

Genome Enabled Prediction Methods: Laboratory

Gustavo de los Campos

(gcampos@uab.edu)

Contents

Lab 1: Linear Models

1.1. Linear models and ordinary least squares (45 min) ... 2

Deriving ordinary least-squares (OLS) estimate using existing R-functions ... 2

Iterative procedures .. 4

1.2. The ‘Curse’ of Dimensionality (45 min) .. 5

1.3. Confronting the challenges posed by highly dimensional predictors(45 min) 6

Subset selection .. 7

Shrinkage estimation .. 8

References .. 9

 LAB 2: Shrinkage Estimation

2.1. Penalized Estimates ... 2

2.2. Computing RR estimates .. 5

2.3. Effect of regularization on estimates, goodness of fit and model DF .. 5

2.4. The Hat Matrix of large-p with small-n genomic regressions as a local smoother 7

2.5. Bayesian View of Ridge Regression .. 9

2.6. G-BLUP ... 12

References .. 14

 Lab 3: The Bayesian Alphabet

3.1. The Bayesian Alphabet .. 2

3.2. Ridge Regression Vs Bayesian Ridge Regression ... 9

3.3. Bayesian Lasso: fixed versus random lambda ... 11

3.4. Regression using markers and pedigree ... 13

References ... 14

 Lab 4:Semi-parametric Genomic Regression Using Reproducing Kernel
Hilbert Spaces Methods

4.1. Semi-parametric genome-enabled regression ... 1

4.2. Reproducing Kernel Hilbert Spaces (RKHS) regressions .. 2

4.3. Scatter plot smoothing with a Gaussian kernel .. 4

4.4. Inspecting the Hat Matrix ... 6

4.5. Bayesian view of RKHS .. 7

4.6. Genomic-Enabled Prediction Using RKHS ... 9

4.7. Kernel Averaging ... 11

4.8. Pedigree + Marker Models .. 14

References ... 16

LAB 5: Penalized Neural Networks

5.1. Introduction ... 2

5.2. Scatterplot smoothing using a penalized NN ... 5

5.3. Penalized Neural Network Using Pre-selected Markers .. 6

5.4. Penalized Neural Networks Using Marker-derived Basis Functions as Inputs....................................... 7

References .. 8

LAB 6: Validation Methods

6.1. Introduction .. 2

6.2. Alternative Validation Schemes .. 2

6.3. Between sub-population prediction ... 6

6.4. Across environment prediction using single-trait models .. 7

References ... 8

 1

Statistical Methods for Genome-Enabled Prediction,

LAB 1:

Linear Models1

 (

gcampos@uab.edu)

Contents

1.1. Linear models and ordinary least squares (45 min) ... 2

Deriving ordinary least-squares (OLS) estimate using existing R-functions ... 2

Iterative procedures.. 4

1.2. The ‘Curse’ of Dimensionality (45 min) .. 5

1.3. Confronting the challenges posed by highly dimensional predictors(45 min) 6

Subset selection .. 7

Shrinkage estimation .. 8

References .. 9

1 Suggestions made by Daniel Gianola are gratefully acknowledged.

mailto:gcampos@uab.edu�

 2

 1.1. Linear models and ordinary least squares (45 min)

Consider the following model:

 ()nixy i

p

j
jiji ,...,1

1
=++= ∑

=

εβµ

where: iy is the phenotype of the ith individual, µ is an effect common to all individuals (an

“intercept”), ijx are covariates (e.g., marker genotypes), jβ is the effect of the jth covariate and iε is a
model residual. In matrix notation the model is expressed as:

 εXβy += [1]

where: { }iy=y is a vector of phenotypes, { }pxx1X ,...,, 1= is an incidence matrix for the vector of

regression coefficients, ()′= pββµ ,...,, 1β and { }iε=ε is a vector of model residuals.

The ordinary least squares estimate of β is the solution to the following optimization problem:

 ˆ
i

2

minarg ∑ ∑ 







−=

j
jijiOLS xy ββ

where∑ ∑ 







−

i

2

j
jiji xy β is a residual sum of squares. The first order conditions of [2] are satisfied by

[] yXXXβ ′′= −1ˆ
OLS .

Deriving ordinary least-squares (OLS) estimate using existing R-functions. The
OLS estimate of β can be obtained using the function lm(), which fits a linear model by OLS.
Alternatively, we can compute the solution using matrix operations. The code below simulates data for
regression [1], and fits the linear model using lm().

 3

Example 1. Deriving Ordinary Least Squares estimates using lm()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

rm(list=ls())
SIMULATES DATA FOR A LINEAR MODEL
 set.seed(12345)
 n<-100
 p<-6
 set.seed(12345)
 X<-matrix(nrow=n,ncol=p,
 data=rbinom(n=n*p,p=.5,size=1))
 beta<-rnorm(p,mean=0,sd=2)
 ERROR<-rnorm(n=n,sd=1,mean=0)
 y<-124 +X%*%beta+ERROR # note %*% computes matrix product

FITS THE MODEL USING lm() #############################
 fm<-lm(y~X)
 summary(fm)
 bHat1<-fm$coeff
#(continues below)

In the system of equations

 [] yXβXX ′=′ OLS
ˆ [2]

we will refer to []XXC ′= as the matrix of coefficients and to yXrhs ′= as the right-hand side of the
system. The matrix of coefficients can be computed using C<-t(X)%*%X, or, equivalently,
C<-crossprod(X). Similarly, the right-hand-side can be computed using rhs<-t(X)%*%y, or,
equivalently, rhs<-crossprod(X,y). crossprod() is usually faster. The system can be
solved using the function solve(), as illustrated below.

Example 2. Deriving Ordinary Least Squares Using Matrix Operations

1
2
3
4
5
6
7

(continued from Example 1)
FITS LINEAR MODEL USING MATRIX OPERATIONS #################
 X2<-cbind(1,X) ## note a vector of 1s is added type head(X)
 C<-crossprod(X2)
 rhs<-crossprod(X2,y)
 bHat2<-solve(C,rhs)
(continues in Example 3)

 The matrix of coefficients is symmetric and positive definite. The cholesky decomposition of this
matrix (U) is an upper-triangular matrix satisfying C=U’U. U can then be used to invert C using
chol2inv() function (see below). This is usually faster than using function solve(). Other
factorizations of C, such as the eigen-value decomposition, eigen(), or the QR decompositions,
qr(), can also be used to invert C as well. An example using the cholesky decomposition of C is given
below.

 4

Example 3. Inversion of positive definite matrices using the Cholesky factorization

1
2
3
4
5
6
7
8
9
10

(continued from Ex. 1 and 2)
 X2<-cbind(1,X) # note a vector of 1s is added type head(X)
 C<-crossprod(X2)
 rhs<-crossprod(X2,y)
 U<-chol(C) # computes the Cholesky decomposition
 CInv<-chol2inv(U) # obtains the inverse from a Cholesky decomp.
 bHat3<-CInv%*%rhs
 # compare bHat1, bHat2, bHat3
 round(cbind(bHat1,bHat2,bHat3),4)
(continues in example 4)

 Iterative procedures. In practice, when p is large, the system of equation is solved using
some type of iterative methods. Here is one possible algorithm. Suppose that we know all but the jth
regression coefficient, then, from the data-equation we can write:

where: is an off-set formed by subtracting from the original phenotypes the

contribution to the conditional expectation of all but the jth predictor, that is . The OLS estimate

of in [3] is simply

. [4]

A back-fitting algorithm can then be formed by iterating over regression coefficients using [4].
This is implemented in the following R-code.

• Run the code. How do estimates computed using the above-described algorithm compare with
the exact solution?

• Change nIter (the number of iterations) from 2 to 30 and compare.

 5

Example 4. Deriving Ordinary Least Squares Using Iterative Procedures

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Computes OLS using a back-fitting algorithm
 SSx<-colSums(X2^2) # the diagonal elements of X’X
 nIter<-2 # number of iterations of the algorithm
 bHat4<-rep(0,ncol(X2)) # initialvalues bj=zero
 bHat4[1]<-mean(y) # initial values mu=mean(y)
 e<-y-mean(y) # initial model residuals

 for(i in 1:nIter){ # loop for iterations of the algorithm
 for(j in 1:ncol(X2)){ # loop over predictors
 yStar<-e+X2[,j]*bHat4[j] # forming off-sets
 bHat4[j]<- sum(X2[,j]*yStar)/SSx[j] # eq. [4]
 e<-yStar-X2[,j]*bHat4[j] # updates residuals
 }
 }

 # compare bHat1, bHat2, bHat3, bHat4
 round(cbind(bHat1,bHat2,bHat3,bHat4),4)

1.2. The ‘Curse’ of Dimensionality (45 min)

The mean-squared error (MSE) of an estimator is: () () 
 −=

2ˆˆ θθθ EMSE where θ is the true

value of the parameter and θ̂ is the estimator, which is a function of the data (X and y in the regression
example discussed above). The expectation in the MSE formula is taken with respect to all possible
samples of data. Commonly X is treated as fixed and the expectation is taken only with respect to
possible realizations of y given X.

The MSE can be decomposed in two components: () ()[] ()θθθθ ˆˆˆ 2
VarEMSE +−= , where

()[]θθ ˆE− and ()θ̂Var are the bias and variance of the estimator.

The expectation of the OLS estimate of regression coefficients in [1] is:

[] [] []
[] []
[] [] []

[] []εXXXβ

εXXXXβXXX

εXβXXX

yXXXXβ

E

E

E

EE OLS

′′+=

′′+′′=

+′′=

′′=

−

−−

−

−

1

11

1

1

ˆ

When model [1] holds, [] 0ε =E , therefore: [] βXβ =OLSE ˆ . In words, if the linear model holds, OLS

gives unbiased estimates of regression coefficients. The second term of the MSE formula, ()θ̂Var , is a
frequentist measure of uncertainty and reflects variability of the estimator over repeated sampling. The
asymptotic (co)variance matrix of OLS estimates of regression coefficients, given X, is,

 6

() [] 21ˆ σ−′= XXβVar , where 2σ is the variance of model residuals. This is also the finite-sample co-
variance matrix of estimates under normality. Therefore, the MSE of the estimate of the jth regression
coefficient is 2σjjC where jjC is the jth diagonal entry of the inverse of the matrix of coefficients, that

is [] 11 −− ′= XXC . This element decreases with sample size. In the following example we study how MSE
of estimates of regression coefficients changes with n and p.

Example 5. Effects of n and p on Mean-Squared Error of OLS estimates

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

rm(list=ls())
n<-seq(from=100,to=300,by=10) # vector defining sample size
p<-seq(from=5,to=80,by=4) # vector defining number of predictors
x<-rbinom(prob=.5,n=max(p)*max(n),size=1) # sample predictors
X<-matrix(nrow=max(n),ncol=max(p),data=x)
varE<-1
VAR<-matrix(nrow=length(n),ncol=length(p),NA)
colnames(VAR)<-p
rownames(VAR)<-n
for(i in 1:length(n)){ # loop over sample size
 for(j in 1:length(p)){ # loop over number of predictors
 tmpX<-X[1:n[i],1:p[j]]
 C<-crossprod(tmpX)
 CInv<-chol2inv(chol(C))
 VAR[i,j]<-mean(diag(CInv))*varE #average variance of estimates
 }
}
plot Variance (equal to MSE in this case) Vs. n and p
persp(z=VAR,x=n,y=p,xlab="Sample Size",
 ylab="Number of Predictors",zlab="MSE(bj)",col=2)

 NOTE. When p>n, the OLS estimate is not unique because is singular. Nevertheless,
predictions, [] yXXXXy ′′= −ˆ , are unique; here []−′XX is a generalized inverse of XX′ . The function
ginv() of library(MASS) can be used to compute a Moore-Penrose generalized inverse. The
function svd() can be used to compute the singular value decomposition of X from where ŷ can also
be computed.

In genomic models p>n, because of this, estimation methods other than OLS are required. In the
following sections we consider alternative methods.

1.3. Confronting the challenges posed by highly dimensional predictors (45
min)

 In this section we discuss two different approaches designed to confront the challenges posed
by ‘large p with small n’ regressions. In the first one (subset selection) we design an algorithm to select k
out of p (k<=p) predictors; our final model will include only these k predictors. Subset selection is a
commonly used practice, and it is based on the idea that ‘highly dimensional predictors are dangerous’;
therefore, the approach seeks to reduce the number of predictors. The second approach (shrinkage
estimation) uses all available predictors and confronts the challenges posed by regressions with p>n by
using shrinkage estimation methods. We illustrate this approach using ridge regression. In both

 7

examples we use a genomic dataset made available with R-package BLR (‘wheat’). This dataset contains
4 phenotypes evaluated in 599 wheat lines that were genotyped for 1,279 markers. In the examples we
use 450 lines for training and evaluate the prediction accuracy of each of the methods on the remaining
149 lines (testing).

 Subset selection. The problem of selecting k out of p (k<p) predictors can be viewed as a
model comparison problem. Ideally, we would fit all possible models and select the one that is best
according to some model comparison criterion (e.g., AIC, Akaike Information Criterion, Akaike 1973). In
practice, when p is large fitting all possible models is not feasible. Instead model search algorithms are
used. A very simple search algorithm consists of regressing the response in each of the predictors one at
a time (‘single marker regression’). Each of these regressions yields a measure of association between
markers and phenotypes (e.g., a p-value). Then, we can form our final model by using the first k
predictors ranked according to the association measure. This approach is commonly used in Genome
Wide Association Studies (GWAS). The following example fits models with k predictors (k=1,…,300)
chosen based on the marginal association between markers and phenotypes. The examples use the
‘wheat dataset’ of the BLR package of R (G. de los Campos and Pérez 2010; Paulino Pérez et al. 2010).

Example 6. Subset selection using p-values derived from single-marker regressions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

rm(list=ls())
DATA ###
 library(BLR)
 data(wheat)
 objects()
 N<-nrow(X) ; p<-ncol(X)
 y<-Y[,2]
 set.seed(1235)
 tst<-sample(1:N,size=150,replace=FALSE)
 XTRN<-X[-tst,] ; yTRN<-y[-tst]
 XTST<-X[tst,] ; yTST<-y[tst]
SINGLE MARKER REGRESSIONS ########################
 pValues<-numeric()
 for(i in 1:p){
 fm<-lm(yTRN~XTRN[,i])
 pValues[i]<-summary(fm)$coef[2,4]
 print(paste('Fitting Marker ',i,'.',sep=''))
 }
 plot(-log(pValues,base=10),cex=.5,col=2)
####### VARIABLE SELECTION ##############################
 myRanking<-order(pValues)
 sqCor<-numeric()
 for(i in 1:300){
 tmpIndex<- myRanking[1:i]
 fm<-lm(yTRN~XTRN[,tmpIndex])
 bHat<-coef(fm)[-1] ; bHat<-ifelse(is.na(bHat),0,bHat)
 yHat<-as.matrix(XTST[,tmpIndex])%*%bHat
 sqCor[i]<-cor(yTST,yHat)^2
 print(paste('Fitting Model with ',i,' markers!',sep=''))
 }
 plot(sqCor,type='o',col=2,ylab='Squared Correlation',
 xlab='Number of markers',ylim=c(0,.28))

 8

Shrinkage estimation. We have seen that when n is small and p is large OLS estimates have
high variance, and therefore high MSE. In addition, when p is large relative to n, over-fitting may occur,
yielding poor predictive ability. Penalized estimates of regression coefficients are designed to confront
these problems. The main idea is to reduce MSE by reducing the variance of the estimator, even at the
expense of introducing bias. We will cover penalized estimation procedures in more detail in Lab 2; here
we briefly illustrate their performance using Ridge Regression (Hoerl and Kennard 1970). Recall that in
the linear model of eq. 1

 εXβy += [1]

the OLS estimates of regression coefficients are the solution to the following systems of equations

 [] yXβXX ′=′ OLS
ˆ [2]

The RR estimates has a very similar form, we simply add a constant to the diagonal of the matrix
of coefficients, that is:

 [] yXβDXX ′=+′ RR
ˆ λ [5]

where λ is a constant and D is a diagonal matrix with zero in its first diagonal entry (this, to avoid
shrinking the estimate of the intercept) and ones in the remaining diagonal entries and zeroes
everywhere else. When either λ equals zero, the solution to the above problem is OLS. Adding a
constant to the diagonal entries of the coefficient matrix makes it non-singular and shrinks the estimates
of regression coefficients other than the intercept towards zero. This induces bias but reduces the
variance of the estimates; in large-p with small-n problems this may reduce MSE of estimates and may
yield more accurate predictions. The following R-code computes RR estimates.

Example 7. Ridge Regression

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

 MSx<-0
 for(i in 1:ncol(XTRN)){ MSx<-MSx+mean((XTRN[,i]-mean(XTRN[,i]))^2)}
 h2<-0.5
 lambda<-round(MSx*(1-h2)/h2)

 TMP<-cbind(1,XTRN)
 C<-crossprod(TMP)
 rhs<-crossprod(TMP,yTRN)
 for(i in 2:ncol(C)){ C[i,i]<-C[i,i]+lambda } #adds a constant to diag
 CInv<-chol2inv(chol(C))
 bHatRR<-crossprod(CInv,rhs)
 yHatRR<-cbind(1,XTST)%*%bHatRR
 tmp<-cor(yHatRR,yTST)^2
 lines(x=c(0,30),y=rep(tmp,2),col=4,lwd=2)
 lines(x=c(150,300),y=rep(tmp,2),col=4,lwd=2)
 text(x=90,y=tmp,label=expression(paste('RR (lambda=',lambda, ')')),col=4)

 9

References

Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. In Second
international symposium on information theory, 1:267–281.

de los Campos, G., and P. Pérez. 2010. BLR: Bayesian linear regression. R package version 1.2.
http://cran.r-project.org/web/packages/BLR/index.html.

Hoerl, A. E, and R. W Kennard. 1970. “Ridge regression: Biased estimation for nonorthogonal problems.”
Technometrics 12 (1): 55–67.

Pérez, Paulino, Gustavo de los Campos, José Crossa, and Daniel Gianola. 2010. “Genomic-Enabled
Prediction Based on Molecular Markers and Pedigree Using the Bayesian Linear Regression
Package in R.” The Plant Genome Journal 3 (2): 106-116.
doi:10.3835/plantgenome2010.04.0005.

 1

Statistical Methods for Genome-Enabled Prediction,

LAB 2:

Shrinkage Estimation1

 (

gcampos@uab.edu)

Contents
2.1. Penalized Estimates ... 2

2.2. Computing RR estimates .. 5

2.3. Effect of regularization on estimates, goodness of fit and model DF .. 5

2.4. The Hat Matrix of large-p with small-n genomic regressions as a local smoother 7

2.5. Bayesian View of Ridge Regression .. 8

2.6. G-BLUP ... 11

References .. 14

NOTE: In many examples in this lab we use Bayesian methods. In those examples we make inferences based
on a relatively small number of samples and this is done due to time constraints. In practice, accurate

inferences require much more samples.

1 Suggestions made by Daniel Gianola are gratefully acknowledged.

mailto:gcampos@uab.edu�

 2

2.1. Penalized Estimates

Ordinary least squares (OLS) and Maximum likelihood (ML) are examples of estimation methods
in which estimates are derived by maximizing the fitness (as measured by the residual sum of squares or
likelihood function) of the model to the training data. When the number of predictors (p) is large
relative to sample size (n) this is not a good strategy: estimates can have high mean-squared error (MSE)
and over-fitting may occur. Penalized estimates are obtained as the solution to an optimization problem
that balances two components: how well the model fits the data and how-complex the model is. The
general form of the optimization problem is:

() (){ } , ˆ
minarg

ββyβ
β

JL λ+= [1]

where, ()βy, L is a loss function that measure lack of fit of the model to the data, ()βJ is a measure of
model complexity and 0≥λ is a regularization parameter controlling the trade-offs between fitness
and model complexity.

Ridge Regression (Hoerl and Kennard 1970) is a particular case of [1] and is obtained by setting

()βy, L to be a residual sum of squares () ∑ ∑ 







−=

i

2

,
j

jiji xyL ββy and ()βJ to be the sum of

square of the regression coefficients; typically, some of the regression coefficients (e.g., the intercept)
are not penalized; therefore, () ∑

∈

=
Sj

2
jJ ββ where S define the set of coefficients to be penalized.













+







−= ∑∑ ∑

∈

 ˆ
Sj

2

i

2

minarg j
j

jiji xy βλβ
β

β [2]

 When ∞→λ the solution is 0β = ˆ
RR . On the other extreme, as 0=λ the solution is the OLS

estimates of β . In matrix notation problem [2] can be represented as:

() (){ }DββXβ-yXβ-yβ ′+′= λ ˆ
minargRR

where: () () ∑ ∑ 







−=′

i

2

j

jiji xy βXβ-yXβ-y is a RSS and ∑
∈

=′
Sj

2
jβDββ is a sum of squares of the

regression coefficients. Here, D is a diagonal matrix whose entries are 1 for Sj∈ and zero otherwise.
The first order conditions of the above optimization problem are satisfied by the following system of
linear equations:

 [] yXβDXX ′=+′ RR
ˆ λ [3]

 3

 Relative to OLS, RR adds a constant (λ) to the diagonal entry corresponding to regression
coefficients that are included in S (i.e., those whose effects are penalized). When either D or λ equals
zero, the solution to the above problem is OLS. Adding a constant to the diagonal of the matrix of
coefficients shrink estimates towards zero. This induces bias but reduces the variance of the estimates.
And in large-p small-n regressions this may smaller MSE than those of OLS estimates and better
predictions.

 A simplified example. Let us consider a simple example where each subject was assigned to one
of two possible treatments (treatments 1 and 2). The treatment-means parameterization of this model
is: iiii xxy εββ ++= 2211 where iy is the response, ix1 is a dummy variable indicator of treatment 1,

()12 1 ii xx −= is a dummy variable indictor of treatment 2, 1β and 2β the means of treatments 1 and 2,

respectively, and iε is a model residual. The OLS estimates of regression coefficients in this model are:
















=



























∑
∑

∑∑
∑∑

i
2

i
1

2

1

i

2
2

i
21

i
21

i

2
1

ˆ
ˆ

ii

ii

iii

iii

yx

yx

xxx

xxx

β
β

Moreover, ∑
i

2
1ix and ∑

i

2
2ix equal the number of individuals in treatment 1 and 2 (denoted as 1n and

2n respectively), since ix1 and ix1 are orthogonal∑ =
i

21 0ii xx , and, finally, ∑
i

1 ii yx and ∑
i

2 ii yx are

the sum of the response variable for subjects assigned to treatments 1 and 2, respectively. Therefore,
















=



















∑
∑

=

=

1x:i

1x:i

2

1

2

1

2i

1i

ˆ
ˆ

0
0

i

i

y

y

n
n

β
β

, from where we conclude that the OLS estimate of the treatment mean are simply the average of the

phenotypes observed in each treatment, that is
1

1x:i
1

1iˆ
n

yi∑
==β and

2

1x:i
2

2iˆ
n

yi∑
==β . Now, considering the

RR estimates, according to [3] these will be will be
















=


















+

+

∑
∑

=

=

1x:i

1x:i

2

1

2

1

2i

1i

ˆ
ˆ

0
0

i

i

y

y

n
n

β
β

λ
λ

; therefore the RR estimates are
λ

β
+

=
∑

=

1

1x:i
1

1iˆ
n

yi

and λ
β

+
=
∑

=

2

1x:i
2

2iˆ
n

yi

. Therefore, adding λ to the diagonal

entries of the matrix of coefficients will shrink estimates towards zero. By how much? This will depend
on the relationship between λ and sample size. From here we can also see that with fix λ , the amount

 4

of shrinkage will decrease as sample size increases. Asymptotically, if we fix λ and let the number of
individuals in each treatment approach infinity, RR estimates converge to OLS estimates.

 Other penalized estimators. Several alternative penalized estimation procedures have

been proposed, and they differ on the choice of penalty function, ()βJ . As we discussed above, in RR,

the penalty is proportional to the sum of squares of the regression coefficients or L2 norm,

() ∑ =
=

p

j jJ
1

2ββ . A more general formulation, known as Bridge regression (Frank and Friedman 1993),

uses ()
1∑ =

=
p

j jJ
γ

ββ with 0>γ . RR is a particular case with 2=γ yielding RR. Subset selection

occurs as a limiting case with 0→γ , this penalizes the number of non-zero effects regardless of their

magnitude, () () 01
1∑ =

≠=
p

j jJ ββ . Another special case, known as LASSO (Least Absolute Angle and

Selection Operator, (Tibshirani 1996) occurs with 1=γ , yielding the L1 penalty: ()
1∑ =

=
p

j jJ ββ .

Using this penalty induces a solution that may involve zeroing-out some regression coefficients and
shrinkage estimates of the remaining effects; therefore combining in features of subset selection with
shrinkage estimation. LASSO has become very popular in several fields of applications. However LASSO
and subset selection approaches have two important limitations. First, by construction, in these
methods the solution admits at most n non-zero estimates of regression coefficients. In GS and with
complex traits, there is no reason to restrict the number of markers with non-zero effect to be limited
by n (the number of observations). Second, when predictors are correlated, something which occurs in
GS, methods performing variable selection such as the LASSO are usually outperformed by RR (Hastie,
Tibshirani, and Friedman 2009). Therefore, in an attempt to combine the good features of RR and of
Lasso in a single estimation framework (Zou and Hastie 2005) proposed to use as penalty a weighted

average of the L1 and L2 norm, that is, for 10 ≤≤α , and

termed the method the Elastic Net (EN), this model involves then two tuning parameters which need to
be specified, the regularization parameter (λ) and α .

 5

2.2. Computing RR estimates

 In the following example we present two ways of computing ridge regression estimates. The
first one implements [3] using matrix operations; the second one uses an iterative procedure. Run this
last algorithm with 10 and 500 iterations.

Example 1. Alternative ways of deriving Ridge-Regression Estimates

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

rm(list=ls())
Using Cholesky factor ######################################
 library(BLR)
 data(wheat)
 X2<-cbind(1,X)
 y<-Y[,2]
 C<-crossprod(X2)
 rhs<-crossprod(X2,y)
 MSx<-0 ; for(i in 1:ncol(X)){ MSx<-MSx+var(X[,i])}
 h2<-0.5
 lambda<-MSx*(1-h2)/h2
 for(i in 2:ncol(C)){ C[i,i]<-C[i,i]+lambda }
 CInv<-chol2inv(chol(C))
 bHatRR_1<-crossprod(CInv,rhs)

Using an iterative procedure #################################
diagC<-numeric()
for(i in 1:ncol(X2)){diagC[i]<-sum(X2[,i]^2)+ifelse(i==1,0,lambda) }
bHatRR_2<-rep(0,ncol(X2))
bHatRR_2[1]<-mean(y)
e<-y-mean(y)
nIter<-10
for(i in 1:nIter){
 for(j in 1:ncol(X2)){
 tmpY<-e+X2[,j]*bHatRR_2[j]
 rhs<-sum(X2[,j]*tmpY)
 bHatRR_2[j]<-rhs/diagC[j]
 e<-tmpY-X2[,j]*bHatRR_2[j]
 }
 print(i)
}
tmp<-range(c(bHatRR_1[-1],bHatRR_2[-1]))
plot(bHatRR_1[-1],bHatRR_2[-1],ylim=tmp,xlim=tmp,col=2,main="")
Change nIter, set it equal to 500 and then equal to 1000

2.3. Effect of regularization on estimates, goodness of fit and model DF

In penalized estimation, the regularization parameter (λ) controls the trade-offs between model
goodness of fit and model complexity. This affects parameter estimates (their value, and the statistical
properties of the estimator) model goodness of fit to the training dataset and the ability of the model to
predict un-observed phenotypes.

 6

Model complexity. The complexity of a linear model can be measured by the degree of freedom
of the model. In RR, predictions are computed as [] yHyXDXXXβXy RRRR =′+′== −1 ˆˆ λ where

[] XDXXXH ′+′= −1 λRR is the Hat matrix. If we set 0=λ we obtain the Hat matrix of OLS:

[] XXXXH ′′= −1 OLS . In linear models degree of freedom are equal to the sum of the diagonal entries
of H. In OLS this just equals the number of predictors (provided that X is full rank). In RR λ also affects
DF. The following R-code fits RR over a grid of values of λ and evaluates the impact that has on
goodness of fit to the training data, prediction accuracy, and model degree of freedom.

Example 2. Effects of regularization on goodness of fit and model DF

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

rm(list=ls())
 ##### DATA ###
 library(BLR)
 data(wheat)
 objects()
 N<-nrow(X) ; p<-ncol(X)
 y<-Y[,2]
 set.seed(12345)
 tst<-sample(1:N,size=150,replace=FALSE)
 XTRN<-X[-tst,]
 yTRN<-y[-tst]
 XTST<-X[tst,]
 yTST<-y[tst]

 ## FITTING MODEL OVER A GRID OF VALUES OF lambda
 lambda<-c(5,10,50,100,200,500,700,1000, 2000, 5000,20000)
 ZTRN<-cbind(1,XTRN) ; ZTST<-cbind(1,XTST)
 sqCorTRN<-numeric(); sqCorTST<-numeric(); DF<-numeric()
 BHat<-matrix(nrow=ncol(XTRN),ncol=length(lambda),NA)

 C0<-crossprod(ZTRN)
 rhs<-crossprod(ZTRN,yTRN)

 for(i in 1:length(lambda)){ #loop over values of lambda
 C<-C0
 # adds lambda to the diagonal of C (starts at 2)
 for(j in 2:ncol(C)){ C[j,j]<-C[j,j]+lambda[i] }
 CInv<-chol2inv(chol(C))
 sol<-crossprod(CInv, rhs)
 BHat[,i]<-sol[-1]
 yHatTRN<-ZTRN%*%sol
 sqCorTRN[i]<-cor(yTRN,yHatTRN)^2
 yHatTST<-ZTST%*%sol
 sqCorTST[i]<- cor(yTST,yHatTST)^2
 H<-ZTRN%*%CInv%*%t(ZTRN)
 DF[i]<-sum(diag(H))
 print(i)
 }
 write(sqCorTST,file="sqCorTST.txt")
 write(lambda,file="lambda.txt")
(Plots in next page)

 7

Example 2. (from previous page)

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

PLOT 1: Model Degree of freedom
 plot(DF~log(lambda),type="o",col=2,
 xlab= expression(paste(log(lambda))),
 ylab="DF",ylim=c(0,max(DF)));abline(h=1,lty=2)

 ## PLOT 2: Estimates (shrinkage by marker)
 marker<-1 # (choose a number between 1 and 1279)
 plot(BHat[marker,],type="o",col=2,
 xlab=expression(paste(log(lambda))),ylab="Estimate")
 abline(h=0)
 tmp<-range(BHat[,c(1,5)])
 ## PLOT 3: Estimates (shrinkage all markers)
 plot(BHat[,5]~BHat[,1],xlim=tmp,ylim=tmp,
 xlab='Lambda=5',ylab='Lambda=200',col=2,cex=.5);
 lines(x=c(-10,10),y=c(-10,10))

 ## PLOT 4: Goodness of fit to TRN dataset
 plot(sqCorTRN~log(lambda),type="o",col=2,main="Training data",
 xlab=expression(paste(log(lambda))),ylab="Squared Corr.")

 ## PLOT 5 Prediction Accuracy
 plot(sqCorTST~log(lambda),type="o",col=2,main="Testing data",
 xlab=expression(paste(log(lambda))),ylab="Squared Corr.")

2.4. The Hat Matrix of large-p with small-n genomic regressions as a local
smoother

Above we introduce the hat matrix as applied to the training dataset,

[] TRNTRNTRNTRNTRNTRNTRNRRTRNTRN yHyXDXXXβXy =′+′== −1 ˆˆ λ . Similarly, we can defined a hat

matrix for the testing dataset, [] TRNTSTTRNTRNTRNTSTRRTSTTST yHyXDXXXβXy =′+′== −1 ˆˆ λ . In both

cases, predictions are simply weighted sums of phenotypes of the training dataset,

∑
∈

=
TRNj

jijTRNiTRN yhy ,,ˆ and ∑
∈

=
TRNj

jijTSTiTST yhy ,,ˆ , where ijh., is the (i,j)th entry of either TRNH or TSTH .

The relative absolute value of each entry, ijh , indicates, according to the model, how informative the

jth phenotype of the training dataset is for estimating the conditional expectation at the ith point of
either the training or testing dataset. The following code computes the hat matrix a training and testing
dataset and plots the one of the rows of TRNH and of TSTH .

 8

Example 3. The Hat Matrix of Ridge Regression

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

rm(list=ls())
DATA ###
 library(BLR)
 data(wheat)
 objects()
 N<-nrow(X) ; p<-ncol(X)
 y<-Y[,2]
 set.seed(1235)
 tst<-sample(1:N,size=150,replace=FALSE)
 XTRN<-X[-tst,]
 yTRN<-y[-tst]
 XTST<-X[tst,]
 yTST<-y[tst]

FITTING THE MODEL
 lambda<-200
 ZTRN<-cbind(1,XTRN)
 ZTST<-cbind(1,XTST)

 C<-crossprod(ZTRN)
 for(j in 2:ncol(C)){ C[j,j]<-C[j,j]+lambda}
 CInv<-chol2inv(chol(C))
 TMP<-tcrossprod(CInv,ZTRN)

 HTRN<-ZTRN%*%TMP
 HTST<-ZTST%*%TMP
 yHatTRN<-HTRN%*%yTRN
 yHatTST<-HTST%*%yTRN

Plot of row 100 of HTRN
 plot(abs(HTRN[100,]),xlab=' j (TRN)',
 ylab='h(100 , j)',col=2,main='Training dataset');abline(v=100)

Plot of row 30 of HTST
 plot(abs(HTST[30,]),xlab=' j (TRN)',
 ylab='h(30 , j)',col=2,main='Testing dataset')

2.5. Bayesian View of Ridge Regression

 Most penalized can be viewed as posterior modes in certain class of Bayesian models. For
instance, RR estimates are equivalent to the posterior mode of the vector of regression coefficients in a
Bayesian model with a Gaussian likelihood and a Gaussian prior for the vector of regression coefficients.
To see this, recall that that estimates in RR are obtained as the solution to the following optimization
problem:

() (){ }DββXβ-yXβ-yβ ′+′= λ ˆ
minargRR

 9

Multiplying the objective function by -1/2 and switching from minimization to maximization do not
affect the solution; therefore,

() ()






 ′′= DββXβ-yXβ-yβ

2
1-

2
1- ˆ

maxarg
λRR

Let where, and are non-negative constants. Replacing above and dividing the objective

function by maintains the solution unchanged, with this we get:

() ()












′−′= DββXβ-yXβ-yβ 22maxarg 2
1

2
1- ˆ

βε σσRR

Finally, applying the exponential function to the objective function maintains the solution unchanged,
therefore:

() ()

() ()
2

1exp
2

1exp

2
1-

2
1exp ˆ

22maxarg

22maxarg
























′−







 ′−=
























′′−=

DββXβ-yXβ-y

DββXβ-yXβ-yβ

βε

βε

σσ

σσRR

The first component of the objective function, () () 






 ′−
2

1exp 2 Xβ-yXβ-y
εσ

, is proportional to a

Gaussian likelihood, centered at Xβ and with (co)variance matrix 2
εσI . The second component,












′− Dββ22

1exp
βσ

, is proportional a Gaussian prior for the regression coefficients, centered at zero

and with (co)variance matrix 21
βσ−D . Therefore, estimates obtained with RR are equivalent to the

posterior mode of regression coefficients in the following Bayesian model.

[] ()
[] ()





− ,~| :Prior

,~,| :Likelihood
212

22

ββ

εε

σσ

σσ

D0β
IXββy

N
N

 [4]

The posterior distribution of β is multivariate normal with a mean (co-variance matrix) equal to

the solution (inverse of the coefficient matrix) of the following system: [] yXβDXX ′=+′ ˆ λ ; this is

just the RR equations. This is also the Best Linear Unbiased Predictor (BLUP) of β given y.

 10

Recall that the ratio 2

2

β

ε

σ
σ

 is equivalent to λ in RR. I a fully-Bayesian models we assign priors to

each of these variance parameters, this allow inferring these unknowns from the same training data
that is used to estimate marker effects. The following example fits a Bayesian RR using the R-package
BLR (‘Bayesian Linear Regression’), after you run the model:

- The BLR package returns an list with posterior means and other information, type str(fm)
and inspect what BLR returns

- Check the posterior mean of 2
εσ and 2

βσ (fm$varE and fm$varBR, respectively), remember

the ratio of these variances is interpretable as λ in RR.

- Examine trace plots

- Compare prediction accuracy of the fully-Bayesian method versus RR.

Example 4. Bayesian Ridge Regression Using BLR

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

rm(list=ls())
DATA (same as Example 2) #######################################
 library(BLR)
 data(wheat)
 objects()
 N<-nrow(X) ; p<-ncol(X)
 y<-Y[,2]
 set.seed(12345)
 tst<-sample(1:N,size=150,replace=FALSE)
 XTRN<-X[-tst,]
 yTRN<-y[-tst]
 XTST<-X[tst,]
 yTST<-y[tst]

Fits the model
 prior<-list(varE=list(df=4,S=1),varBR=list(df=5,S=.01))
 fm<-BLR(y=yTRN,XR=XTRN,nIter=12000,burnIn=2000,prior=prior)

Prediction Accuracy: Bayesian vs grid search
 x<-scan(file="lambda.txt")
 y<-scan(file="sqCorTST.txt")

 plot(y~log(x),type="o",col=2,
 xlab=expression(paste(log(lambda))),ylab="Squared Corr.",
 ylim=c(0.1,.3))

 abline(v= log(fm$varE/fm$varBR),col=4)
 abline(h=cor(yTST,XTST%*%fm$bR)^2,col=4)

trace plots
 plot(scan("varE.dat"),type="o",col=2)
 abline(h=fm$varE,col=4)
 abline(v=200,col=4)

 11

2.6. G-BLUP

 Here we show the equivalence between estimates (posterior modes) derived from model [4]
and the so-called G-BLUP (‘Genomic Best Linear Unbiased Predictor’, e.g., VanRaden, 2008). We show
this using [4] and properties of the multivariate-normal density that are outlined below.

Properties of Multivariate Normal Density

Let ()′′′= 21 ,θθθ be a multivariate normal random vector with expectation 







=









2

1

2

1

μ
μ

θ
θ

E and

(co)variance matrix 







=









2221

1211

2

1

ΣΣ
ΣΣ

θ
θ

Cov .

(1) All marginal densities are also normal densities, specifically:

()1111 ,~ Σθθ MVN and ()2222 ,~ Σθθ MVN .

The conditional densities are also normal densities, with mean and (co)variance matrices given
by the following:

[] ()22
1

2212121 μθΣΣμθθ −+= −E and [] ()11
1

1121212 μθΣΣμθθ −+= −E . [5]

[] 21
1

22121121 ΣΣΣΣθθ −−=Cov and [] 12
1

11212212 ΣΣΣΣθθ −−=Cov . [6]

Above, { }ijb== −1
112121 ΣΣB and { }ijb== −1

221212 ΣΣB are matrix of regression coefficients of the ith

on the jth random variable of θ .

The multivariate normal density is closed under linear operations in the sense that linear
combinations of MVN random variables of the form Tθαδ += are multivariate normal random
variables, with mean vector and (co)variance matrices given by the following:

[] [] TμαθTαδ +=+= EE , [7]

and (co)variance matrix

[] [] TTΣTθTδ ′=′= CovCov , [8]

 12

Best Linear Unbiased Predictor (BLUP)

 We are now ready to derive the conditional expectation of marker effects and of genomic
values. The conditional expectation is the best predictor in the mean-squared error sense. Also, as we
show here, in the context of model [4] the conditional expectations of marker effects and of genomic
values are linear functions of data and are un-biased. Therefore, the conditional expectations of
genomic values and of marker effects from model [4] are BLUP (‘Best Linear Unbiased Predictor’).

For ease of notation we omit the intercept and therefore in [4] we set D equal to an identity
matrix. The model is then described by:

[] ()
[] ()





 ,~| :Prior

,~,| :Likelihood
22

22

ββ

εε

σσ

σσ

I0β
IXββy

N
N

 [4b]

From [4b] and using [7] and [8], we obtain that the joint density of y and β :
























′
+′









22

222

,~
ββ

βεβ

σσ
σσσ

IX
XIXX

0
β
y

MVN
 [9]

 Using [5] we get the BLUP of marker effects:

 [] [] [] yIXXXyIXXXyβ 112222,| −−
+′′=+′′= λσσσσ εββεE [10]

which is the posterior mean of β . Here, 22 −= βε σσλ . Because of the equivalence between the posterior

mode of β and the RR estimate, the solution given by [10] is also equivalent to the RR estimate given by
[3]. Importantly, note that computing the solution using [3] requires inverting a p×p matrix. On the other
hand, we can obtain the same solution using [10] with inversion of n×n matrix. Expression [10] is linear
on data and it is unbiased with respect to the prior mean, () 0β =E . To see this we take expectations in

[10] with respect to y to get []{ } [] []yIXXXyβ EEE 12,| −+′′= λσ ε . From [9], [] 0y =E ; therefore:

[]{ } 0yβ =2,| εσEE . Therefore, [10] gives the BLUP of marker effects.

 We now derive the conditional expectation of genomic values given the data.

[] []
[]

[] yGI

yIXXXX

yβXyXβ

11

1

22

,|,|

−−

−

+=

+′′=

=

λ

λ

σσ εε EE

 [11]

 13

 Where XXG ′= . This is the so-called G-BLUP of genomic values. Expression [11] is the best predictor
of genomic value and it is linearly on data. Also, taking expectation with respect to phenotypes

; therefore [11] is the BLUP of genomic values.

 The following example computes G-BLUP for the wheat datset, and illustrate the equivalence
with predictions from the RR.

Example 5. Ridge Regression and G-BLUP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

rm(list=ls())
DATA ###
 library(BLR)
 data(wheat)
 for(i in 1:ncol(X)){X[,i]<-(X[,i]-mean(X[,i]))}
 y<-Y[,1]
 h2<-0.5
 lambda<-ncol(X)
Computing RR estimates and prediction using eq. [3] #######
 C<-crossprod(X)
 diag(C)<-diag(C)+lambda
 CInv<-chol2inv(chol(C))
 rhs<-crossprod(X,y)
 sol<-crossprod(CInv,rhs)
 yHat_1<-X%*%sol

GBLUP
 G<-tcrossprod(X)
 C<-chol2inv(chol(G))*lambda
 diag(C)<-diag(C)+1
 CInv<-chol2inv(chol(C))
 yHat_2<-crossprod(CInv,y)

Comparison
 plot(yHat_2~yHat_1,col=2,xlab='Predicitons from RR equations',
 ylab='Predicttions from GBLUP equations')

 14

 References

Frank, I.E., and J.H. Friedman. 1993. “A Statistical View of Some Chemometrics Regression Tools.”
Technometrics: 109–135.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Second Edition. 2nd ed. 2009. Corr. 3rd printing 5th Printing.
Springer.

Hoerl, A. E, and R. W Kennard. 1970. “Ridge Regression: Biased Estimation for Nonorthogonal
Problems.” Technometrics 12 (1): 55–67.

Tibshirani, R. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical
Society. Series B (Methodological) 58 (1): 267–288.

Zou, H., and T. Hastie. 2005. “Regularization and Variable Selection via the Elastic Net.” Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 67 (2): 301–320.

 1

Statistical Methods for Genome-Enabled Prediction,

Lab 3:

The Bayesian Alphabet 1

 (

gcampos@uab.edu)

Contents
3.1. The Bayesian Alphabet .. 2

3.2. Ridge Regression Vs Bayesian Ridge Regression ... 9

3.3. Bayesian Lasso: fixed versus random lambda ... 11

3.4. Regression using markers and pedigree ... 13

References ... 14

NOTE: In many examples in this lab we use Bayesian methods. In those examples we make
inferences based on a relatively small number of samples and this is done due to time constraints.

In practice, accurate inferences require much more samples.

1 Suggestions made by Daniel Gianola are gratefully acknowledged.

mailto:gcampos@uab.edu�

 2

3.1. The Bayesian Alphabet

In standard parametric models for genomic selection (GS) phenotypes, , are regressed

on marker covariates, , using a linear model of the form , where

 is an effect common to all subjects (i.e., an ‘intercept’), are marker genotypes

(usually coded as 0,1,2) , are marker effects and is a model residuals. A standard

practice for continuous traits is to assume that model residuals are IID normal, this yields

the following likelihood function:

Likelihood: () ()∏ ∑
=

=
+=

n

i

p

j jiji xyNp
1

1
22 ,, σβµσµ β,y , [1]

where, is a normal density for the random variable centered at

 and with variance .

 With dense panels, the number of markers (p) vastly exceeds the number of data

points (n) and because of this penalized or Bayesian shrinkage estimation methods are

commonly used. In a Bayesian setting, shrinkage of estimates of effects is controlled by

the choice of prior density assigned to marker effects. The joint prior density of the

unknowns is commonly structured as follows:

Prior:

() () () ()
.

22

1

22 ,,,,, SdfppSdfp
p

j
j jj

σχωσβωσµ ββ
−

= 







∝ ∏ θθβ, [2]

 3

Above, a flat prior was assigned to the intercept, is a scaled-inverse Chi-

squared density assigned to the residual variance and with df degree of freedom and scale

equal to S , denotes the prior density of the jth marker effect, is a vector

of parameters indexing the prior density assigned to marker effects, is the prior

density assigned to and are parameters indexing this density. The marginal prior

density of marker effects is obtaining by integrating out,

. Note that, a-priori, all marker effects are

assigned the same marginal prior density; therefore, contrary what it is sometimes said, in

all members of the Bayesian alphabet, the prior variances of marker effects are the same

for all markers.

 Using Bayes rule, the posterior density of model unknowns given the data is

proportional to the product of the likelihood, given in eq. [1], and the prior density, eq.

[2], that is:

Posterior density:

() ()

() () ()
.

22

1

2

1
1

22

,,

,,,,

Sdfpp

xyNSdfp

p

j
j

n

i

p

j jiji

jj
σχωσβ

σβµωσµ

ββ
−

=

=
=









×

+∝

∏

∏ ∑

θθ

β, y,

, [3]

The Bayesian Alphabet. Following the seminal contribution of Meuwissen, Hayes, and

Goddard (2001) several linear Bayesian regression methods have been proposed and

used for simulation and real data analysis. They differed in the choice of prior density

 4

assigned to marker effects. In a Bayesian Ridge regression (BRR), the conditional prior

assigned of marker effects are IID normal, () ()22 ,0, ββ σβσβ jj Np
j

=θ and

() ()ββββ σχω Sdfp
j

,22−=θ .

A second group of models, which includes Bayes A (Meuwissen, Hayes, and

Goddard 2001) and the Bayesian LASSO (BL, Park and Casella 2008) use thick tail

prior densities (t in Bayes A and Double Exponential in the BL). These priors induce a

different type of shrinkage than that induced by the BRR.

A third group of models, which include Bayes B (Meuwissen, Hayes, and

Goddard 2001) and the spike-slab models (Ishwaran and Rao 2005) use priors that are

mixtures of a peak (or a spike) of mass at (in the vicinity of) zero and of a continuous

density (e.g., t, or normal). Figure 1 shows the densities of a Gaussian and Double

Exponential densities and that of a mixture model with a peak of mass at zero and a

Gaussian slab. The three densities have mean equal to zero and variance equal to one.

 5

Figure 1. Density of a standard normal random variable (black), of a double-exponential

random variable (blue) and of a random variable following a mixture density with a mass

point at zero (with probability 0.8) and a Gaussian process with probability 0.2. All

variables with zero mean and variance equal to one.

Many of the thick tail distributions, such as the t or the double-exponential

densities can be represented as infinite mixtures of scaled normal densities. For instance,

the t-prior density assigned to marker effects in Bayes A (Meuwissen, Hayes, and

 6

Goddard 2001) can be represented as

where and are prior degree of freedom and scale parameters and

is a scaled-inverse Chi-squared density.

In the Bayesian LASSO (Park and Casella 2008) the Double-exponential prior

density is represented as: . In the

fully-Bayesian LASSO, is treated as unknown and is assigned a Gamma prior. This

prior is indexed by two parameters (rate and shape, see help(rgamma)) which are

assumed to be known. Alternative priors for the regularization parameter are discussed in

de los Campos et al. (2009).

In Bayes B (Meuwissen, Hayes, and Goddard 2001) marker effects are assumed

to be equal to zero with probability π and with probability (1-π) the effect is assumed to

be a draw form a t-distribution such as the one described in Bayes A. Model Bayes C

(Habier et al. 2011) is similar to Bayes B but uses a Gaussian slab instead of the t-density

used in Bayes B.

For infinitesimal traits, zeroing-out marker effects, such as in Bayes B or C, may

harm predictive ability. Therefore, an alternative is to replace the peak of mass at zero

used in Bayes B or C with a continuous density with small variance. This strategy is

commonly used in what it is referred as to Spike-Slab models (Ishwaran and Rao 2005);

for instance one can mix two Gaussian densities, one with very small variance and one

with larger variance.

 Choosing hyper-parameters. In the above mentioned models, the parameters

indexing the prior density of marker effects play a central role in controlling the extent of

 7

shrinkage of estimates of markers effect (similar to that of λ of the ridge regression.

These parameters can be chosen in several ways, one of which is to select their values

based on heritability-based rules.

Choosing Hyper parameters using heritability based rules. In linear models for

genomic selection, genetic values are represented as regressions on marker covariates,

that is ∑=
j

jiji xg β . In these models, marker genotypes are fixed and marker effects are

random variables drawn from an IID process; therefore:

() () ∑∑ ==
j

ijj
j

iji xVarxgVar 222
βσβ

where 2
βσ is the prior variance of marker effects. Summing over individuals and dividing

by n yields

 [4]

where ∑∑−=
i j

ijxnK 21 is the average sum of square of marker genotypes in the dataset,

and is the heritability of the trait. Commonly, the model uses an intercept and we

measure variance at the genomic values as deviations from the center of the sample.

Therefor, a common practice is to compute K after centering genotypes, that is:

 where is the frequency of the allele coded as one at the jth

marker. Moreover, if markers are centered and standardized to a unit variance, that is if

 are used as marker codes in the regression, then K equals the number

of markers (p).

We can now use [4] to solve for the values of the parameters controlling

regularization as a function of K , 2h and of the phenotypic variance ().

 8

 Ridge Regression. Recall from the Bayesian standpoint the regularization

parameter of a ridge regression λ equals the ratio of the residual variance to the prior

variance of marker effects, . Replacing this in [4] and solving for λ we get

K
h

hK
h

h
2

2

2

2 1
1

−
=⇒=

−
λ

λ
 [5]

Therefore, according to [5] the larger the noise-signal ratio, the strongest

shrinkage of estimates should be. Also, K increases as the number of marker does;

therefore, according to [5] λ should be increased as the number of markers does.

 Bayesian Ridge Regression. In the Bayesian Ridge regression, instead of

choosing λ we need to assign a prior to and to 2
εσ . If these priors are scaled-inverse

chi square, the prior expectations are: where (.) equals or .

Typically we choose to be a small value, usually greater than 4 to guarantee finite

prior variance. Then, we can solve for as a function of , K, and , so that the

prior expectation of each of the variance components matches the value we expect

according to , and [4],

specifically, equating ()22 1 hp −σ to ()SdfE ,2
εσ we get,

() ()
2

,1 222

−
==−

ε

ε
εσσ

df
S

SdfEhp and equating 22hpσ to ()βββσ SdfEK ,2× we get

 [6]

 Bayes A. The above formulas can also be used to define the scale parameters in

Bayes B.

 9

Bayesian Lasso. In this model, as originally formulated by (Park and Casella

2008), marker effects are assigned IID double-exponential priors with rate parameter,

2

2

εσ
λ (note, λ here is a different parameter than that of the ridge regression). The prior

variance of marker effects is: ; therefore, 22

2 2
λσ

σ

ε

β = . Using

this in [4] we get: K
h

h
22

2 2
1 λ

=
−

 or

K
h

h
2

21
2

−
=λ [7]

For the scale parameter of the residual variance we can use formula [6].

Note. The regularization parameter of the Bayesian Lasso is a function of the

noise-signal ratio, and also of the number of markers. Specifically we expect K at a rate

proportional to the square-root of the number of markers. The same occurs in RR (see

[5]).

Bayes B and C. Here, the prior variance of marker effects are where

 is the proportion of marker effects coming from the zero-state of the mixture and

is the variance of the ‘slab’ (a Gaussian density in Bayes C and a t in Bayes B); therefore

we can use the following formulas to chose the scale parameters as functions of df, K,

 and ,

,
[8]

3.2. Ridge Regression Vs Bayesian Ridge Regression

In this section we compare estimates of marker effects derived from a ridge regression

using lambda from eq. [5] with those obtained with a Bayesian Ridge Regression using

 10

hyper-parameters chosen according to [6]. For the BRR we use the BLR package. Here,

the prior is provided as a list. There is one component in the list for each of the variance

parameters. In each component you need to provide prior degree of freedom and scale.

For more details refer to help(BLR) or see (Pérez et al. 2010).

Example 1. Ridge regression Vs Bayesian Ridge Regression
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

 rm(list=ls())
 library(BLR)
 data(wheat)
 y<-Y[,2]
 h2<-.2
 df0<-5
 for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i]) }

 K<-ncol(X) # after standardization, K=# of markers
 lambda<-K*(1-h2)/h2
 Se<-(1-h2)*var(y)*(df0-2)
 Sb<-h2*var(y)*(df0-2)/K
 round(Se/Sb,5)==lambda

 ## Ridge Regression
 X2<-cbind(1,X)
 C<-crossprod(X2)
 for(i in 2:ncol(C)){ C[i,i]<- C[i,i]+lambda }
 CInv<-chol2inv(chol(C))
 rhs<-crossprod(X2,y)
 bHat_RR<-crossprod(CInv,rhs)
 yHat_RR<-X2%*%bHat_RR

 ## Bayesian Ridge Regression
 library(BLR)
 prior<-list(varE=list(df=df0,S=Se) , varBR=list(df=df0,S=Sb))
 fmBRR<-BLR(y=y,XR=X,prior=prior,
 nIter=13000,burnIn=3000, saveAt='BRR_')

 fmBRR$varE/fmBRR$varBR
 lambda

 tmp<-range(c(bHat_RR[-1],fmBRR$bR))
 plot(fmBRR$bR ~bHat_RR[-1],xlim=tmp,
 ylim=tmp, ,main='Estimates of Marker Effects',
 xlab='Ridge Regression', ylab='Bayesian Ridge Regression')
 lines(x=c(-1,1),y=c(-1,1),col=2)

 tmp<-range(c(yHat_RR,fmBRR$yHat))
 plot(fmBRR$yHat~yHat_RR,xlim=tmp,ylim=tmp,main='Predictions',
 xlab='Ridge Regression', ylab='Bayesian Ridge Regression')
 lines(x=c(-10,10),y=c(-10,10),col=2,lwd=2)
 ## Change the prior scale (e.g., double it) and evaluate the
 ## in inferences

 11

3.3. Bayesian Lasso: fixed versus random lambda

In this example we fit the Bayesian LASSO using BLR. The prior for parameter lambda

of the BL has four arguments: type, value, rate and shape. If type='fixed'

lambda is set equal to value and kept fixed. If type='random' lambda is treated as

unknown; in this case a gamma prior is assigned to 2λ as described in Park and Casella

(2008). For more details type help(BLR) in R or see Pérez et al. (2010). We chose

values of the rate and shape parameters of the gamma prior so that the prior is flat in the

neighborhood of the value of lambda we derive from eq. [4]. The following code displays

the prior, run it and evaluates sensitivity with respect to rate and shape.

Example 2. Displaying prior of lambda of the BL

1
2
3
4
5
6
7
8

 h2<-0.5
 lambda0<-sqrt(2*K*(1-h2)/h2)
 lambda<-seq(from=0,to=250,by=1)
 dLambda<-2*lambda*dgamma(x=lambda^2,rate=1e-5,shape=0.53)
 plot(dLambda~lambda, type='l')
 abline(v=lambda0,col=2)

change rate and shape and evaluate sensitivity of the prior

 12

Now we fit the BL with fix and random lambda.

Example 3. Bayesian Lasso with fixed and random
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 rm(list=ls())
 library(BLR)
 data(wheat)
 y<-Y[,2] ; h2<-.5
 df0<-5
 for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i]) }

 Se<-(1-h2)*var(y)*(df0-2)
 lambda0<-sqrt(2*(1-h2)/h2*ncol(X))

Bayesian Lasso fixed lambda #################################
 prior<-list(varE=list(df=df0,S=Se) ,
 lambda=list(value=lambda0,
 type='fixed',rate=1e-5,shape=.53))

 fmBL_fixed<-BLR(y=y,XL=X,prior=prior,
 nIter=12000,burnIn=2000,saveAt='BL_fixed_')

 fmBL_fixed$lambda
 lambda0

 tmp<-range(c(bHat_RR[-1],fmBL_fixed$bL))
 plot(fmBL_fixed$bL ~bHat_RR[-1],xlim=tmp,ylim=tmp)
 lines(x=c(-1,1),y=c(-1,1),col=2)

 tmp<-range(c(yHat_RR,fmBL_fixed$yHat))
 plot(fmBL_fixed$yHat~yHat_RR,xlim=tmp,ylim=tmp)
 lines(x=c(-10,10),y=c(-10,10),col=2,lwd=2)

 ## Now: change the value of lambda (e.g., 30 and 200) and
 ## evaluate the impact on shrinkage of estimates

Bayesian Lasso random lambda ################################
 prior$lambda$type='random'

 fmBL_rand<-BLR(y=y,XL=X,prior=prior,
 nIter=12000,burnIn=2000,saveAt='BL_rand_')

 fmBL_rand$lambda
 lambda0

 tmp<-range(fmBL_rand$bL,fmBL_fixed$bL)
 plot(fmBL_rand$bL ~fmBL_fixed$bL,xlim=tmp,ylim=tmp)
 lines(x=c(-1,1),y=c(-1,1),col=2)

 tmp<-range(c(fmBL_rand$yHat,fmBL_fixed$yHat))
 plot(fmBL_rand$yHat~fmBL_fixed$yHat,xlim=tmp,ylim=tmp)
 lines(x=c(-10,10),y=c(-10,10),col=2,lwd=2)

 13

3.4. Regression using markers and pedigree

So far we have regressed phenotypes on markers only. The following code gives an

example of models with and without pedigree. In the wheat dataset, matrix A is an

additive relationship matrix computed from the pedigree.

Example 4. Bayesian Lasso with & without pedigree
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

DATA ###
 rm(list())
 library(BLR)
 data(wheat)
 objects()
 y<-Y[,2]
 set.seed(1235)
 tst<-sample(1:599,size=150,replace=FALSE)
 yNA<-y
 yNA[tst]<-NA

 ## Markers model
 prior<-list(varE=list(df=df0,S=Se) ,
 lambda=list(value=lambda0,type='random',
 rate=1e-5,shape=.53))

 ## Model with only markers
 fmM<-BLR(y=yNA,XL=X,prior=prior,
 nIter=12000,burnIn=2000,saveAt='BL_M_')

 prior$varU=list(df=df0,S=Se/3)
 fmPM<-BLR(y=yNA,XL=X,prior=prior,GF=list(A=A,ID=1:599),
 nIter=12000,burnIn=2000,saveAt='BL_PM_')

 fmPM$varE/fmM$varE
 fmPM$lambda/fmM$lambda

 cor(y[tst],fmM$yHat[tst])
 cor(y[tst],fmPM$yHat[tst])

 tmp<-range(c(fmM$bL,fmPM$bL))
 plot(fmM$bL ~fmPM$bL,xlim=tmp,ylim=tmp)
 lines(x=c(-1,1),y=c(-1,1),col=2)

 tmp<-range(c(fmPM$yHat,fmM$yHat))
 plot(fmPM$yHat~fmM$yHat,xlim=tmp,ylim=tmp)
 lines(x=c(-10,10),y=c(-10,10),col=2,lwd=2)

 14

References

Habier, D., R. Fernando, K. Kizilkaya, and D. Garrick. 2011. “Extension of the Bayesian

Alphabet for Genomic Selection.” BMC Bioinformatics 12 (1): 186.

Ishwaran, H., and J. S Rao. 2005. “Spike and Slab Variable Selection: Frequentist and

Bayesian Strategies.” The Annals of Statistics 33 (2): 730–773.

Meuwissen, T H, B J Hayes, and M E Goddard. 2001. “Prediction of Total Genetic Value

Using Genome-wide Dense Marker Maps.” Genetics 157 (4) (April): 1819-1829.

Park, T., and G. Casella. 2008. “The Bayesian Lasso.” Journal of the American Statistical

Association 103 (482): 681–686.

Pérez, Paulino, Gustavo de los Campos, José Crossa, and Daniel Gianola. 2010.

“Genomic-Enabled Prediction Based on Molecular Markers and Pedigree Using the

Bayesian Linear Regression Package in R.” The Plant Genome Journal 3 (2): 106-

116. doi:10.3835/plantgenome2010.04.0005.

1

Statistical Methods for Genome-Enabled Prediction,

Lab 4:

Semi-parametric Genomic Regression Using Reproducing

Kernel Hilbert Spaces Methods1

 (

gcampos@uab.edu)

Contents
4.1. Semi-parametric genome-enabled regression .. 2

4.2. Reproducing Kernel Hilbert Spaces (RKHS) regressions ... 3

4.3. Scatter plot smoothing with a Gaussian kernel .. 5

4.4. Inspecting the Hat Matrix .. 7

4.5. Bayesian view of RKHS .. 8

4.6. Genomic-Enabled Prediction Using RKHS ... 9

4.7. Kernel Averaging ... 12

4.8. Pedigree + Marker Models .. 15

References ... 17

NOTE: In many examples in this lab we use Bayesian methods. In those examples we
make inferences based on a relatively small number of samples and this is done due to

time constraints. In practice, accurate inferences require much more samples.

1 Suggestions made by Daniel Gianola are gratefully acknowledged.

mailto:gcampos@uab.edu�

2

4.1. Semi-parametric genome-enabled regression

In a standard regression model, the response, iy , is expressed as the sum of a conditional

expectation function, ()ig x , and a model residual, iε , that is () iii gy ε+= x . In

previous labs we have focused on the case where ()ig x is a linear function of marker

genotypes, that is () ∑ =
=

p

j jiji xg
1

βx . Departures from the linear model could

theoretically be captured by extending the regression formula with addition of contrasts

between marker genotypes, for instance dominance (i.e., within-loci interaction of alleles)

could be modeled using dummy variables of the form , and

similar contrasts could be used to model interaction of alleles at different loci (i.e.,

epitasis). However, with large p the number of possible interaction terms needed to

model even modest degree of interactions (e.g., 1s order epistatic interactions) is

extremely large and the problem becomes intractable.

 Alternatively, we could try to capture departures from the linear model using

semi-parametric procedures. This was first suggested in the context of Genomic Selection

(GS) by Gianola, Fernando, and Stella (2006) who propose implementing GS using

various semi-parametric procedures. Since then, several existing semi parametric

procedures have been evaluated in GS. In this lab we focus on Reproducing Kernel

Hiblert Spaces (RKHS). Penalized Neural Networks are introduced in LAB 5.

3

4.2. Reproducing Kernel Hilbert Spaces (RKHS) regressions

Reproducing kernel Hilbert spaces (RKHS) methods are used for semi-parametric

modeling in different areas of application such as scatter-plot smoothing (e.g., smoothing

spline, Wahba, 1990; spatial smoothing (e.g., Kriging, Cressie 1988); classification

problems (e.g., support vector, Vapnik 1998), just to mention a few. Gianola, Fernando,

and Stella (2006) suggested using this methodology for semi-parametric genomic enabled

prediction. Since then, several authors have discussed and evaluated this methodology in

a genomic context.

Estimates in RKHS can be motivated as solution to a penalized optimization

problem in a RKHS of real-valued functions or, simply, as posterior modes in certain

class of Bayesian models. Next, we provide an overview of the methodology. Detailed

discussions of RKHS regressions in the context of genome-enabled prediction can be

found in Gianola and van Kaam (2008), de los Campos, Gianola, and Rosa 2009) and de

los Campos et al. (2010).

Penalized Regression in Reproducing Kernel Hilbert Spaces

In RKHS regressions we define the set of functions, or space, in which we

perform the regression by choosing a reproducing kernel (RK). Technically, the RK can

be any positive definite function2

2For

 mapping from pairs of points in input space onto the

()iiK ′xx , to be positive semi definite it must satisfy () () 0,, ≥∑∑
′

′′′
i i

iiiiii KK xxxxαα for

every non-null sequence{ }iα .

4

real line, that is . For reasons that we will discuss later in this

handout you can also think as a co-variance function. For example, if the input

space consists of a pedigree additive relationships constitute a

valid RK.

In RKHS regressions the evaluations of functions are expressed as linear

combinations of the basis functions provided by the reproducing kernel, RK, ()iiK ′xx , ,

that is () () ii iii Kg ′′ ′∑= αxxx , , and the squared of the norm of the function is given by

()∑ ∑ ′′ ′=
i ii iiKg αxx ,2 .

Stacking the evaluations of the function into a vector yields: Kαg = and

Kααg ′=2 , where { }ig=g , (){ }iiii KK ′′ == xxK , and { }iα=α .

Estimates in RKHS are usually obtained as the solution to the following penalized

residual sum of squares (intercept and non-maker effects omitted for ease of notation):

() (){ } ˆ
minarg

KααKαyKαyα ′+−′−= λ [1]

above, () ()KαyKαy −′− is a residual sum of squares, Kαα′ is a penalty on model

complexity, which is taken to be the square of the norm of the function and λ is a

regularization parameters.

 The solution to the above optimization problem can be shown to be:

[] yKKKKα ′+′= −1ˆ λ . [2]

 Predictions are then obtained as follows:

[] [] yKIyKKKKKαK 111ˆ −−− +=′+′= λλ ; [3]

5

therefore, [] [] 111 −−− +=′+′ KIKKKKK λλ is the Hat matrix of RKHS.

 Model specification in RKHS regression is defined by two main elements3

λ

: the

choice of the reproducing kernel, this functions provide the basis functions and the inner

product which define the Hilbert Space, and which, as in ridge regression, represents a

shrinkage parameter.

4.3. Scatter plot smoothing with a Gaussian kernel

In the following example we will use a RKHS regression to estimate a conditional

expectation function non-parametrically. In the example, there is a single predictor,

[]π2,0∈ix and the true conditional expectation function is ())sin(120 ii xxg += . Data

was generated as iii xy ε++=)sin(120 where ()1,0~ N
IID

iε . With this setting,

approximately 1/3 rd of the variance of the response is explained by the conditional

expectation function and 2/3rd by model residuals.

 In this example we use the Gaussian kernel,

 () (){ }iiii xxdhxxK ′′ ×−= ,exp,

where: ()ii xxd ′, is a distance function which in this example we set to be a squared-

Euclidean distance, () ()2, iiii xxxxd ′′ −= , and h is a bandwidth parameter controlling

3 A third element pertains to the choice of the function used to measure model goodness/lack of fit to the
training data. Here we focus on the case where lack of fit is measured by the residual sum of squares; other
common choices are the negative of the log-likelihood, this allows modeling continuous, binary and other
types of outcomes. For binary outcomes another popular choice is the hinge function, the support vector
machine (Vapnik 1998) is a special case of RKHS where the loss-function is chosen to be a hinge function
(Wahba 1990).

6

how fast the kernel decay as the two points, ()ii xx ′, , get further apart. In the example we

evaluate the effects of h (which defines the RK) and of λ .

• Run the code with the values of h and λ given in the example.

• Set h=1/1000, this makes the kernel extremely global, and run the code.

• Set h=50, this makes the kernel extremely local, and run the code.

• Now fix h=1 and change lambda, evaluate ʎ=200, then ʎ=1/100, evaluate results.

Example 1. Scatter-plot smoothing with a Gaussian kernel
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

SIMULATION##
 set.seed(12345)
 N<-200
 x<-seq(from=0,to=2*pi,length=N)
 signal<-sin(x)
 error<-rnorm(N)
 y<-signal+error
 h<-1
 lambda<-10
DISTANCE FUNCTION AND REPRODUCING KERNEL #######
 D<-as.matrix(dist(x,method="euclidean"))^2
 K<-exp(-h*D)
 diag(K)<-diag(K) +.001

FITTING THE MODEL ##############################
 yStar<-y-mean(y)
 KInv<-chol2inv(chol(K))
 C<-KInv*lambda
 diag(C)<-diag(C)+1
 H<-chol2inv(chol(C)) # the Hat matrix
 uHat<-H%*%(y-mean(y))

 plot(y~x, main=paste("lambda=",lambda," h=",h,sep=""))
 lines(x=x,y=signal,col=2,lwd=2)
 lines(x=x,y=uHat+mean(y),col=4,lwd=2)

want to make the function less local? set h=1/1000,
want to make it extremely local? set h=100
Now fix h=1 and change lambda = 200 then lambda= 1/100

7

4.4. Inspecting the Hat Matrix

From eq. [3] predictions are obtained as [] HyyKIy =+= − ˆ 1λ , where,

{ } [] 11 −−+== λKIH ijh , therefore, . The following code displays the

entries of the hat matrix of Example 1. You can evaluate the impact of the bandwidth

parameter on the weights by changing (in Example 1) h.

Example 2. Displaying the entries of the Hat matrix in RKHS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

SIMULATION######################################
 rm(list=ls())
 set.seed(12345)
 N<-200
 x<-seq(from=0,to=2*pi,length=N)
 signal<-sin(x)
 error<-rnorm(N)
 y<-signal+error
 h<-1
 lambda<-10
DISTANCE FUNCTION AND REPRODUCING KERNEL #######
 D<-as.matrix(dist(x,method="euclidean"))^2
 K<-exp(-h*D)
 diag(K)<-diag(K) +.001

Hat Matrix ####################################
 yStar<-y-mean(y)
 KInv<-chol2inv(chol(K))
 C<-KInv*lambda
 diag(C)<-diag(C)+1
 H<-chol2inv(chol(C)) # the Hat matrix
Plotts the ith row of H #########################
 row<-50
 plot(H[row,]~x, main="",xlab="x(j)",
 type="l", ylab="h(i,j)",col=2)
 abline(v=x[row],col=4) ; abline(h=0)

8

4.5. Bayesian view of RKHS

The solution to the penalized RKHS regression (see eq. [1]) can be shown to be the same

than the posterior mode of the vector of regression coefficients in the following Bayesian

model:





































+=

− 21

2
22 ,~,

α

ε
ε σ

σ
σσ

K0
0I

0
α
ε

εKαy

Ng

[4]

where 22 −= αε σσλ . The proof of the equivalence between the posterior mode of α in the

Bayesian model described in [4] and the solution given in [2] can be obtained following

the same steps used in section 2.5 of LAB 2.

Further, changing variables in [4] from Kα to Kαg = , and noting from the

properties of the MVN density (see section 2.6 of LAB 2) that ()2,~ gMVN σK0g , where

22
gσσα = , we obtain an equivalent representation of [4],







































+=

2

2
22 ,~,

g
g N

σ
σ

σσ ε
ε K0

0I
0

g
ε

εgy

[5]

9

Therefore, from the Bayesian perspective, the evaluations of functions at points in the

input space, (){ }ig xg = are viewed as realizations from Gaussian process satisfying:

() ()[] ()
() ()iiii

ii
ii KK

K
ggCor

′′

′
′ =

xxxx
xx

xx
,,

,
, . Here, the RK ()iiK ′xx , is viewed as a

(co)variance function whcih defines a notion of smoothens of the function with respect to

points in the input space (genotypes in our case). A high value of () ()[]ii ggCor ′xx ,

implies that, a-priori, we expect the function to behave smoothly when we jump from ix

to i′x . At the same time, this means iy is informative about ()ig ′x and that iy ′ informs

us something about ()ig x .

Special cases. Certain parametric models appear as special cases of RKHS

regression. For instance, if our information set consists of a pedigree and K is a matrix

of additive relationship matrix, the model defined by [1] is equivalent to the infinitesimal

additive model, the so-called Animal Model. The Bayesian ridge regression and GBLUP

(see section 2.6 of LAB 2) is another example of a parametric model that can be

represented as a RKHS, this is obtained by setting XXK ′= . These are examples where

the RK is chosen so as to represent the types of patterns expected under a parametric

model. Another alternative is to choose kernels based on their performance (e.g.,

predictive ability). In this lab we will focus on this second approach.

4.6. Genomic-Enabled Prediction Using RKHS

In this section we use the Gaussian kernel for genomic-enabled prediction. To this end,

we replace the distance function by a genomic-distance. For instance, we can set

10

() ()∑ ′′ −=
j

jiijii xxd 2,xx ; the Gaussian kernel becomes: () (){ }iiii dhxxK ′′ ×−= xx ,exp, .

The function dist() of R takes tow arguments: x which should be a numeric vector or

matrix, and methods, which should be a string indicating the method fro computing

distances. By default the Euclidean distance is computed. Type help(dist) for further

details. The function returns an object, which can be converted to an n×n matrix,

containing pairwise distance between the rows of X.

 The example below fits the model over a grid of values of the bandwidth

parameter (h) and evaluates the effect of it on goodness of fit, model complexity and

predictive ability.

• Run the code;

• Evaluate how goodness of fit and predictive ability changes with h

• How does 2

2

gσ
σ

λ ε= changes with h?

11

Example 3. RKHS for Genomic Prediction
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 rm(list=ls())
 setwd('~/Dropbox/Armidale/')
 load("PROGRAMS/RKHS/RKHS.rda")
 library(BLR)
 data(wheat)

 ### DISTANCE MATRIX #############################
 D<-as.matrix(dist(X,method="euclidean"))^2
 D<-D/mean(D)
 h<-c(1e-2,.1,.4,.8,1.5,3,5)

 ### GENERATES TESTING SET #######################
 set.seed(12345)
 tst<-sample(1:599,size=100,replace=FALSE)
 y<-Y[,4]
 yNA<-y
 yNA[tst]<-NA

 ### FITS MODELS #################################
 PMSE<-numeric() ; VARE<-numeric(); VARU<-numeric() ;
 pD<-numeric(); DIC<-numeric()
 fmList<-list()
 for(i in 1:length(h)){
 print(paste('Working with h=',h[i],sep=''))
 # COMPUTES THE KERNEL
 K<-exp(-h[i]*D)
 # FITS THE MODEL
 prefix<- paste(h[i], "_",sep="")
 fm<-RKHS(y=yNA,K=list(list(K=K,df0=5,S0=2)),
 nIter=5000,burnIn=1000,df0=5,S0=2,saveAt=prefix)
 fmList[[i]]<-fm
 PMSE[i]<-mean((y[tst]-fm$yHat[tst])^2)
 VARE[i]<-fm$varE
 VARU[i]<-fm$K[[1]]$varU
 DIC[i]<-fmfitDIC
 pD[i]<-fmfitpD
 }
 R2<-1-PMSE/mean((y[tst]-mean(y[-tst]))^2)

 ### PLOTS ###############################
 plot(VARE~h,xlab="Bandwidth", ylab="Residual Variance",type="o",col=4)

 plot(I(VARE/VARU)~h,xlab="Bandwidth",
 ylab="variance ratio (noise/signal)",type="o",col=4)

 plot(pD~h,xlab="Bandwidth", ylab="pD",type="o",col=2)

 plot(DIC~h,xlab="Bandwidth", ylab="DIC",type="o",col=2)

 plot(R2~h,xlab="Bandwidth", ylab="R-squared",type="o",col=2)

12

4.7. Kernel Averaging

The choice of the RK (its functional form and the values of parameters such as the

bandwidth) constitutes the central element of model specification in RKHS regressions.

There are several ways of choosing a kernel. In parametric models, the RK is chosen to

represent the type of patterns expected under a particular parametric model (e.g., additive

infinitesimal, K=A; linear model, K=XX’). Form a non-parametric perspective one can

choose kernels based on the performance of the model, e.g., predictive ability; an

illustration of this was provided in the previous example where a validation set was used

to evaluate predictive ability of RKHS using a Gaussian kernel, over a grid of values of

the bandwidth parameter.

A third way is by inferring the kernel from the data. For instance, in a Bayesian

context one could assign a prior to the bandwidth parameter and infer this parameter

jointly with other unknowns. While this is appealing, it is computationally demanding for

at least two reasons: (a) the RK must be re-computed every time a new value of the

bandwidth parameter is sampled; (b) mixing may be poor. This occurs because, usually,

variance parameters and the bandwidth parameter are highly correlated at the posterior

distribution. An alternative which we consider here is to offer the algorithm all candidate

kernels jointly. For instance, we can make the conditional expectation to be a sum of

several random effects, { }
kNgg ,...,1 , each of which has its own (co)variance function, the

model becomes:

13

() () ()









=

++=

∏

∑

=

=

k

kkNk

k

N

k
gkkggN

N

k
k

NNp
1

22222
1

1

,,,..,,,...,,
1

σσσσσ

µ

εε K0gI0εggε

εg1y

It can be shown that, conditional on variance parameters, the above model is

equivalent to one with a single random effect, g, whose prior distribution is ()2, gN σK0g

where:
kk NN ααα KKKK +++= ...2211 is a weighted sum of the candidate kernels with

weight given by 2

2

g

g
k

k

σ

σ
α = and ∑=

k
gg k

22 σσ . Variance parameter here can then be seen

as weights associated to each kernel which can be inferred from the data. The larger the

variance associated to a given kernel the larger the contribution of that random effect to

the conditional expectation We refer to this approach as kernel averaging (KA, de los

Campos et al., 2010).

The following example illustrates the use of KA; the sequence of kernels was

generated using the Gaussian kernel and the values of the bandwidth parameter used in

our previous example.

• Run the code below.

• What Kernel gets higher weight?

• Is that the Kernel that gave highest predictive ability in our previous

example?

• Compare the predictive ability of KA with that of models fitted in our

previous example (i.e., single kernel with fixed bandwidth).

14

Example 4. Kernel Averaging
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

 rm(list=ls())
 setwd('~/Dropbox/Armidale/') ; load("PROGRAMS/RKHS/RKHS.rda")

 library(BLR)
 data(wheat)
 D<-as.matrix(dist(X,method="euclidean"))^2
 D<-D/mean(D)
 h<-c(1e-2,.1,.4,.8,1.5,3,5)

GENERATES TESTING SET #######################
 set.seed(12345)
 tst<-sample(1:599,size=100,replace=FALSE)
 y<-Y[,4]
 yNA<-y
 yNA[tst]<-NA

FITS MODELS #################################
 PMSE<-numeric()
 VARE<-numeric()
 KList<-list()
 for(i in 1:length(h)){
 KList[[i]]<-list(K=exp(-h[i]*D),df0=5,S0=.5)
 }

Displays entries of different kernels
 plot(KList[[1]]$K[100,],ylim=c(0,1),col=2);abline(v=100)

 plot(KList[[5]]$K[100,],ylim=c(0,1),col=2);abline(v=100)

 fmKA<-RKHS(y=yNA,K=KList,thin=10,
 nIter=25000,burnIn=5000,df0=5,S0=1,saveAt="KA_")

 VARG<-numeric()
 for(i in 1:length(KList)){ VARG[i]<-fmKA$K[[i]]$varU }
 weights<-round(VARG/sum(VARG),5)

 PMSE<-mean((y[tst]-fmKA$yHat[tst])^2)
 R2_KA<-1-PMSE/mean((y[tst]-mean(y[-tst]))^2)

 # compare with results obtained in the previous example
 # take a look at the trace plots of variance parameters

15

4.8. Pedigree + Marker Models

The following code compares the entries of a pedigree-based additive relationship matrix

versus that of two marker-based genomic relationships. The first one (XX’, denoted as

XXt) is the co-variance structure corresponding to a linear regression on marker-

covariates with IID normal marker effects (what we have called the Bayesian Ridge

Regression). The second one (denoted as K) is a Gaussian kernel.

Example 5. Pedigree Vs marker based relationship matrices
1
2
3
4
5
6
7
8
9
10
11
12
13

 rm(list=ls())
 library(BLR)
 setwd('~/Dropbox/Armidale/') ; load("PROGRAMS/RKHS/RKHS.rda")
 data(wheat) ; for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i]) }

 D<-as.matrix(X,method='euclidean')^2
 D<-D/mean(D)
 K<-exp(-2*D)
 G<-tcrossprod(X)/ncol(X)

 ## plot of entries of XXt versus A
 tmpX<-as.vector(A)
 tmpY<-as.vector(G)
 tmp<-range(c(tmpX,tmpY))
 plot(tmpY~tmpX,xlab='A',ylab='G',cex=0.3,col=2,xlim=tmp,ylim=tmp)

16

Example 6. RKHS with markers and pedigree
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

 rm(list=ls())
 library(BLR)
 setwd('~/Dropbox/Armidale/') ; load("PROGRAMS/RKHS/RKHS.rda")
 data(wheat) ; for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i]) }

Generates Testing Sets ######################
 set.seed(12345)
 tst<-sample(1:599,size=100,replace=FALSE)
 y<-Y[,4] ; yNA<-y; yNA[tst]<-NA; KList<-list()

First the pedigree-model ####################
 KList[[1]]<-list(K=A,df0=5,S0=.2)
 fmP<-RKHS(y=yNA,K=KList,thin=10,
 nIter=6000,burnIn=1000,df=5,S0=1,saveAt="P_")
 PMSE<- mean((y[tst]-fmP$yHat[tst])^2)
 R2_P<-1-PMSE /mean((y[tst]-mean(y[-tst]))^2)

Now Markers #################################
 G<-tcrossprod(X)/ncol(X)
 KList[[1]]<-list(K=G,df0=5,S0=.2)
 fmM<-RKHS(y=yNA,K=KList,thin=10,
 nIter=6000,burnIn=1000,df=5,S0=1,saveAt="M_")
 PMSE<- mean((y[tst]-fmM$yHat[tst])^2)
 R2_M<-1-PMSE /mean((y[tst]-mean(y[-tst]))^2)

Now Markers and pedigree ###################
 KList[[1]]<-list(K=A,df0=5,S0=.1)
 KList[[2]]<-list(K=G,df0=5,S0=.1)

 fmPM<-RKHS(y=yNA,K=KList,thin=10,
 nIter=6000,burnIn=1000,df=5,S0=1,saveAt="PM_")
 PMSE<- mean((y[tst]-fmPM$yHat[tst])^2)
 R2_PM<-1-PMSE /mean((y[tst]-mean(y[-tst]))^2)

Now Lets add XXt#XXt ###################
 KList[[1]]<-list(K=A,df0=5,S0=.1)
 KList[[2]]<-list(K=G,df0=5,S0=.05)
 KList[[3]]<-list(K=I(G^2),df0=5,S0=.05)

 fmPM2<-RKHS(y=yNA,K=KList,thin=10,
 nIter=15000,burnIn=5000,df=5,S0=1,saveAt="PM2_")
 PMSE<- mean((y[tst]-fmPM2$yHat[tst])^2)
 R2_PM2<-1-PMSE /mean((y[tst]-mean(y[-tst]))^2)

 library(graphics)
 barplot(height=c(R2_P,R2_M,R2_PM,R2_PM2),
 names.arg=c('P','M','PM','PM2'), ylab='R-sq. TRN set',col=2)
Take a look at trace plots of variance parameters

17

References

de los Campos, G., D. Gianola, G. J. M. Rosa, K. A Weigel, and J. Crossa. 2010. “Semi-

parametric Genomic-enabled Prediction of Genetic Values Using Reproducing

Kernel Hilbert Spaces Methods.” Genetics Research 92 (04): 295–308.

de los Campos, G., D. Gianola, and G. J.M Rosa. 2009. “Reproducing Kernel Hilbert

Spaces Regression: a General Framework for Genetic Evaluation.” Journal of

Animal Science 87 (6): 1883.

Cressie, N. 1988. “Spatial Prediction and Ordinary Kriging.” Mathematical Geology 20

(4): 405–421.

Gianola, D., and J. B van Kaam. 2008. “Reproducing Kernel Hilbert Spaces Regression

Methods for Genomic Assisted Prediction of Quantitative Traits.” Genetics 178

(4): 2289.

Gianola, Daniel, Rohan L. Fernando, and Alessandra Stella. 2006. “Genomic-Assisted

Prediction of Genetic Value With Semiparametric Procedures.” Genetics 173 (3)

(July 1): 1761-1776. doi:10.1534/genetics.105.049510.

Vapnik, V. N. 1998. “Statistical Learning Theory.”

Wahba, G. 1990. “Spline Methods for Observational Data.” SIAM: Philadelphia.

1

Statistical Methods for Genome-Enabled Prediction,

LAB 5:

Penalized Neural Networks1

 (

gcampos@uab.edu)

Contents

5.1. Introduction ... 2

5.2. Scatterplot smoothing using a penalized NN ... 5

5.3. Penalized Neural Network Using Pre-selected Markers .. 7

5.4. Penalized Neural Networks Using Marker-derived Basis Functions as Inputs 8

References .. 9

1 Suggestions made by Paulino Pérez are gratefully acknowledged.

mailto:gcampos@uab.edu�

2

5.1. Introduction
 In linear regression models the conditional expectation is represented as a weighted sum of input

variables, . Many non-linear patterns can be represented linearly by appropriate

choice of basis functions: where, are the basis functions, which

map from the input variables onto the real line. An example of these are the polynomial basis functions:

(){ }M
m

m
iim xx 0 ===Φ ϕ . For instance, if M=2 we have the 2nd degree polynomial basis functions,

{ } , 1, 2
ii xx=Φ ; therefore, () 2

210 iiii xxyE βββ ++=x . Other common examples of non-linear basis

functions are the power, logarithm and exponential functions. With this types of basis functions each of
the regression coefficients affect the behavior of the conditional expectation in the entire input space, and
this may limit the ability of a model to capture the local behavior of the conditional expectation.

 Local basis functions can be used to model a conditional expectation within certain regions of the
input space. Splines represent an example of this. In a spline, polynomial basis functions are used to
represent the regression function within boundaries defined by a set of knots. The Gaussian kernel

discussed in LAB4 is another example of a local basis function, here ()
2

,, mih
mim eh txtx −−

=ϕ where mt is

a focal point and is a bandwidth parameter which controls how fast the basis function decay as ix gets

further apart from the focal point. Model specification in this case pertains to the choice of focal points
(how many and where in input space should be placed) and of the bandwidth parameter. In the RKHS
regressions of LAB4, the strategy was to ‘offer’ the model a large set of basis functions (one per subject in

the sample) generated by setting 11 xt = , 22 xt = ,…, nn xt = ; therefore () ∑ =′

−−
′

′×=
n

i

h
iii

iieyE
1

2
xxx α

. This strategy may induce over-fitting and this was confronted by using shrinkage estimation procedures.
This is approach is also used in smoothing spline (Craven and Wahba 1978; Wahba 1991).

 Non-linear basis functions such as the ones described above offer great potential for capturing
potentially complex patterns between input and output variables; however, the set of basis functions
needs to be defined a-priori. In Neural Networks (NN) the basis functions used for regression are inferred
(i.e., are data driven), this gives NN great potential for capturing potentially complex patterns.

One of the simplest NNs is the single hidden layer feed-forward NN. This NN can be thought as
non-linear regressions consisting of two steps (Hastie, Tibshirani, and Friedman 2009): in the first one (or

hidden layer) the basis functions are inferred, and in the second one (or output layer) the output, , is

regressed on the basis function inferred in the hidden layer. A graphical representation of such NN is given

3

in Figure 1. The term feed-forward is used to highlight that in these NNs information flows from inputs
(the ix ’s) to output (the Iy ’s), other NN allow feedbacks.

Figure 1. Graphical Representation of Single Hidden Layer Feed-Forward Neural Network for a Continuous

Response () and p predictor variables (). The network contains M neurons. At each neuron,

linear combinations of the predictors () are inferred and subsequently activated

. These basis functions are then used in the output layer to regress the output variable

using a linear model ().

As illustrated in Figure 1, in the hidden layer M basis functions, , are

inferred (one at each neuron). Each of these basis functions consist of a linear score,

, activated by a non-linear activation function, .

4

In the output layer, the outcome, iy , is regressed on the basis functions using an additive model.

The example of Figure 1 is for a continuous response; in many applications with NN the outcome is either
binary or polychotomous. In those cases an additional activation functions are added in the output layer.
Note that, if the activation function of the hidden and output layers are identity functions (i.e.,

 the model of Figure 1 becomes a standard multiple linear regression model. Moreover, if

we set the to be the basis functions of a reproducing kernel (see LAB4), the NN of Figure 1 becomes

the RKHS regression. Therefore, we can view the NN of figure 1 as a general framework that includes the
linear model and the RKHS as special cases.

The activation functions of the hidden layers map from the real line onto the [0,1] interval, and a

common choice is to set this to be a sigmoid function. For instance we could use ()
mizmim e

z ×−+
= θφ

1
1

 for

some 0>θ .

Architecture of a Neural Network. The elements that define model specification in NN are: (a) the
choice of input variables, (b) the type of network (e.g., feed-forward), (c) the number of layers, (d) the
number of neurons per layer, and (d) the choice of activation functions. In general the term ‘architecture’
of the network is used to referred to the choices made in (b)-(d).

Penalized Neural Networks. The set of parameters to be estimated in the NN of Figure 1 include:
all the intercepts and regression coefficients at each neurons, the parameters of the activation functions,
and the intercept and regression coefficients of the output layer. With large p, and with several neurons,
the total number of parameters to be estimated can be huge. This, together with the intrinsic flexibility of
the NN, can easily yield over-fitting and poor predictive performance. To prevent this, a common strategy
is to fit the neural network using penalized methods such as those discussed in LAB2. Therefore, in a
penalized NN, parameters are estimated by minimizing an objective function consisting of a lack-of fit
function (e.g., a residual sum of squares) plus a penalty on model complexity. Any of the penalties
discussed in LAB 2 can be used; however, a common choice is to set the penalty to be the of regression
coefficients (usually intercepts are not penalized).

In what remains of the lab we illustrate the use of penalized NN using a beta version of the R-
package trainbr. This package was developed and kindly shared by Paulino Perez.

5

5.2. Scatterplot smoothing using a penalized NN

The following example illustrates the use of penalized NN for scatter-plot smoothing.

Example 1: Scatter-plot smoothing Using a Neural Network

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

 rm(list=ls());library(trainbr) ; library(splines)
SIMULATION (same as the one used in Ex. 1 of LAB4) #####
 set.seed(12345)
 N<-200
 x<-seq(from=0,to=2*pi,length=N)
 signal<-sin(x)
 error<-rnorm(N)
 y<-signal+error

 # for train-br the oucome variable needs to be standardized to [0,1]
 yStd<-normalize(y)
 signalStd<-2*(signal-min(y))/(max(y)-min(y))-1

Various parametric models
 lm1<-lm(y~x)
 poly3<-lm(yStd~x+I(x^2)+I(x^3))
Natural spline with 4 knots
 X<-ns(x=x,df=4)
 fmNS<-lm(yStd~X)
Neural Networks with 1,2,3 and 5 nuerons
 NN1<-trainbr(y=yStd,X=as.matrix(x),neurons=1)
 yHatNN_1<-predictions.nn(X=as.matrix(x),theta=NN1$theta, neurons=1)

 NN2<-trainbr(y=yStd,X=as.matrix(x),neurons=2)
 yHatNN_2<-predictions.nn(X=as.matrix(x),theta=NN2$theta, neurons=2)

 NN3<-trainbr(y=yStd,X=as.matrix(x),neurons=3)
 yHatNN_3<-predictions.nn(X=as.matrix(x),theta=NN3$theta, neurons=3)

 NN4<-trainbr(y=yStd,X=as.matrix(x),neurons=4)
 yHatNN_4<-predictions.nn(X=as.matrix(x),theta=NN4$theta, neurons=4)

 NN5<-trainbr(y=yStd,X=as.matrix(x),neurons=5)
 yHatNN_5<-predictions.nn(X=as.matrix(x),theta=NN5$theta, neurons=5)

#(continues next page)

Example 1: Scatter-plot smoothing Using a Neural Network

6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

(FROM PREVIOUS PAGE)
R-Squared ##
 R2_lm<-1-mean((signalStd-predict(lm1))^2)/var(signalStd)
 R2_ply3<-1- mean((signalStd-predict(poly3))^2)/var(signalStd)
 R2_NS<-1- mean((signalStd-predict(fmNS))^2)/var(signalStd)
 R2_NN<-numeric()
 R2_NN[1]<-1-mean((signalStd-yHatNN_1)^2)/var(signalStd)
 R2_NN[2]<-1-mean((signalStd-yHatNN_2)^2)/var(signalStd)
 R2_NN[3]<-1-mean((signalStd-yHatNN_3)^2)/var(signalStd)
 R2_NN[4]<-1-mean((signalStd-yHatNN_5)^2)/var(signalStd)
 R2_NN[5]<-1-mean((signalStd-yHatNN_5)^2)/var(signalStd)

Plots ###
 plot(yStd~x,col=1,cex=.5)
 lines(x=x,y=signalStd,lwd=2,col=2)
 lines(x=x,y=yHatNN_3,col=4,lwd=4,lty=2)

 plot(R2_NN~I(1:5),
 xlab='Number of Neurons',ylab= 'R2(Pred. vs signal',type='o'
 , col=4)
 abline(h=R2_NS,col=4,lty=2)

Example 1 illustrates the flexibility that NNs have in terms of capturing complex patters: starting from a
single predictor, the NN generated complexity by inferring multiple basis functions which were able to
capture the non-linear patterns between inputs and outputs very well. The example uses a single
predictor, but as illustrated in Figure 1 the method could also be applied to multiple-predictors. However,
with large p and with multiple neurons, the computational requirements increase substantially.

7

5.3. Penalized Neural Network Using Pre-selected Markers
 In Example 2 we first select the top p markers from single marker regressions and subsequently
offer these markers to a NN with 3 neurons.

Example 2: Penalized Neural Network Applied to Pre-selected Markers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

rm(list=ls())
DATA ###
 library(BLR) ; library(trainbr) ; data(wheat)
 N<-nrow(X) ; p<-ncol(X)
 y<-Y[,4]
 y<-normalize(y)
 set.seed(1235)
 tst<-sample(1:N,size=150,replace=FALSE)
 XTRN<-X[-tst,] ; yTRN<-y[-tst]
 XTST<-X[tst,] ; yTST<-y[tst]
SINGLE MARKER REGRESSIONS ########################
 pValues<-numeric()
 for(i in 1:p){
 fm<-lm(yTRN~XTRN[,i])
 pValues[i]<-summary(fm)$coef[2,4]
 print(paste('Fitting Marker ',i,'!',sep=''))
 }
 nMarkers<-75
 selSNPs<-order(pValues)[1:nMarkers]
 XTRN<-XTRN[,selSNPs]
 XTST<-XTST[,selSNPs]

Neural Network ###################################
 NN<-trainbr(y=yTRN,X=XTRN,neurons=4, epochs=100)
 yHatNN<-predictions.nn(X=XTST,theta=NN$theta, neurons=4)
 cor(yHatNN,y[tst])

Change the number of pre-selected markers (line 22) and number of
Neurons (lines 28 and 29) and experiment.

8

5.4. Penalized Neural Networks Using Marker-derived Basis Functions as Inputs
 In Example 2 we pre-selected markers, another strategy consist of first mapping the input
information into some basis functions (e.g., using a reproducing kernel or using genomic relationships) and
then applying the NN to these basis functions. For instance, Gianola et al. (2011) suggested using the
additive relationships as basis functions, by so doing we reduce the number of input variables of the NN
from p to n. In Example 3 we illustrate this approach by using as inputs to the NN marker-derived principal
components.

Example 3: Penalized Neural Network Applied to Marker-derived Principal Components

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

rm(list=ls())
DATA ###
 library(BLR) ;library(trainbr) ; data(wheat)
 for(i in 1:ncol(X)){ X[,i]<-X[,i]-mean(X[,i])}
 N<-nrow(X) ; p<-ncol(X)
 y<-Y[,4]
 y<-normalize(y)
 ## Pcs
 SVD<-svd(X,nu=599,nv=0)
 PC<-SVD$u ; for(i in 1:ncol(PC)){ PC[,i]<-PC[,i]*SVD$d[i] }
 plot(PC[,1:2],col=4)
 set.seed(1235)
 tst<-sample(1:N,size=150,replace=FALSE)
 yTRN<-y[-tst]
 yTST<-y[tst]
 PCTrn<-PC[-tst,]

 PCTst<-PC[tst,]

 nPC<-300
 NN<-trainbr(y=yTRN,X=PCTrn[,1 :nPC],neurons=3, epochs=150)
 yHatNN<-predictions.nn(X=PCTst[,1:nPC],theta=NN$theta,
 neurons=c(length(NN$theta)-1))
 cor(yHatNN,yTST)

9

References

Craven, P., and G. Wahba. 1978. “Smoothing Noisy Data with Spline Functions.” Numerische Mathematik
31 (4): 377–403.

Gianola, D., H. Okut, K. Weigel, and G. Rosa. 2011. “Predicting Complex Quantitative Traits with Bayesian
Neural Networks: a Case Study with Jersey Cows and Wheat.” BMC Genetics 12 (1): 87.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Second Edition. 2nd ed. 2009. Corr. 3rd printing 5th Printing. Springer.

Wahba, G. 1991. “Spline Functions for Observational Data.” SIAM, Philadelphia, PA.

1

Statistical Methods for Genome-Enabled Prediction,

LAB 6:

Validation Methods1

 (

gcampos@uab.edu)

Contents

6.1. Introduction ... 2

6.2. Alternative Validation Schemes ... 3

6.3. Between sub-population prediction .. 7

6.4. Across environment prediction using single-trait models ... 8

References .. 9

NOTE: In many examples in this lab we use Bayesian methods. In those examples we make inferences based
on a relatively small number of samples and this is done due to time constraints. In practice, accurate

inferences require much more samples.

1 Suggestions made by Daniel Gianola are gratefully acknowledged.

mailto:gcampos@uab.edu�

2

6.1. Introduction

Prediction is a central problem in plant and animal breeding and in many other domains. It is natural to
compare models based on their ability to predict future outcomes. Validation methods aim at estimating
the distribution (or features of it, e.g., the variance) of prediction errors.

Prediction error. Let { }iiTRN yS x,= denote the available training data, M a model (or

algorithm) and { }newnewy x, an un-observed data point that we want to predict. The algorithm processes

the training sample and derives a prediction: ()TRNnewnew SMy ,,ˆ x . Example: using training data, TRNS ,
and a linear model (M) we estimate marker effects and then we use the estimated marker effects and
the genotypes of candidates of selection (newx) to derive predictions. The prediction error is

. Model performance can then be assessed using features of the distribution of
prediction errors.

Validation methods. Deriving a closed form for the distribution of prediction errors requires
making assumptions about the true data generating process. In practice we do not know such process
and models are, at best, good approximations. However, if we are able to draw a large number of
samples from the desired prediction errors , we can then estimate features of the density of

prediction errors using Monte Carlo methods. For instance, given a large number of sample of prediction
errors we could estimate the proportion of variance of future phenotypes accounted for by predictions

using an R-squared type statistic: .

In practice we have only a finite sample of data and most validation methods emulate the
sampling process by sampling data points using some type of resampling method. There are different
types of prediction errors, and the design of the validation scheme will determine what type of
prediction errors are we describing.

Conditional error. Typically, we want to estimate the distribution of the prediction error given
the training sample, that is,

()TRNnew Sp ε̂ . Here, prediction errors are random variables because they
are functions of yet-to-be-observed genotypes and phenotypes. Intuitively, we can obtain draws from
the distribution of conditional errors by first fitting the model (only once) to the available TRN sample
and subsequently evaluating the prediction accuracy of the model we derived by sampling testing
samples.

Marginal prediction errors are obtained by averaging the density of conditional errors over all
possible realizations of the training sample: () ()[] () () TRNTRNTRNnewTRNnewnew SSpSpSpEp ∂== ∫ εεε ˆˆˆ .

Intuitively we can estimate the marginal distribution of prediction error with re-sampling of both raining
and testing datasets.

3

In most applications, our interest is to estimate the density of conditional errors; however this
density is difficult to estimate and most of the methods we will see estimate ()newp ε̂ (Hastie, Tibshirani,
and Friedman 2009).

6.2. Alternative Validation Schemes

Training-Testing (TRN-TST) Validation

If sample size is large we can simply assign some individuals for training (TRN) and some for testing
(TST). We use TRN to fit the model and derive prediction errors from TST. We have done so in previous
labs by partitioning at random the wheat dataset into TRN and TST. If the prediction problem of interest
has certain structure (e.g., ancestors will be used for training with the goal of predicting performance of
progeny) the partition of the data into TRN and TST should reflect such structure. This has been done,
for instance for validation of methods for genomic selection in dairy cattle. Unfortunately we can’t do
this with the wheat dataset because we lack a pedigree.

Cross-validation (CV)

One disadvantage of the TRN/TST design above described is that individuals are either used for training
or testing. When the total sample size is large this is not a problem; however, with small sample size one
would like to use all individuals both for training and testing CV allows this. In CV individuals are
randomly assigned to disjoint sets using an index, for example, in 2-fold CV each individual is assigned to
either 1st or 2nd fold. Then, a TRN/TST evaluation is done for every fold. In those evaluations, individuals
assigned to that fold are regarded as TST set and the remaining ones as TRN set. The following R-code
implements a 5-fold CV using the wheat dataset.

4

Example 1: 5-fold CV

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

LOADS DATA #############################
 rm(list=ls()); library(BLR); data(wheat)
 y<-Y[,4]
 for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i]) }
 h2<-0.5 ; lambda<-(1-h2)/h2*ncol(X)
ASSIGNMENT TO FOLDS (5-fold CV) ###########
 set.seed(124292)
 sets<-sample(1:5,size=nrow(X),replace=TRUE)
 yHatCV_RR<-rep(NA,length(y))
 yHatCV_0<- rep(NA,length(y))
 varE<-numeric()
 indexH<-rep(NA,length(y))
 for(fold in 1:5){
 tst<-which(sets==fold) # here we partition the data
 C<-crossprod(X[-tst,])
 for(j in 1:ncol(C)){ C[j,j]<- C[j,j]+lambda }

 CInv<-chol2inv(chol(C))
 H<-X[tst,]%*%CInv%*%t(X[-tst,])
 indexH[tst]<-rowSums(abs(H)>.15) # count entries > 0.15 in H
 yHatCV_RR[tst]<- H%*%y[-tst]
 yHatCV_0[tst]<-mean(y[-tst])
 print(fold)
 }

 sqErrorRR<-(y-yHatCV_RR)^2
 sqError0<-(y-yHatCV_0)^2

 PMSE_RR<-tapply(X=sqErrorRR,FUN=mean,INDEX=sets)
 PMSE_0<-tapply(X=sqError0,FUN=mean,INDEX=sets)
 R2<-1-PMSE_RR/PMSE_0 # compare to cor(y,yHatCV)^2
 sqrt(R2)

Three different ways of computing R2: discuss!
 cor(y,yHatCV_RR)^2
 1-var(y-yHatCV_RR)/var(y)
 1-sum((y-yHatCV_RR)^2)/sum((y-yHatCV_0)^2)

Relationships between entries of hat matrix and pred. errors
tapply(FUN=mean,X=sqErrorRR,INDEX=indexH)

plot(sqErrorRR~indexH,ylab='Sq.Error',xlab='Index',col=2,cex=.5)

NOTE 1. While CV is commonly used in statistics and computer science, one needs to be aware that CV is
not always an appropriate validation design. For instance, as previously mentioned, in breeding
applications the prediction problem usually consists of inferring genetic values of candidates to
selection. This prediction problem involves a generational order that is not considered in a standard CV
with random assignment of individuals to folds. This may or may not induce biases, but one needs to be
aware that CV is not the solution to any validation problem.

5

NOTE 2. The observed the variability in PMSE and R-squared across partitions of the CV reflects
uncertainty associated to the sampling of TRN and TST sets. Evaluating such uncertainty is very
important, especially when the number of records in the TRN and/or TST set is small. Note however,
that ideally we would like to hold the training data fixed and evaluate the uncertainty associated to
sampling of un-observed data (i.e., TST) only.

NOTE 3. We also observed that sq.-error diminishes as ‘local sample size’, measured, for example using
the entries of the hat matrix, increases.

Replicated Training-Testing

In CV the number of folds affects the size of the training and testing datasets and the number of
replicates of estimates of prediction accuracy. For instance, in a 5-fold CV the size of the TRN (TST)
datasets is 80% (20%) of that of the available data and we only obtain 5 estimates of prediction accuracy
(one per fold), this is a very small number if we wish to construct a confidence interval on estimates of
prediction accuracy. An alternative is to replicate TRN-TST experiments a large number of times, each
time re-assigning at random subjects into TRN and TST samples. The following R-code illustrates this
with 30 replicates (example in next page).

6

Example 3: Replicated TRN-TST partitions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

rm(list=ls())
DATA ###
 library(BLR)
 data(wheat)
 N<-nrow(X) ; p<-ncol(X)
 for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i]) }
 y<-Y[,2]
 nTst<-150
 nRep<-30
 set.seed(1235)
 COR<-matrix(nrow=nRep,ncol=3,NA)
 colnames(COR)<-c('lambda=10', 'lambda=1279', 'lambda=5000')
 lambda<-c(10,1279,10000)

 for(i in 1:nRep){
 print(paste('TRN-TST Replicate ',i,sep=''))
 tst<-sample(1:N,size=nTst,replace=FALSE)
 XTRN<-X[-tst,]
 yTRN<-y[-tst]
 XTST<-X[tst,]
 yTST<-y[tst]
 ZTRN<-cbind(1,XTRN)
 ZTST<-cbind(1,XTST)
 rhs<-crossprod(ZTRN,yTRN)
 C0<-crossprod(ZTRN)
 for(j in 1:3){
 C<-C0
 for(k in 2:ncol(C)){ C[k,k]<-C[k,k]+lambda[j] }
 CInv<-chol2inv(chol(C))
 sol<- CInv%*%rhs
 yHatTST<- ZTST%*%sol
 COR[i,j]<-cor(yTST,yHatTST)
 }
 }
Plots in next page

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

PLOTS (Results from previous page)
One way of looking at the problem (not quite correct)
 x<-rep(lambda,nRep)
 boxplot(as.vector(COR)~x,xlab=expression(paste(lambda)),
 ylab='Correlation')

A better way
 plot(y=COR[,2],x=COR[,1],xlim=range(COR),ylim=range(COR),
 xlab=expression(paste(lambda[10])),
 ylab=expression(paste(lambda[1279])),main='Correlation',col=2)
 abline(a=0,b=1,col=4)

 plot(y=COR[,3],x=COR[,2],xlim=range(COR),ylim=range(COR),
 xlab=expression(paste(lambda[1279])),
 ylab=expression(paste(lambda[10000])),main='Correlation',col=2)
 abline(a=0,b=1,col=4)

7

6.3. Between sub-population prediction

So far we have assigned lines from training and testing completely at random. In this example we
explore the impacts of training and validating in different subpopulations.

Example 3: Across sub-population prediction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

rm(list=ls())
DATA ###
 library(BLR)
 data(wheat) ;
 for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i])}

Clustering based on q principal components
 q<-2 # number of PCs used for clustering
 for(i in 1:ncol(X)){X[,i]<-X[,i]-mean(X[,i])}
 SVD<-svd(X,nu=q,nv=0)
 myClusters<-kmeans(x=SVD$u%*%diag(SVD$d[1:q]),centers=2)

Ploting principal components
 tmp<-which(myClusters$cluster==1)
 plot(x=SVD$u[tmp,1],y=SVD$u[tmp,2], ylim=range(SVD$u[,2]),
 xlim=range(SVD$u[,1]), col=2, xlab='1st PC', ylab='2nd PC')
 points(x=SVD$u[-tmp,1],y=SVD$u[-tmp,2],col=4)

Fitting models
 prior=list(varE=list(df=5,S=1),
 lambda=list(type='random',value=20,rate=1e-5,shape=.53))

 group1<-myClusters$cluster==1
 y<-Y[,4]
 yNA1<-y
 yNA1[which(group1)]<-NA
 yNA2<-y
 yNA2[which(!group1)]<-NA

Training in sub-population 1
 fm1<-BLR(y=yNA1,XL=X,nIter=7000,burnIn=2000,prior=prior,saveAt='1_')

 # training in sub-population 2
 fm2<-BLR(y=yNA2,XL=X,nIter=7000,burnIn=2000,prior=prior,saveAt='2_')

Across group prediction
 cor(X[which(group1),]%*%fm1$bL,y[which(group1)])
 cor(X[which(!group1),]%*%fm2$bL,y[which(!group1)])

Estimates of marker effects
plot(fm1$bL~fm2$bL,col=2)

8

6.4. Across environment prediction using single-trait models

In this example we address the problem of across environment (or trait prediction), this appear, for
example when we want to select individuals based on expected performance in an environment in
which these genotypes have not been evaluated. Most of the models we have discussed so far can be
extended to accommodate multiple traits. Here, we explore the problem of prediction across correlated
environments using single-trait models alone or combined using an ad-hoc procedure. A fully multi-
environment evaluation of genome-enabled prediction methods for this dataset is presented in
Burgueño, de los Campos, and Crossa (2012).

Example 4: Across environment prediction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

rm(list=ls())
DATA ###
 library(BLR)
 data(wheat)
 for(i in 1:ncol(X)){ X[,i]<-(X[,i]-mean(X[,i]))/sd(X[,i])}
 round(cor(Y),3) #

 prior=list(varE=list(df=5,S=1),
 lambda=list(type='random',value=20,rate=1e-5,shape=.53))

Training models in environments 1-4
 fm<-list()
 for(i in 1:4){
 fm[[i]]<-BLR(y=Y[,i],XL=X,nIter=7000,burnIn=2000,
 prior=prior,saveAt=paste('E_',i,sep=''))

 }

1st strategy
 COR<-matrix(nrow=4,ncol=4,NA)
 colnames(COR)<-paste('TRN_',1:4,sep='')
 rownames(COR)<-paste('TST_',1:4,sep='')
 for(i in 1:4){
 for(j in 1:4){
 if(i!=j){ COR[i,j]<-cor(Y[,i],fm[[j]]$yHat) }
 }
 }
2nd strategy (a bit of cheating)
 covP<-cov(Y)
 W<-matrix(ncol=4,nrow=4,0)
 wCor<-rep(NA,4)
 for(i in 1:4){
 W[i,-i]<-covP[i,-i]%*%solve(covP[-i,-i])
 TMP<-cbind(fm[[1]]$yHat,fm[[2]]$yHat,fm[[3]]$yHat,fm[[4]]$yHat)
 wCor[i]<-cor(Y[,i],TMP%*%W[i,])
}
compare COR & wCor

9

References

Burgueño, J., G. de Los Campos, and J. Crossa. “Genomic Prediction of Breeding Values When Modeling
Genotype × Environment Interaction Using Pedigree and Dense Molecular Markers.” Crop
Science In Press. doi:doi: 10.2135/cropsci2011.06.0299.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Second Edition. 2nd ed. 2009. Corr. 3rd printing 5th Printing.
Springer.

	Contents
	LAB 1 Linear Models
	1.1. Linear models and ordinary least squares (45 min)
	1.2. The ‘Curse’ of Dimensionality (45 min)
	1.3. Confronting the challenges posed by highly dimensional predictors (45 min)
	References

	LAB 2 Shrinkage Estimation
	2.1. Penalized Estimates
	2.2. Computing RR estimates
	2.3. Effect of regularization on estimates, goodness of fit and model DF
	2.4. The Hat Matrix of large-p with small-n genomic regressions as a local smoother
	2.5. Bayesian View of Ridge Regression
	2.6. G-BLUP
	References

	LAB 3 The Bayesian Alphabet
	3.1. The Bayesian Alphabet
	3.2. Ridge Regression Vs Bayesian Ridge Regression
	3.3. Bayesian Lasso: fixed versus random lambda
	3.4. Regression using markers and pedigree
	References

	LAB 4 Semi-Parmetric I RKHS
	4.1. Semi-parametric genome-enabled regression
	4.2. Reproducing Kernel Hilbert Spaces (RKHS) regressions
	4.3. Scatter plot smoothing with a Gaussian kernel
	4.4. Inspecting the Hat Matrix
	4.5. Bayesian view of RKHS
	4.6. Genomic-Enabled Prediction Using RKHS
	4.7. Kernel Averaging
	4.8. Pedigree + Marker Models
	References

	LAB 5 Semi-Parametric II Penalized Neural Networks
	5.1. Introduction
	5.2. Scatterplot smoothing using a penalized NN
	5.3. Penalized Neural Network Using Pre-selected Markers
	5.4. Penalized Neural Networks Using Marker-derived Basis Functions as Inputs
	References

	LAB 6 Validation Methods
	6.1. Introduction
	6.2. Alternative Validation Schemes
	6.4. Across environment prediction using single-trait models
	References

