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Neural networks applied to 
pedigree or genomic-enabled 

prediction

Proposition 1

It must be true that quantitative traits 
are “complex”, in any sense of the 

word.
Why?
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A “complex” trait involves many metabolic pathways: Roche’s Chart 

This is sector G5 of Roche
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Proposition 2

It must be true that epistasis
is pervasive

Example: the tricarboxylic acid cycle

For this to work: enzymes are needed 
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Enzymes in the Krebs cycle One gene-one enzyme
One pathway- many enzymes
One pathway-many genes

Reactions follow a non-linear dynamics
(Michaelis-Menten kinetics)
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Proposition 3

A phenotype must be the result
of a system involving epistasis and 

non-lineariries of all sorts

A SYSTEMS BIOLOGY MAP OF THE BRAIN
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CAN ONE WRITE A  
MECHANISTIC MODEL FOR 

SOMETHING LIKE THAT?
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Welcome to the world of abstractions!
Coping with complexity

First assumption: there is a genetic signal and an environmental signal
Second assumption: the joint effect translates into a phenotye y

Y  fG,E For some UNKNOWN function f

Y  GE?

Y  EG?

Y  G  E  GE?

Y  G  EGE?

Y  G  E?

Choices? Is an assumption

Is an even a stronger assumption

Further, G is unknown, so has to be inferred from phenotypes
and some input set:

Pedigrees

DNA data

RNA data

Pedigrees, DNA, RNA
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THE BIGGEST SHOW ON EARTH: 

A prevailing view (Hill et al., 2008; Crow, 2010; Hill, 2010)

• Fisher’s theorem of natural selection 
• Interactions are second-order effects; likely 

tiny and hard to detect
• Detectable pistasis probably arises with genes 

of large effects, unlikely to be observed in 
outbred populations

• Epistatic systems generate additive variance 
and “release” it, so why worry?

THE BIGGEST SHOW ON EARTH: 
POINT-COUNTERPOINT

• Fisher’s theorem of natural selection (Kempthorne, 1978)

• Interactions are second-order effects; likely tiny and hard to detect

…..perhaps, but there may be many

• Detectable epistasis probably arises with genes of large effects, unlikely to 
be observed in outbred populations

….may be the instruments are not adequate?

• Epistatic systems generate additive variance and “release” it, so why 
worry?

…. if all we get are straight lines (even though the world is round) how 
can we learn about “genetic architecture” with such lines, if the world is 
truly round?
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THE BIGGEST SHOW ON EARTH
(The additive genetic model)

• Fisher’s theorem of natural selection 
• Interactions are second-order effects; likely 

tiny and hard to detect
• Detectable pistasis probably arises with genes 

of large effects, unlikely to be observed in 
outbred populations

• Epistatic systems generate additive variance 
and “release” it, so why worry?

Can “Genome” the lion be tamed?

• If phenotypic prediction is crucial (medicine, precision mating) can 
exploitation of interaction have added value?

• Ideally, search for machine that 
--captures additivity (breeding), interaction (medicine)
--has reasonably good predictive ability
--general and flexible with respect to input data
--does not fail if system is linear and non-interacting

Another show: “Les Idiots Savants”
(much less popular)
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SINGLE MARKER REGRESSION
WITH ORDINARY LEAST-SQUARES

n (#number of observations <<p (# markers)

y  X  e

 X11  X22  e

y  X11  e

E

1|X1  X1

′ X1 
−1Ey

 X1
′ X1 

−1X11  X22 

 1  X1
′ X1 

−1X1
′ X22

“Full model”

“OLS” is biased If full model holds and one fits “smaller” model (e.g., single marker
Regressions)

“marked phenotype”

EXTRAORDINARILY NAÏVE, YET….
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GWAS FOR PANCREATIC CANCER…
(Nature Genetics)

SMR R-15 R-40 M R-40 M R-40 OLS10

RMSE: all markers

Procedure
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N=100, 1000 binary markers,  5 first are signal, LD~1/3

RELATIVE MEAN-SQUARED ERROR (ALL MARKERS)

15.36 0.01 0.01 0.03 0.00

SINGLE MARKER REGRESSION: A DISASTER
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N=100, 1000 binary markers,  5 first are signal, LD~1/3

RELATIVE MEAN-SQUARED ERROR (FIRST FIVE MARKERS)

SMR OLS-5 R-15 R-40 M R-40 M R-40 OLS10

RMSE: first 5 markers

Procedure
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SINGLE MARKER REGRESSION: A DISASTER
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Some genes do not have introns
Some genes are located within introns of other genes

Reality strikes back: gene structure

Statistical
QTL chaser

SNPs

Gene
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A VIEW OF LINEAR MODELS
(as employed in q. genetics)

Mathematically, can be viewed as a “local” approximation of a complex process

Linear approximation

Quadratic approximation

n
th

order approximation FELDMAN and LEWONTIN (1975)
CHEVALET (1994)
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How good are linear and quadratic approximations? A Taylor series provides a local 
approximation only…
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1. Sin and cosine function

3. Quadratic approximation

2. Linear approximation

4. Approximations
are good at x=0…

y  gx  e gx  sinx  cosx
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Look at the very different contours

THE ADDITIVE MODEL IS NAÏVE AND INFLEXIBLE

“TWO-LOCUS” ADDITIVE MODEL “TWO-LOCUS” EPISTASIS MODEL
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Arguably, one can do better than 
this

A perhaps more universal learning machine:
Regularized Neural Networks
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Why and how neural networks 
entered as approximators of complex 

functions…
(a non-mathematical argument)

Up to 10
3

connections
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• Brain superior to von Neumann machines in cognitive tasks

• Microchips: nanoseconds, Brain: milliseconds

• ???

Brain recognizes familiar objects from unfamiliar angles
Key: not speed but organization of processing    

Why?

• Tasks distributed over 1012 neurons

• Interconnected and activated

• Massively parallel

• Neurons adapt and self-organize

• Interconnectivity: up to 103 synaptic 
connections
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Can we attempt to emulate the 
brain, mathematically?

Kolmogorov’s Theorem

Linear or on-linear transformation of inputs

weights

Linear or nonlinear
transformation

For any continuous function gx 1, x 2 , . . . , x p  of p

variables there exists continuous functions hj in 0, 1

a continuous function g in 0, 1 such that

gix i1 , x i2 , . . . , x ip   ∑
q1

2p1

f ∑
j1

p

wjhjx i1 , ix 2 , . . . , ix p 

The subscript indicates an evaluation on a given configuration of the input

q

f
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Comments

• The theorem states that a set of functions 
exists

• The set includes the possibility of all 
possible JOINT effects (interactions) among 
inputs on outputs

• It does not guide on the choice of the 
functions or on the weights

• With noisy data the idea is to estimate the 
function from inputs and outputs

KOLMOGOROV’S THEOREM 
CAN BE REPRESENTED AS AN 

ARTIFICIALNEURAL NETWORK
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Pedigree, markers, sequences,
Nuisance variables

The h functions
(4 “neurons”)

The f functions
(2 “neurons”)

Binary classificationw11

w21

w31

w41

w12

w14

wij= connection strength between input i and neuron j

TRANSFORMATIONS (“ACTIVATION”) FUNCTIONS NOT SHOWN

W3

W4

W2

W1

Wij= connection strength between 
hidden neuron input i and
output neuron j

Continuous output: relationship to non-parametric regression

y i  0  ∑
j1

# hidden nodes

 j
1

1exp x i
′ j

 ei

If # nodes is known (k), the number of parameters is:

1+k+k(1+ # x’s)= 1+ k (# x’s + 2)

Here, the activation function of the output of the hidden layer is 
the identity

Can overfit if too many hidden nodes
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Types of transformation (“activation”) functions

Linear

Step

Piece-wise linear

Sigmoid (logistic)
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Hyperbolic tangent

ex − e−x /ex  e−x 
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Illustration of a single-neuron model for classification with logistic activation function

w0  w1x1  w2x2  w3x3

1) Collected input into neuron

w0

x1,x2,x3   1
1expw0w1x 1w2x 2w3x 3 

2) Activated input

If
x1, x2, x 3  t Classify as "1"

x 1, x2 , x3  ≤ t Classify as "0)

3) Classification
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Illustration of a multi-layer model for regression with logistic activation function
before emission to the output layer

x1

x2

x3

x4
12 “w” coefficients”
-3 “Red”
-3 “Blue”
-3 “Organge

Activate the red linearly collected input

Activate the blue linearly collected input

Activate the orange linearly collected input

Fitted value

y

Identity activation

3 more “w” coefficients

There are 4 intercepts: 3 for each
Neuron in the “hidden” (middle) layer
and 1 in the outer layer

Algebraically, the model looks like

y  0  1
1

1  exp w0
1  w1

1x1  w2
1x2  w3

1x3  w4
1x4

 2
1

1  exp w0
2  w1

2x1  w2
2x 2  w3

2x3  w4
2x4

 3
1

1  exp w0
3  w1

3x1  w2
3x 2  w3

3x3  w4
3x4

 e

RED

BLUE

ORANGE

4 BETAS+ 15 w’s= 19 regressions to estimate
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NEURAL NETWORKS ARE UNIVERSAL APPROXIMATORS
(Follows from Kolmogorov’s Theorem)

50 x values sampled from U[-1,1] and then evaluate f(x). Fit a two-layer
NN with 3 hidden nodes and tanh activation functions and linear output

x
2 Sin(x)

|x|

Step function

Output from hidden node

y  u  e

u  0, Aa
2 

y  AA−1 u  e

 Au∗  e

y i  ∑
j1

N

aiju j
∗  ei

Use elements of
A (or G) as inputs 
(covariates) in a regression
Model with random effects

Recall
A=CC’ (Cholesky)

THE INFINITESIMAL MODEL AS A REGRESSION 
ON RELATIONSHIPS
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The infinitesimal model as a regression on a pedigree

.
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The infinitesimal model as a linear neural network

Identity activation

The x’s variables are the additive relationships of the animal
phenotyed to ALL other individuals in the pedigree
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Other than a naïve theory (the infinitesimal additive model) 
nothing precludes using what might be
a better approximation (Kolmogorov)
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“Overall” activation function
[linear for quantitative traits]

Neuron-specific activation function

“biases” (intercepts)

Regression on activated emissions

Elements of pedigree
(or genomic) relationships

Bayesian regularization
(need to cope with p>>n)
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Conditional posterior

(This assumes that all w coefficients are shrunken to the same extent. This is probably not a good assumption, but convenient)
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Marginal density of the data (used to assess variance components)
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Integral not in closed form
in non-linear networks
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Remember Smith and Graser (1986); Graser et al. (1987); Tempelman and Gianola (1993)



29

Data
(297 Jersey cows)

• Target :  Fat Yield Deviation
Milk Yield Deviation
Protein Yield Deviation 

• Inputs : Elements of Relationship Matrix
(Pedigree or Genomic, or both) 

• Rationale (again)

y  u  e

u  0, Aa
2 

y  AA−1 u  e

 Au∗  e

y i  ∑
j1

N

aiju j
∗  ei

Use elements of
A (or G) as inputs in NN

35,798 SNPs used to build G
as in Van Raden (2008)
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Fitting the networks (MATLAB)

• TRAINING (60%), TUNING (20%) and TESTING 
(20%) sets

• Non-linear regression with Gaussian prior assigned to the 
weights and Gaussian likelihood

• Given variances, find mode of weights using non-linear 
optimization method in TRAINING set

• Examine performance in the TUNING set 
• Predictive performance assessed in TESTING set
• NN with 1 Neuron and linear activation function is “animal 

model” with unknown variances

Run 25 times (to get more stable results) with random partitions
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Effective number of parameters
(entire data set)

Sum of squared prediction errors in testing set
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Correlations in testing set

Illustration of more results

• Using pedigree additive relationships only



33

0

0.2

0.4

0.6

0.8

1

1.2

Line a r 1-ne ur 2-ne urs 3-ne urs 4-ne urs 5-ne urs 6-ne urs

train validat test general

0

0.2

0.4

0.6

0.8

1

1.2

Linear 1-neur 2-neurs 3-neurs 4-neurs 5-neurs 6-neurs

train validat test general

0

0.2

0.4

0.6

0.8

1

1.2

Linear 1-neur 2-neurs 3-neurs 4-neurs 5-neurs 6-neurs

train validat test general

EVIDENCE OF OVERFITTING IN TRAINING TEST
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MSE (testing data set)
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Values of weights (regressions) for the linear and “best” NN

Note the differences in number of weights and in their sizes

REGULARIZATION
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ANN architectures Linear 1

neuron

2

neurons

3

neurons

4

neurons

Criterion

Effective number of

parameters

299±5.5 260±6.1  253±5.9 238±5.5 220±2.8

Correlations in

testing set 0.48±0.03 0.54±0.03 056±0.02 0.57±0.02 0.59±0.02

Mean squared error

in testing set 0.99±0.04 0.77±0.03 0.74±0.03 0.71±0.02 0.72±0.02

WHEAT DATA SET: 599 lines (480 training-119 testing, 50 random repeats)
1279 binary markers

BENCHMARKS: BAYESIAN LASSO 0.50  4 SVM MODELS   0.50-0.58

Maize corn‐flowering Data used in Crossa et al. (2010)

Trait‐environment M‐BL M‐RKHS M‐RBFNN

SS‐ASI 0.5425 0.5926 0.5821

SS‐FLF 0.7417 0.6132 0.7460

SS‐FLM 0.7404 0.6453 0.7678

WW‐ASI 0.5153 0.5580 0.5365

WW‐FLF 0.7268 0.5372 0.7869

WW‐FLM 0.7428 0.5743 0.7981

SS‐GY 0.4743 0.5318 0.5174

WW‐GY 0.5634 0.5459 0.5586

ANALYSIS IN PROGRESS BY CROSSA ET AL. (CIMMYT)
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Maize 
disease ‐
‐ GLS  ‐‐
high 

density 
55k

Sites  M‐BL M‐RKHS
M‐

RBFNN
1 0.2188 0.2099 0.2604
2 0.4174 0.4131 0.4308
3 0.5899 0.5691 0.5823
4 0.5215 0.5044 0.5058
5 0.3419 0.3064 0.3442
6 0.2842 0.2535 0.2775

Maize under 2 level of drought 
‐‐ high density 55k

Environment M‐BL
M‐
RKHS

M‐
RBFNN

GY‐Moderate 
drought 0.6333 0.5591 0.6531
GY‐Severe 
drought 0.4104 0.3652 0.3910
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Wheat trait 1
Sites M‐BL M‐RKHS M‐RBFNN
1 0.5969 0.6630 0.6581
2 0.6861 0.7278 0.7069
3 0.6224 0.6943 0.6866
4 0.0673 0.1419 0.1840
5 0.6481 0.6824 0.6744
6 0.3798 0.4659 0.4586
7 0.5984 0.6235 0.6284
8 0.5493 0.6054 0.6100
9 0.5374 0.5821 0.5827
10 0.4775 0.5024 0.4274
11 0.7721 0.7422 0.8039

Wheat trait2

Site M‐BL M‐RKHS M‐RBFNN

1 0.4830 0.5216 0.5149

2 0.6928 0.6753 0.7085

3 0.2285 0.3889 0.3827

4 0.4610 0.5508 0.5557

5 0.7509 0.7147 0.7880

6 0.8101 0.8031 0.8399

7 0.4695 0.5374 0.5285

8 0.8345 0.8261 0.8657
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PUNCH LINE:
over 35 trials, the winner is…

M‐BL M‐RKHS M‐RBFNN
14% 34% 52%
5 12 18

Any concerns about the predictive ability of non-parametric methods,
relative to those that “help to understand genetic architecture”?

Crossa et al. (2012)
TAG-under review
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WHAT ABOUT THE BREEDING 
VALUE?1. By network design

2. By math

a) Infinitesimal model

b) Markers model

Marked breeding value=

c) Neural network with hyperbolic tangent activation function throughout
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WHAT ABOUT THE 
IMPORTANCE OF A GIVEN SNP?

K
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CONCLUSION

• Neural networks: universal approximators
• Need to arrive at suitable architecture (number of layers, 

number of neurons, choice of activation functions)
• Neural network must be assessed in predictive ability
• Important variables in a network can be detected
• Coefficients do not have obvious interpretation (except in  

linear networks)
• The infinitesimal model is a naïve network
• The mechanistic value of the additive model is dubious in 

the face of complexity of biological systems


