effects and then we use the estimated marker effects and
the genotypes of candidates of selection (X,) to derive predictions. The prediction error is

& =y _—j} . Model performance can then be assessed using features of the distribution of
Hew Hew Hew
prediction errors.

Validation methods. Deriving a closed form for the distribution of prediction errors requires
making assumptions about the true data generating process. In practice we do not know such process
and models are, at best, good approximations. However, if we are able to draw a large number of

~

samples from the desired prediction errors{g }, we can then estimate features of the density of

new.i

prediction errors using Monte Carlo methods. For instance, given a large number of sample of prediction
errors we could estimate the proportion of variance of future phenotypes accounted for by predictions

~2
E & .
i new.i

using an R-squared type statistic: R;ST =1- I

> (G =F)

1

In practice we have only a finite sample of data and most validation methods emulate the
sampling process by sampling data points using some type of resampling method. There are different
types of prediction errors, and the design of the validation scheme will determine what type of
prediction errors are we describing.

Conditional error. Typically, we want to estimate the distribution of the prediction error given
the training sample, that is, p(énaN|SrRN). Here, prediction errors are random variables because they
are functions of yet-to-be-observed genotypes and phenotypes. Intuitively, we can obtain draws from
the distribution of conditional errors by first fitting the model (only once) to the available TRN sample

and subsequently evaluating the prediction accuracy of the model we derived by sampling testing
samples.

Marginal prediction errors are obtained by averaging the density of conditional errors over all

possible realizations of the training sample: p(£,,) = E[p(énew|SrRN)]:J. p(énew|SrRN)p(SrRN)0Si

Intuitively we can estimate the marginal distribution of prediction error with re-sampling of both raining
and testing datasets.

In most applications, our interest is to estimate the density of conditional errors; however this
density is difficult to estimate and most of the methods we will see estimate p(énew) (Hastie, Tibshirani,
and Friedman 2009).

6.2. Alternative Validation Schemes

Training-Testing (TRN-TST) Validation

If sample size is large we can simply assign some individuals for training (TRN) and some for testing
(TST). We use TRN to fit the model and derive prediction errors from TST. We have done so in previous
labs by partitioning at random the wheat dataset into TRN and TST. If the prediction problem of interest
has certain structure (e.g., ancestors will be used for training with the goal of predicting performance of
progeny) the partition of the data into TRN and TST should reflect such structure. This has been done,
for instance for validation of methods for genomic selection in dairy cattle. Unfortunately we can’t do
this with the wheat dataset because we lack a pedigree.

Cross-validation (CV)

One disadvantage of the TRN/TST design above described is that individuals are either used for training
or testing. When the total sample size is large this is not a problem; however, with small sample size one
would like to use all individuals both for training and testing CV allows this. In CV individuals are
randomly assigned to disjoint sets using an index, for example, in 2-fold CV each individual is assigned to
either 1% or 2" fold. Then, a TRN/TST evaluation is done for every fold. In those evaluations, individuals
assigned to that fold are regarded as TST set and the remaining ones as TRN set. The following R-code
implements a 5-fold CV using the wheat dataset.

Example 1: 5-fold CV

LOADS DATA #HAH##HHHHHHHHHHHHH SRR RIS
rmm(list=Is()); library(BLR); data(wheat)
y<- Y[’ 4]
for(i in L:ncol (X)){ X[,i]<-(X[,i]l-mean(X[,i]))/sd(X,i]) }
h2<-0.5 ; | anbda<-(1-h2)/h2*ncol (X)
ASSI GNVENT TO FOLDS (5-fol d CV) ###########H
set.seed(124292)
set s<-sanpl e(1: 5, si ze=nrow(X), repl ace=TRUE)
yHat CV_RR<-rep(NA, | engt h(y))
yHat CV_0<- rep(NA I ength(y))
var E<- nuneri c()
i ndexH<-rep(NA, | engt h(y))
for(fold in 1:5){
tst<-which(sets==fold) # here we partition the data
C<-crossprod(X[-tst,])
for(j in 1:ncol (O){ dj.,jl< dj,j]+ anbda }

Cl nv<-chol 2i nv(chol (C))

He- X[tst,] %% nv% % (X[-tst,])

i ndexH[tst] <-rowSuns(abs(H)>.15) # count entries > 0.15 in H
yHat CV_RR[tst]<- H®% %y[-tst]

yHat CV_O[tst] <-nean(y[-tst])

print(fold)

sqError RR<- (y-yHat CV_RR) "2
sqError0<- (y-yHat CV_0) "2

PMSE_RR<-t appl y(X=sqErr or RR, FUN=nean, | NDEX=set s)
PMSE_0O<-t appl y(X=sqError 0, FUN=nrean, | NDEX=set s)
R2<-1- PMSE_RR/ PMSE 0 # conpare to cor(y, yHat CV) "2
sqrt (R2)

Three di fferent ways of conputing R2: discuss!
cor(y, yHat CV_RR) "2
1-var(y-yHat CV_RR)/var (y)
1-sum((y-yHat CV_RR)*2)/ sum (y-yHat CV_0)"2)

Rel ationshi ps between entries of hat matrix and pred. errors
t appl y(FUN=mean, X=sqgEr r or RR, | NDEX=i ndexH)

pl ot (sqgError RR~i ndexH, yl ab=" Sqg. Error', xl ab="1ndex"', col =2, cex=. 5)

NOTE 1. While CV is commonly used in statistics and computer science, one needs to be aware that CV is

not always an appropriate validation design. For instance, as previously mentioned, in breeding

applications the prediction problem usually consists of inferring genetic values of candidates to

selection. This prediction problem involves a generational order that is not considered in a standard CV

with random assignment of individuals to folds. This may or may not induce biases, but one needs to be

aware that CV is not the solution to any validation problem.

NOTE 2. The observed the variability in PMSE and R-squared across partitions of the CV reflects
uncertainty associated to the sampling of TRN and TST sets. Evaluating such uncertainty is very
important, especially when the number of records in the TRN and/or TST set is small. Note however,
that ideally we would like to hold the training data fixed and evaluate the uncertainty associated to
sampling of un-observed data (i.e., TST) only.

NOTE 3. We also observed that sqg.-error diminishes as ‘local sample size’, measured, for example using
the entries of the hat matrix, increases.

Replicated Training-Testing

In CV the number of folds affects the size of the training and testing datasets and the number of
replicates of estimates of prediction accuracy. For instance, in a 5-fold CV the size of the TRN (TST)
datasets is 80% (20%) of that of the available data and we only obtain 5 estimates of prediction accuracy
(one per fold), this is a very small number if we wish to construct a confidence interval on estimates of
prediction accuracy. An alternative is to replicate TRN-TST experiments a large number of times, each
time re-assigning at random subjects into TRN and TST samples. The following R-code illustrates this
with 30 replicates (example in next page).

Example 3: Replicated TRN-TST partitions

rm(list=ls())
#itt#i# DATA HHBHHHBHHHBHHHBHHH B H AR H B H R R
I'i brary(BLR)
dat a(wheat)
N<-nrowm X) ; p<-ncol (X)
for(i in L:ncol (X)){ X[,i]l<-(X[,i]l-mean(X[,i]))/sd(X,i]) }
y<-Y[, 2]
nTst <- 150
nRep<- 30
set.seed(1235)
COR<- mat ri x(nrow=nRep, ncol =3, NA)
col nanes(COR) <-c(' | anbda=10", 'l anmbda=1279', 'I|anbda=5000")
| anbda<-c(10, 1279, 10000)

for(i in 1:nRep){
print(paste(' TRN-TST Replicate ',i,sep=""))
t st <-sanpl e(1l: N, si ze=nTst, r epl ace=FALSE)
XTRN<- X[-t st ,]
YTRN<-y[-t st]
XTST<- X[tst,]
yTST<-y[tst]
ZTRN<- cbi nd(1, XTRN)
ZTST<- cbi nd(1, XTST)
rhs<-crossprod(ZTRN, yTRN)
CO<- crossprod(ZTRN)
for(j in 1:3){
C<-Q0
for(k in 2:ncol (Q){ dk,kl<-dKk, k] +lanbda[j] }
Cl nv<-chol 2i nv(chol (C))
sol <- Clnv% % hs
yHat TST<- ZTST% %ol
CORi,j]<-cor(yTST, yHat TST)
}
}
Plots in next page
PLOTS (Results from previ ous page)
One way of looking at the problem (not quite correct)
x<-rep(l anbda, nRep)
boxpl ot (as. vect or (COR) ~x, x| ab=expr essi on(past e(l| anbda)),
yl ab=" Correl ation')

A better way
pl ot (y=COR[, 2], x=COR[, 1], xl i mFrrange(COR), yl i nFr ange(COR) ,
x| ab=expr essi on(past e(l anbda[10])),
yl ab=expressi on(past e(l anbda[1279])), nai n="Correl ati on', col =2)
abl i ne(a=0, b=1, col =4)

pl ot (y=COR[, 3], x=COR][, 2], xl i n¥range(COR), yl i n¥range(COR) ,

x| ab=expr essi on(past e(l anbda[1279])),

yl ab=expr essi on(past e(| anbda[10000])), mai n=' Correl ati on', col =2)
abl i ne(a=0, b=1, col =4)

6.3. Between sub-population prediction

So far we have assigned lines from training and testing completely at random. In this example we
explore the impacts of training and validating in different subpopulations.

Example 3: Across sub-population prediction

rm(list=ls())
#it##H DATA #H#HHHH T R
I'i brary(BLR)
dat a(wheat) ;
for(i in Lincol (X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i])}

Custering based on g principal components
g<-2 # nunber of PCs used for clustering
for(i in L:incol (X)){X,i]<-X,i]-mean(X,i])}
SVD<- svd(X, nu=q, nv=0)
nyCl ust er s<- kmeans (x=SVD$u% %di ag(SVD$d[1: q]), cent er s=2)

Ploting principal conmponents
t np<-whi ch(myd ust er s$cl ust er ==1)
pl ot (x=SVD$u[t mp, 1], y=SVD$u[t np, 2], yli mFrange(SVD$uU[, 2]),
xli merange(SVD$u[, 1]), col =2, xlab='"1st PC, ylab='2nd PC)
poi nt s(x=SVD$u[-t np, 1], y=SVD$u[-t np, 2], col =4)

Fitting nodels
prior=list(varE=list(df=5,S=1),
| anbda=li st (type='random , val ue=20, r at e=le- 5, shape=. 53))

groupl<-myd ust ers$cl ust er ==
y<- Y[’ 4]

yNAl<-y

yNAL[whi ch(groupl)] <-NA
yNA2<-y

yNA2[whi ch(! groupl)] <- NA

Training in sub-population 1
f ml<- BLR(y=yNALl, XL=X, nlt er =7000, bur nl n=2000, pri or=prior, saveAt="1 ")

training in sub-population 2
f n2<- BLR(y=yNA2, XL=X, nl t er =7000, bur nl n=2000, pri or=pri or, saveAt='2 ")

Across group prediction
cor (X[whi ch(groupl),] % % m.$bL, y[whi ch(groupl)])
cor (X[whi ch(! groupl),] % % n2$bL, y[whi ch(! groupl)])

Estimates of marker effects
pl ot (f mL$bL~f n2$bL, col =2)

6.4. Across environment prediction using single-trait models

In this example we address the problem of across environment (or trait prediction), this appear, for
example when we want to select individuals based on expected performance in an environment in
which these genotypes have not been evaluated. Most of the models we have discussed so far can be
extended to accommodate multiple traits. Here, we explore the problem of prediction across correlated
environments using single-trait models alone or combined using an ad-hoc procedure. A fully multi-
environment evaluation of genome-enabled prediction methods for this dataset is presented in
Burguefio, de los Campos, and Crossa (2012).

Example 4: Acraoss environment prediction

r(list=ls())
#it#i# DATA HHBHHHBHHHBHHHBHHH B H B H B H R R
I'i brary(BLR)
dat a(wheat)
for(i in Lincol (X)){ X ,i]<-(X,i]-mean(X[,i]))/sd(X[,i])}
round(cor(Y),3) #

prior=list(varE=list(df=5,S=1),
| anbda=li st (type='random , val ue=20, r at e=le- 5, shape=. 53))

Training nodels in environnents 1-4
fme-1ist()
for(i in 1:4){
fr{[i]]<-BLR(y=Y[,i], XL=X, nl ter=7000, bur nl n=2000,
prior=prior, saveAt=paste('E_',i,sep=""))

}

1st strategy
COR<- mat ri x(nrow=4, ncol =4, NA)
col nanmes(COR) <-paste(' TRN ', 1: 4, sep="")
rownanes(COR) <- paste(' TST_', 1: 4, sep="")
for(i in 1:4){
for(j in 1:4){
ifCit=j){ COR[i,jl<-cor(Y[,i],fn{[j]]$yHat) }

}
2nd strategy (a bit of cheating)

covP<-cov(Y)
We- mat ri x(ncol =4, nrow=4, 0)
wCor <-r ep(NA, 4)
for(i in 1:4){
Wi,-i]<-covP[i,-i]% %ol ve(covP[-i,-i])
TMP<-cbind(fni[1]]$yHat,fni[2]] $yHat,fn{[3]]$yHat, fn{[4]]$yHat)
wCor[i]<-cor(Y[,i], TMPWWNi,])
}
conpare COR & wCor

References

Burguefio, J., G. de Los Campos, and J. Crossa. “Genomic Prediction of Breeding Values When Modeling
Genotype x Environment Interaction Using Pedigree and Dense Molecular Markers.” Crop
Science In Press. doi:doi: 10.2135/cropsci2011.06.0299.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Second Edition. 2nd ed. 2009. Corr. 3rd printing 5th Printing.
Springer.

	Contents
	LAB 1 Linear Models
	1.1. Linear models and ordinary least squares (45 min)
	1.2. The ‘Curse’ of Dimensionality (45 min)
	1.3. Confronting the challenges posed by highly dimensional predictors (45 min)
	References

	LAB 2 Shrinkage Estimation
	2.1. Penalized Estimates
	2.2. Computing RR estimates
	2.3. Effect of regularization on estimates, goodness of fit and model DF
	2.4. The Hat Matrix of large-p with small-n genomic regressions as a local smoother
	2.5. Bayesian View of Ridge Regression
	2.6. G-BLUP
	References

	LAB 3 The Bayesian Alphabet
	3.1. The Bayesian Alphabet
	3.2. Ridge Regression Vs Bayesian Ridge Regression
	3.3. Bayesian Lasso: fixed versus random lambda
	3.4. Regression using markers and pedigree
	References

	LAB 4 Semi-Parmetric I RKHS
	4.1. Semi-parametric genome-enabled regression
	4.2. Reproducing Kernel Hilbert Spaces (RKHS) regressions
	4.3. Scatter plot smoothing with a Gaussian kernel
	4.4. Inspecting the Hat Matrix
	4.5. Bayesian view of RKHS
	4.6. Genomic-Enabled Prediction Using RKHS
	4.7. Kernel Averaging
	4.8. Pedigree + Marker Models
	References

	LAB 5 Semi-Parametric II Penalized Neural Networks
	5.1. Introduction
	5.2. Scatterplot smoothing using a penalized NN
	5.3. Penalized Neural Network Using Pre-selected Markers
	5.4. Penalized Neural Networks Using Marker-derived Basis Functions as Inputs
	References

	LAB 6 Validation Methods
	6.1. Introduction
	6.2. Alternative Validation Schemes
	6.4. Across environment prediction using single-trait models
	References

