Genomic Prediction: basic idea

To predict a trait EBV at a young age,

good for:

late traits hard to measure traits

The questions

• How many records are needed in the reference population to achieve a certain accuracy?

But also:

- What if you are more related to the reference?
- property of the reference population (heterogeneous, multi breed?
- the value of closer relatives

Genomic prediction accuracy

- Derive from the model, e.g. PEV from GBLUP mixed model equations
- Validate with other EBVs or phenotypes
 - Validation population
 - Cross-validation
- Predict <u>in advance</u> based on theory and assumptions about population

Genomic Prediction: basic idea

1) Reference population

diversity and length of segments \rightarrow accuracy

2) young sire

Accuracy depends on: Linkage Disequilibrium

- Sharing haplotypes
- **Genomic Relationships**

Depends on

i) Proportion of genetic variance at QTL captured by markers

i) Reliability of estimating marker effects

See also Dekkers 2007 (Path coefficient method)

Trait heritability = h^2

- G = total BV
- Q = genetic effects captured by marker(s)
- R = residual polygenic effects

Model for phenotype: P = G + EModel for BV: G = Q + R

Depends on

i) Proportion of genetic variance at QTL captured by markers q²

i) Reliability of estimating marker effects r²_{Qhat}

Accuracy =
$$\sqrt{(q^2 \cdot r_{Qhat}^2)}$$

= q. r_{Qhat}

Depends on

Validating 'Genomic Prediction Accuracy'

More data: does accuracy increase as expected?

x-fold increase in data

Relationship with reference population

Clark et al 2011

		0.00 - 0.10	
0.39	0.00	0.00	
0.42	0.21	0.04	
0.57	0.41	0.34	
	0.39 0.42 0.57	0.39 0.00 0.42 0.21 0.57 0.41	

Additional accuracy from family info

'baseline accuracy': graphs predict 0.36 for Ne=100, N=1750, h^2 =0.3

Selection Index principles

Single Trait selection index calculation using genomic testing

Relatedness matters more if the reference population is smaller

(hypothesis)

Van der Werf AAABG 2011

A reference population may have relatives

'Relatedness' can be represented by effective size Hayes et al 2009

Information from different subsets can be combined

Calculate overall accuracy using selection index

$$GBV = \Sigma b_i GBV_i$$
 Acc = 0.31

Using a stratified reference population -populations are not homogeneous

Using a stratified reference population -populations are not homogeneous

Using a stratified reference population -populations are not homogeneous

Calculate overall accuracy using selection index

$$GBV = \Sigma b_i GBV_i$$
 Acc = 0.42

$NE_1 = 100$	0					
	Value o	f informatio	n source	GBV accuracy		
N ₁	breed (N1)	flock (400)	relatives (50)	all info	breed only	diff
2,000	16%	52%	21%	0.43	0.22	95%
5,000	31%	39%	15%	0.47	0.32	48%
10,000	45%	26%	10%	0.53	0.42	26%

Relatedness matters more if the reference population is smaller

hypothesis confirmed

Van der Werf AAABG 2011

$NE_1 = 100$	0						
		Value of information source			GBV accuracy		
N1	b	oreed (N1)	flock 400	relatives 50	all info	breed only	diff
2,000		16%	52%	21%	0.43	0.22	95%
5,000		31%	39%	15%	0.47	0.32	48%
10,000	4	45%	26%	10%	0.53	0.42	26%
N_1	b	reed (N1)	flock 100	relatives 10	all info	breed only	diff
2,000	4	48%	36%	48%	0.28	0.21	36%
5,000		68%	19%	68%	0.36	0.31	15%
10,000	-	79%	11%	79%	0.45	0.41	7 %

With fewer relatives the reliance on the reference population increases

$NE_1 = 100$	0					
	Value of	f informatior	n source	GBV accuracy		
N1	breed (N1)	flock (400)	relatives (50)	all info	breed only	diff
2,000	16%	52%	21%	0.43	0.22	95%
5,000	31%	39%	15%	0.47	0.32	48%
10,000	45%	26%	10%	0.53	0.42	26%
$NE_1 = 200$)					
N ₁	breed (N1)	flock (400)	relatives (50)	all info	breed only	diff
2,000	45%	26%	10%	0.53	0.45	18%
5,000	62%	12%	5%	0.64	0.60	7%
10,000	72%	5%	2%	0.74	0.72	3%

With less diverse populations the relatives matter a lot less

The effect of a larger reference population.

The effect of denser marker panels

Conclusions

- Theory exists to predict genomic prediction accuracy in advance: depends on population diversity, nr records
- Reference populations are heterogeneous, with closer as well as distant relatives
 - Relatives will increase accuracy and decrease reliance on wider reference population (and denser marker) but that information has a shorter life

