
Introduction to mixed models 

 1 

Introduction to Mixed Models 
 
 
 
Introduction ....................................................................................................................2 
Linear Models.................................................................................................................4 
Estimation Theory ..........................................................................................................8 

Estimating Fixed Effects ............................................................................................8 
Estimability ..........................................................................................................12 
Connectedness ......................................................................................................17 
Confounding.........................................................................................................18 

Hypothesis testing ........................................................................................................19 
Exercises for linear models ..........................................................................................34 
Mixed Models ..............................................................................................................37 

Variance of predictors and prediction errors ............................................................38 
PEV’s of estimated breeding values.........................................................................39 
Hypothesis Testing in Mixed Models ......................................................................41 
Example/Exercise:....................................................................................................43 

Introduction to MATLAB ............................................................................................44 

 
 



Introduction to mixed models 

 2 

Introduction to Mixed Models 
 
 
 
Linear models are the most common type of statistical models used in animal breeding 

to predict breeding values based on phenotypic observations. Linear models form the 

basis of Best Linear Unbiased Prediction. A linear model provides a machinery to 

correct breeding values for systematic environmental effects (usually termed as fixed 

effects). BLUP estimation of breeding values is based on a mixed model, which is a 

linear model containing fixed effects as well as random effects (usually the additive 

genetic values).  

 
 
 
Introduction 
 
Why are linear models important? 
 

Data sets in animal breeding are generally used to estimate breeding values and/or 

genetic parameters. Taking the example of breeding values, different information 

sources are used to obtain the most precise estimate of an animal’s genetic ability. 

This information consists of measured phenotypes that are influenced not only by the 

animals’ genes, but also by many other environmental effects. A simple ‘solution’ 

might be that we take the different measurements as a deviation of a comparable 

mean. This could be a population mean or, if animals perform in different years and/or 

different herds, the mean of all animals in that year and/or herd. Such deviation should 

be free of those environmental effects. Problem with this simple approach are 

•  Different herds use different sires and their means are not only determined by 

environment. 

•  We need to take into account how much information we have to estimate 

means. An estimate of a herd mean based on 5 animals is less accurate than 

one with 100 animals. 

 

The main practical advantage if a linear model is that it can appropriate account for all 

effects that influence a measurement. This is particularly useful when the data is 

unbalanced, which is nearly always the case in field data, and often also in 
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experimental data relating to animals. The following example illustrates why a simple 

approach will not work. 

 

Table 1: Example data to illustrate analysis of unbalanced data 

Cow Breed   Feeding regime Weight (kg) 
  1  Angus    intensive  494 
  2  Angus   intensive  556 
  3  Angus   extensive  542 
  4  Hereford   extensive  473 
  5  Hereford   intensive  632 
  6  Hereford   extensive  544 
 

 In the example, the mean of Angus cows is equal to 530.7 kg and the mean of 

Hereford cattle is  549.7 kg. Hence, the breed difference from this data could be 

estimated to be equal to 19 kg.  However, we see that the Angus cattle were relatively 

more fed on an intensive feed. Therefore, the earlier estimate of 19 kg for breed 

differences is biased by unequal feeding regimes. We would need to know the effect 

of feeding regime and correct for this. However, the difference between intensive and 

extensive feeding is also affected by the unequal representation of breeds. A linear 

model will exactly spell out which effects are affecting which observation and the 

different effects (such as breed and feeding regime) are estimated simultaneously and 

during this process they are corrected for each other. 

 Therefore, a very important reason for using linear models is to account 

appropriately for unbalancedness in data. Linear models can be advanced and 

accommodate different effects, covariances between different effects, different types 

of distributions etc.  

The introduction of  linear models in animal breeding took place halfway the 

20th century, and was mostly related to evaluation of dairy bulls. Differences in the 

average production of herd mates are caused by differences in environment as well as 

by differences in genetic level. To obtain unbiased estimated breeding values, effects 

of sires and effects of herds have to be estimated simultaneously. To achieve this 

‘mixed models’ are used in which fixed effects and breeding values (indicated as 

‘random effects’) will be estimated jointly. This procedure is called “BLUP”, and was 

developed by C.R. Henderson (1949,1973). BLUP stands for Best Linear Unbiased 



Introduction to mixed models 

 4 

Prediction, which describes the statistical properties of the estimated breeding values 

obtained using this method.   

In the next chapter, we will elaborate on the difference between the estimation 

of fixed effects and the prediction of random or stochastic effects (breeding values). 

We will pursue with presenting mixed models.  Using examples, we will indicate how 

to set up equations, which principles are important and how breeding values are 

predicted. 
 
Linear Models  
 
Linear models are commonly used to describe and analyse data in the biological 

sciences. The model needs to represent the sampling nature of the data. 

The data vector contains measurements on experimental units. The observations are 

random variables that follow a multivariate distribution. The model usually consists of 

factors. These are variables, either discrete or continuous, which have an effect on the 

observed data. Different model factors are: 

•  Discrete factors or class variables such as sex, year, herd 

•  Continuous factors or covariables such as age  

 
Some factors are of special interest to the researcher but other factors have to be 

included in the model simply because they explain a significant part of the variation in 

the data and reduce the residual (unexplained) variation. Such factors are often called 

‘nuisance variables’. 

 

Fixed and random effects 
 

Another distinction that is often used is that between fixed and random effects. The 

statistical world is somewhat divided her in more traditional ‘frequentists’ that  make 

this distinction and Bayesians’ that find this distinction artificial and accommodate the 

properties of different factors in their model specification. However, it is still useful to 

try to define the difference between fixed and random effects, and acknowledge this 

dispute. 
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Fixed Effects 

- Effects for which the defined classes comprise all the possible levels of 

interest, eg. sex, age, breed, contemporary group. Effects can be 

considered as fixed when the number of levels are relatively small and is 

confined to this number after repeated sampling. 

Random Effects 

- Effects which have levels that are considered to be drawn from an infinite 

large population of levels. Animal effects are often random. In repeated 

experiments there maybe other animals drawn from the population.  

 

The distinction is also often determined by the purpose of the experiment. Do we want 

to know the difference between these specific levels of a factor, or are we interested in 

how large the differences between levels of a factor might generally be. The effect of 

management groups could be fixed but arguments for considering them as random 

could be found just as easily. 

 
Example A growth trial for a number of animals from different age groups used several different diets, 

locations and handlers.  
In this case the number of levels for age, diet, location and handler could all conceptually be 

the same for an infinite number of sampling events. On the other hand different animals would 

be needed for each repeated sample as the same growth phase could not be repeated in the 

same animal. Furthermore inferences might be made about diets or locations in general and in 

this case these effects might be considered random since these could have been sampled from 

an infinite number of levels. Therefore animals effects would be considered random while all 

other effects would generally be fixed. 

 
A checklist that can be used for deciding about fixed or random effects: 

i) What are the number of levels? 

  small   - fixed 

 large or near infinite - possibly random 

ii) Are the levels repeatable? 

     yes - fixed 

     no - random 

iii) Are there conceptually and infinite number of such levels? 

yes - possibly fixed 

no - possibly random 



Introduction to mixed models 

 6 

 

iv) Are inferences to be made about levels not included in the sampling? 

yes - possibly random 

no - possibly fixed 

 

      v) Were the levels of the factor determined in a non-random manner? 

yes - possibly random 

no - possibly fixed 

 

A linear relationship can generally be found to fit most biological data although some 

transformation may be required. Thus a linear model can generally be used to describe 

data. All models contain a set of factors composed of three parts which additively 

affect the observations or records of data: 

i) the equation 

ii) expectations and variance covariance matrices of random variables 

iii)  assumptions, limitations and restrictions 

 

The Equation 

The equation of a model defines the factors that will or could have an effect on an 

observed trait. The general linear model equation in matrix form is 

y = Xb + Zu + e ...(1) 
 

where 

y is an n × 1 vector of n observed records 

b is a p × 1 vector of p levels of fixed effects 

u is a q × 1 vector of q levels of random effects 

e is an n × 1 vector of random, residual terms 

X is a known design matrix of order n × p, which relates the records in y to the fixed effects in b  

Z is a known design matrix of order n × q, which relates the records in y to the random effects in u  

 

Equation (1) is generally termed a mixed model as it contains both fixed and random 

effects. While not specified directly, interactions between fixed effects are fixed, 

interactions between random effects are random and interactions between fixed and 

random effects are random. The mixed model can be reduced to become a fixed effect 
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model by not including Zu or a random effects model for which no fixed effects are 

fitted except the overall mean, i.e. Xb = 1µ.   

 

Expectations and Variance Covariance (VCV) Matrices 

In general the expectation of y is 

E
y
u
e















 = 
Xb
0
0















           ...(2) 

 

which is also known as the 1st moment. The 2nd moments describe the variance-

covariance structure of y: 

 

V
u
e





 = 
G 0
0 R






            ...(3) 

 

where G is a dispersion matrix for random effects other than errors and R is the 

dispersion matrix of error terms, for which both are general square matrices assumed 

to be non-singular and positive definite, with elements that are assumed known. 

We usually write 

    V = ZGZ’ + R 

 

Assumptions, Limitations and Restrictions 

This part of the model identifies any differences between the operational and ideal 

models. It may describe the sampling process and to which extend the assumptions 

that are made can be expected to be true (e.g. about normality, random sampling, 

uncorrelated error terms, equally distributed error terms, etc). 
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Estimation Theory 
 

Estimating Fixed Effects  
 

Consider a general model   

 

y = Xb +  ε      ...(4) 

 

with E(y) = Xb     and      var(y) = V = var(ε)   …(5).  

 

We want to estimate fixed effects in b and conduct hypothesis testing about the 

significance of differences between the different levels of effects. Note that ε is a 

vector with random effects. They can be caused by several random factors (e.g. animal 

and residual) and the different levels may be correlated (e.g. due to repeated 

measurements on the same animals). Hence, var(ε) maybe equal to V = ZGZ’+R. 

 

 

To find good estimators of the fixed effects parameters for a set of data, trial and error 

could be used. However the method of least squares, developed by Gauss in 1809 and 

Markoff in 1900 is commonly used for estimating these parameters of which the 

theorem states that 

... under the conditions of the model as described in (4) 

and (5) the least squares estimators b0 and b1 are 

unbiased and have minimum variance among all 

unbiased linear estimators. 

 

The proof is given in several texts on linear models. Unbiasedness occurs when E(Xβ) 

= Xb where β is an estimate of b,. However to estimate the value of these estimates, 

consideration needs to be given to the deviation of yi from its expected value 

 

E(y) = Xb ...(3) 
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and more importantly to the sum of the N squared deviations (errors) given as Q 

where 

 

Q = (y- Xβ)’(y-Xβ)    ...(4) 

 

According to the method of least squares the best estimators of β0 and β1  are those 

which minimise Q. 

 

Best - maximises the correlation between true and estimated value of effects by 

 minimising the error variance. 

Linear - the factors for which estimates are required are linear functions of the 

 observations. 

Unbiased - estimates of fixed effects and estimable functions are such that E(β | b) = b. 

 

Deriving Estimates Using Ordinary Least Squares 

The general fixed effects model in matrix for is 

 

y = Xb + e ...(5) 

 

where y is a vector of observations, X is an incidence matrix linking the independent 

variables to the observations, b is a vector of effects to be solved and e is a vector of 

error terms. For ordinary least squares (OLS), error terms are independently and 

identically distributed random variables with a mean of zero and a variance of σe
2 

such that var(y) = var(e) = IN σe
2 where IN is a dispersion matrix for n observations. 

Given that E(y) = Xb, 

Q = (y - Xβ)’ (y - Xβ) 

 

which when differentiated with respect to b gives 

 

δ
δ

Q
b  = -2(X’y + X’Xb). 

 

Equating to zero gives 
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X’Xb = X’y 

 

which are referred to as the normal equations which if the inverse of X’X exists, 

provides the least square estimator of β: 

 

b = (X’X)-1 X’y ...(6) 

 

Thus ordinary least squares assumes that all observations are uncorrelated and have a 

common variance σe
2. If estimates are derived when this is not true then they are no 

longer ‘best’ since Q is no longer minimised. 

 

Deriving Estimates Using Generalised Least Squares 

For ordinary least squares, the criterion (4) weights each observation equally. 

However σe
2 may not be common to all observations. Let var(e) = V where  

 

V = 

w
w

wn

1

2 0

0
..

..























 σe
2 

 

and the dispersion matrix is known. In this case V is still be a diagonal matrix, but 

now not all elements will be the same. For example suppose sires were being 

measured by their mean progeny merit. In this case the diagonal elements of V could 

be weighted by the number of each progeny group. Estimates obtained via this method 

are generally known as weighted least squares (WLS). 

 

Alternatively V might be non-diagonal and contain variance components such that 

 



Introduction to mixed models 

 11 

V = 























nv
ij

ijv
v

..
..

2

1

 

 

where vi is the variance of the ith observation and ij are off diagonal elements and are 

the covariances between them. An example case would be for observations on groups 

of half sibs such that there would be covariances between measurements. In most 

genetic models there is a second random effect (besides error) and there are 

covariances among the random terms (e.g. due to genetic relationships). Therefore V 

is generally not diagonal in genetic analysis. This case is conventionally known as 

generalised least squares (GLS) where OLS and WLS are merely special cases of 

GLS. The generalised least squares criterion for simple linear regression is 

QG = Q = (y- Xβ)’V-1(y-Xβ) 

 

Minimising QG with respect to β0 and β1 leads to the appropriate normal equations of 

 

(X’V-1X) β = X’V-1Y 

 

 Determining a generalised inverse for X’V-1X gives the least square estimates as 

 

β = (X’V-1X)- X’V-1Y ...(7) 

 

which is a general equation for any fixed effects model. 
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Estimability 
 

Because a generalized inverse of X’V-1 X is used there are a large (infinite) number of 

possible solutions to b. However, any solution vector can be used to compute 

estimable functions of b. An estimable function has the same numeric value, i.e. is 

unique, for any of the possible solution vectors. The following functions are always 

estimable: 

 

•  Any linear function of y is estimable 

•  Any linear function of E(y) is estimable 

•  K’b is estimable if K’ = TX for some T, i.e. T is a linear combination of rows 

in X. 

•  Q’b is estimable if Q’(X’V-1X)-X’V-1X = Q’ 

 

Example: 

 
















=

































38
82

120

204
044
246

2

1

α
α
µ

 

 

has many possible solutions, e.g. β’ = [0  20.5  19] or  [20  +0.5  -1]. (Verify this) 

 

However, the function µ + α1 is equal to 20.5 for all possible solutions. Also the 

difference α1 − α2 is always equal to 1.5. Only estimable functions have a meaning in 

a statistical analysis because they are unique.  

 

Statistical packages usually give a set of solutions that is based on a constraint. 

Constraints enforce unique solutions for b, but because the constraints are arbitrary, 

the solutions are arbitrary as well. Constraints can be enforced by manipulation the X 

matrix such that it becomes non-singular, i.e. linear combinations of the columns 

should not be able to result in another linear combination of columns. The following 

example illustrates estimability and uniqueness of solutions: 
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Example dataset 2 
Year of 

birth 

Sex weight 

1990 Male 354 

1990 Female 251 

1991 Male 327 

1991 Female 328 

1991 Male 301 

1991 Female 270 

1992 Male 330 

 
First consider to fit year of birth: 

 

y = µ + yeari + eij    or   y = Xb+e 

 

then the solution for b can be obtained as 

β = (X’X)-1 X’y 

 

and the matrices look like 

X X' =



















7 2 4 1
2 2 0 0
4 0 4 0
1 0 0 1

 and  
X y' =



















2161
605

1226
330

 

and the X’X matrix contains the number of observations and X’Y contains the sum of all the 

observations. “Dividing’ X’Y by X’X gives therefore the average per class. 

A complication in this example is that the columns of X add up to each other. This is always the case if 

we have more than one fixed effect. If the columns add up (i.e. X is singular), also X’X is singular, and 

can not be inverted. A practical explanation is that we want to estimate 4 parameters (a general mean 

and three year effects), but in our data we have only three year means, so we can only estimate three 

parameters as we have only three independent means. We can find solutions by setting a restriction: 

1) put the general mean to zero 

2) put one of the years to zero 

3) put the sum of the year effects to zero 

NB: The option you choose is arbitrary, it does effect the estimates, but not the relevant comparisons, in 

this case, it does not affect the estimate of the year difference! 
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The second option is the easiest. It means that you leave the equation for the year that you give a zero 

solution out of the equations, and the general mean will be in fact the estimate of the mean of the year 

that was set to zero. The other year effects are deviations/differences from the year that was set to zero, 

The first option is only useful if you have only one fixed effect (the general mean will be in the year 

effects). The third option is relatively the most complicated, but it can be handy to have all year effects 

sum to zero. 

 Working out the third option in more detail gives: 

We want to find  b̂ = (X'X)-1X'Y    -     first (X'X)-1  then  X'Y: (-1 refers to “inverse” 
 
                           X'                                         X                  =          X'X 

 









1 1 1 1 1 1 1

1 1 0 0 0 0 -1

0 0 1 1 1 1 -1

 













1 1 0

1 1 0

1 0 1

1 0 1

1 0 1

1 0 1

1 -1 -1

 =   








7 1 3

1 3 1

3 1 5
 

 
 
                           X'                                    Y            =             X'Y 

 









1 1 1 1 1 1 1

1 1 0 0 0 0 -1

0 0 1 1 1 1 -1

   













354

251

327

328

301

270

330

      =       








2161

275

896
 

 
 

        b̂            =                        (X'X)-1                           X'Y         =      result 
 







b̂mean

b̂1990
b̂1991

    =    







0.1944 -.0278 -.1111

-.0278 0.3611 -.0556

-.1111 -.0556 0.2778

  







2161

275

896

   =   







313

-10.5

-6.5
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Summarizing the different options for X, and the resulting solutions: 

 

General mean zero First year zero   Last year zero  Sum of years to zero 
(b1990=0)    (b1992=0)             (b1990+ b1991 + b1992=0) 

X $b   X $b   X $b   X $b  
1 0 0 302.5  1 0 0 302.5  1 1 0 330  1 1 0     313 
1 0 0 306.5  1 0 0   4.0  1 1 0 -27.5  1 1 0    -10.5 
0 1 0 330  1 1 0 +27.5  1 0 1 -23.5  1 0 1     -6.5 
0 1 0   1 1 0   1 0 1   1 0 1 
0 1 0   1 1 0   1 0 1   1 0 1 
0 1 0   1 1 0   1 0 1   1 0 1 
0 0 1   1 0 1   1 0 0   1 -1-1 
   µ  =  0   µ = 302.5        µ = 330     µ =     313  
1990 = 302.5  1990 = 0     1990 = -27.5  1990 =    -10.5  
1991 = 306.5  1991 = +4     1991 = -23.5  1991 =    -6.5 
1992 = 330  1992 = +27.5     1992 = 0  1992 =    17 
 

We see from the different restrictions that the important parameters (the actual year differences) are 

always the same. In fact, with only one fixed effect in the model, these year differences can be estimated 

from the raw means for each year. 

  

The story is different if we have more than one fixed effect. Suppose we now consider also the sex 

effect on yearling weight. We want now an estimate for the year effects, but also for the sex effect. 

Estimates of one fixed effect should be corrected for the other fixed effect. If in a particular year there 

are more males than females, we should account for that if estimating the year effects. Such non-

balanced cases require really the power given by matrices and linear models. 

 

With two fixed effects, we have to use two restrictions to obtain estimates. We will use the restriction 

that the solution of females in year 1992 is equal to zero (i.e. they represent the general mean). 

  

The X matrix, and the solution become: 

 X     $b   meaning 
 

 
 

the mean of females in 1992 
the effect of year 1990 (relative to 1992) 
the effect of year 1991 (relative to 1992) 
the effect of males (relative to females) 

 
 

 

Notice that the effect of year 1992 is greatly reduced because now we know that there was only an 

observation on a male. The difference between males and females was estimated with information from 

the previous years. In the first analysis we thought that 1992 was a particularly good year, but after 

consideration of the sex effect we know that the mean was only higher because there were relatively 

more males than females in 1992. Notice also that the difference between 1990 and 1991 has not 



















−
−





























3.44
3.1
3.5
7.285

1001
0101
1101
0101
1101
0011
1011
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changed. This is because within these years there were equal numbers of males and females. This is 

indicated as a balanced design. Correcting for other fixed effects has therefore only an effect if those 

other effects are unequally contributing to a fixed effect under consideration. Only in a balanced design 

are the estimates of the different levels of a certain effect equal to the differences between the raw 

means of these levels. In practice we hardly ever have a balanced design, and we need a linear model to 

correct appropriately for all other effects. 

  

The same example in ASREML: 

Datafile: exmp2.dat 
1990 Male 354
1990 Female 251
1991 Male 327
1991 Female 328
1991 Male 301
1991 Female 270
1992 Male 330

ASREML file: exmp2.as 
analysis of test data 2 LM course

year 3 !A
sex 2 !A
weight

exmp2.dat
weight ~ mu sex year

Output: exmp2.sln 
year 1990 0.000 0.000
year 1991 4.000 33.92
year 1992 5.333 50.56
sex Male 0.000 0.000
sex Female -44.33 31.98
mu 1 324.7 31.98

And with forcing the sum of year solution to zero: 

ASREML file: exmp2.as 
analysis of test data 2 LM course

year 3 !A
sex 2 !A
weight

exmp2.dat
weight ~ mu con(sex) con(year)

 

Output: exmp2.sln 
con(year) 1990 -3.111 24.13
con(year) 1991 0.8889 21.32
con(sex) Male 22.17 15.99
mu 1 305.6 18.07
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Connectedness 
A lack of connectedness among subclasses of fixed effects in a model can have 

serious consequences on estimability. If all subclasses of the fixed effects are full, i.e. 

contain at least one observation, then the data are completely connected and there are 

no problems with estimability. However, when several subclasses are empty the 

subclasses are not connected and some functions of b may not be estimable.  

 

Connectedness can be evaluated by making tables of one fixed effect vs. another fixed 

effect and write the number of observations. For example: 

Year       \    sex Male Female 

1990 1 1 

1991 2 2 

1992 1 0 

 

Although not all subclasses are filled, the data is connected. It would not if the Male 

in the 1992 would be castrated such that we would have 3 sex classes, as in that case 

there would be a disconnected subset. 

Year       \    sex Male Steer Female 

1990 1 0 1 

1991 2 0 2 

1992 0 1 0 

 

If there is disconnectedness in the data, the statistical programs will generally simply 

give no, or a zero solution to the effect associated with the disconnected subclass (i.e. 

no solution for year 1992 and Steer). Sometimes certain effects are nested within other 

effects. For example, herd 1 has only date from 1990 and 1991 whereas herd 2 has 

only data from 1992 and 1993. In that case the herd effect can not be estimated when 

years are fitted. When undertaking data analysis, it is important to understand such 

aspects of the design. For example, one could find out (e.g. with awk) how many year 

effects are in the data as well as how many year*herd combinations there are. If this is 

equal we know that one effect must be nested within the other. 
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Confounding 
The best design to estimate parameters is a balanced design. There is an estimation 

problem if the data is disconnected. For example, in the last Table we can not 

distinguish between the effect of year 1992 and the effect of steers. However, in many 

cases the data is not balanced, but also not disconnected. Hence, there is a certain 

degree of confounding.  Look at the following examples 3 and 4 and decide whether 

or not the fixed effects are significant. 

Exmp3.dat 
1990 Male 316
1990 Female 314
1990 Male 312
1990 Male 324
1991 Female 311
1991 Male 312
1991 Female 293
1991 Female 304

 
model statement: weight ~ mu con(sex) con(year)

Output: exmp3.asr 
6 con(year) 1 2.06 2.06 5.806 [DF F_i F_a SED]
5 con(sex) 1 4.36 1.19 5.806 [DF F_i F_a SED]

 
model statement: weight ~ mu con(year) con(sex)

Output: exmp3.asr 
6 con(sex) 1 1.19 1.19 5.806 [DF F_i F_a SED]
5 con(year) 1 5.23 2.06 5.806 [DF F_i F_a SED]

 

 

Exmp4.dat 
15 109 287
17 116 298
18 119 306
18 116 303
19 117 302
19 119 312
20 121 316
21 122 324

 
analysis of test data 4 LM course

age
height
weight

exmp4.dat
weight ~ mu height age

Output: exmp4.asr 
1 age 1 3.03 3.03 [DF F_inc F_all]
2 height 1 70.50 1.67 [DF F_inc F_all]
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analysis of test data 4 LM course
age
height
weight

exmp4.dat
weight ~ mu age height

 

Output: exmp4.asr 
2 height 1 1.67 1.67 [DF F_inc F_all]
1 age 1 71.87 3.03 [DF F_inc F_all]

 

The conclusion is that an inappropriate design does not allow you to make clear 

inferences about the different fixed effects. This might be ok if fixed effects are just 

‘nuisance parameters, e.g. when you are mainly interested in genetic parameters of 

EBVs, and fixed effects need to be corrected for. However, even in those cases, 

inadequate designs make estimates of fixed effects not very accurate. In example 3, 

the sex difference is estimated based on one comparison in each year (what is the 

female in 1990 happened to be a good one?) Inaccurate fixed effect estimates do affect 

accuracy of genetic parameter estimates as well. 

  

Hypothesis testing 
 
 

Requirements: Assume that y has a multivariate distribution. Hypothesis testing 

requires knowing the distributions of sums of squares. A sum of squares, say y’Qy, 

will have a chi-squared distribution if QV is idempotent (i.e. this matrix times itself is 

equal to itself) and if y is MVN.  

 

The most relevant sums of squares are: 

 

  SSTotal = y’QTy  where QT = V-1 

 

 and SSmodel = y’QRy where QR = V-1X(X’V-1
 X)-X’V-1 

 

 and SSResidual = y’QE where QE= V-1 - V-1X(X’V-1
 X)-X’V-1 

 

It can be proven that SSR and SSE are independent ch-square variables (QRVQE = 0). 
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Testing the model: 

 

The ratio of two independent central chi-square variables has an F-distribution. The 

adequacy of the whole model is tested as: 

 

 
)(/(

)(/
XrNSSE

XrSSRFM −
=  

 

where r(X) is the rank of X and N is the total number of observations. 

The whole model is usually significant as it contains the mean (which is usually 

significantly different from zero). It is more useful to test subsets of the parameter 

vector b. Various functions of b can be tested. An hypothesis test consists of 

 

1. The null hypothesis 

2. the alternative hypothesis 

3. a test statistic 

4. a probability level or rejection region 

 

The null hypothesis can be written as 

 

 H’b = c 

 

Or:  H’b-c = 0 

 

Where: 

 H must be of full rank 

 H’b must be an estimable function 

 

If these conditions are met, H’b is testable. The test statistic is 

 

  
))(/(

)'(/
XrNSSE

HrsF
−

=   
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 where s = (H’β-c)’(H’CH)-1(H’β-c) 

 and C = (X’V-1X)-1 

Example: 

 

Example data set 5 

 

An appropriate model to describe this data would be a two-way cross classified model 

without interaction: 

yijk = b0 +  bi  +  bj  + eijk 

where 

yijk is an observation on the growth rate of calves 

b0 is the overall mean 

bi is an effect due to the age of dam of the calf (i = 1,…4) 

bj is an effect due to the breed of the calf (j=1,….3) 

eijk is the residual for each observation 

 

The model written in matrix notation is 

y = Xb + e 

Calf ID Age of Dam Breed Growth Rate 

 (yr) (kg/day) 

 1 2 AN 2.10 

 2 3 AN 2.15 

 3 4 AN 2.20 

 4 5+ HE 2.35 

 5 5+ HE 2.33 

 6 2 HE 2.22 

 7 3 HE 2.25 

 8 3 HE 2.27 

 9 4 SM 2.50 

 10 5+ SM 2.60 

 11 2 SM 2.40 

 12 2 SM 2.45 
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The assumptions of the model are 

- there are no breed by age of dam interactions 

- all other effects were the same for all calves, eg. diet, age, cg 

- errors terms are independent and random variables identically distributed 

around a mean of 0 and a variance of σe
2. 

 

The expectation of y is 

E(y) = Xb 

and the variance of y  is  

V(y) = I σe
2  

where 

Xb = 

1 1 0 0 0 1 0 0
1 0 1 0 0 1 0 0
1 0 0 1 0 1 0 0
1 0 0 0 1 0 1 0
1 0 0 0 1 0 1 0
1 1 0 0 0 0 1 0
1 0 1 0 0 0 1 0
1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1
1 0 0 0 1 0 0 1
1 1 0 0 0 0 0 1
1 1 0 0 0 0 0 1













































β
β
β
β
β
β
β
β

0

11

12

13

14

21

22

23

































 

 

Normal Equations 

The normal equations for GLS are 

 

 (X’V-1X)b = X’V-1y 

however as V(y) = I σe
2 then  

 

σe
-2 (X’X)b = σe

-2 X’y 

 

and the GLS equations reduce to those of OLS equations, ie. 
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(X’X)b = X’y 

 

which in expanded matrix form is 

12 4 3 2 3 3 5 4
4 4 0 0 0 1 1 2
3 0 3 0 0 1 2 0
2 0 0 2 0 1 0 1
3 0 0 0 3 0 2 1
3 1 1 1 0 3 0 0
5 1 2 0 2 0 5 0
4 2 0 1 1 0 0 4

































b
b
b
b
b
b
b
b

0

11

12

13

14

21

22

23

































 = 

27 82
917
6 67
4 70
7 28
6 45

11 42
9 95

.
.
.
.
.
.
.
.































 

 

Obtaining Solutions 

X’X is a positive semi-definite matrix with a rank of 6. The dependencies are that 

columns 2, 3, 4 and 5 and then columns 6, 7 and 8 both sum to give column 1 and thus 

two constraints on the solution are needed. Letting b0 and b11 be then set to zero, a 

generalised inverse of X’X is equal to (X’X)- 

 

0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000
0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000
0 000 0 000 0 714 0 225 0 322 0 313 0 414 0 137
0 000 0 000 0 225 0 793 0 194 0 339 0 167 0 247
0 000 0 000 0 322 0 194 0 670 0 172 0 396 0 216
0 000 0 000 0 313 0 339 0 172 0 551 0 194 0 128
0 000 0 000 0 414 0 167 0

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . .

− − −
− − −
− − −

− − −
− − − . . . .

. . . . . . . .
396 0 194 0 524 0 141

0 000 0 000 0 137 0 247 0 216 0 128 0 141 0 366− − −































 

 

for which the corresponding solution vector is b = (X’X)-X’y; 
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b
b
b
b
b
b
b
b

0
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




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
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


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

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





 = 

0 000
0 000
0 052
0 082
0 147
2 105
2 204
2 430

.

.

.

.

.

.

.

.































 

 

However G above is one of several generalised inverses for X’X and thus there are 

several possible solution vectors. In fact there are an infinite number of possible 

solution vectors which are given by the formula, 

 

bo = (X’X)-X’y + (I - (X’X)-X’X)z 

 

where z is an arbitrary vector of constants. 

 

Properties of Solutions 

While there are an infinite number of different solution vectors to the GLS equations 

the sum of squares due to the model is unique. 

 

SSR = b’X’y 

 = 64.737 

 = bo’X’y 

 = y’X’(X’X)-X’y 

 = 64.737 

 

Therefore when it comes to testing the model, the values for mean squares and F-tests 

are likewise independent of the solution vector. 
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Estimable Functions 

 

By computing the expected value of the solution vector, the functions of true 

parameters that have been estimated by a particular generalised inverse can be 

determined. These solutions are estimable because the solution vector is a linear 

function of y which is always estimable.  

 

Estimable functions are unique regardless of the solution vector. Consider the function 

b12 - b11 (this function is obtained by multiplying the third row of the matrix of 

estimable function by b), which can be more generally written as 

 

k’b = (0  -1  1  0  0  0  0  0)b =  b12 - b11 

 

If another solution vector is used, the same value will be produced for the same 

function. Thus one quick way to determine if a function is estimable is to multiply it 

by b and bo; if the results differ then that function is not estimable. A further method 

to determine if a function is estimable is to check if 

 

ki’(X’X)-X’X = kj’ 

 

Variance of Estimable Functions 

The variance of an estimable function is given as 

 

V(k’b) = k’V(b)k 

 = k’V((X’X)-X’y)k 

 = k’(X’X)-X’V(y)XG’k 

 = k’(X’X)-X’X(X’X)-’k σe
2 

and since k’(X’X)-X’X = k’, if k is estimable 

 = k’(X’X)-k σe
2 

 

So when k’ = (0  -1  1  0  0  0  0  0) and k’b = 0.052 then V(k’b) = 
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( )0 1 1 0 0 0 0 0

0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000
0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000
0 000 0 000 0 714 0 225 0 322 0 313 0 414 0137
0 000 0 000 0 225 0 793 0194 0 339 0167 0 247
0 000 0 000 0 322 0194 0 670 0172 0 396 0 216
0 000 0 000 0 313 0 339 0172 0 551 0194 0128
0 000 0 000

−

− − −
− − −
− − −

− − −
−

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . 0 414 0167 0 396 0194 0 524 0141
0 000 0 000 0137 0 247 0 216 0128 0141 0 366

0
1

1
0
0
0
0
0

. . . . . .
. . . . . . . .

− −
− − −
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



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 σe
2 

 

= 0.714 σe
2 

 

Similarly if a number of estimable functions are to be considered then 

 

K’ = 
0 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0

−
−

















 

then 

K’b = 
0 082
0 147
2 105

.

.

.

















 

and  

V(K’b)  =  K’(X’X)-K σe
2  = 

0 793 0 194 0 339
0 194 0 670 0 172
0 339 0 172 0 552

. . .

. . .
. . .

−
−

− −

















 σe
2 

 

The standard errors of the estimable functions are obtained as the square root of the 

variances of the estimable functions located on the diagonals above. 

In ASREML you can use ‘contrast’ to test hypothesis. 

 

Least Square Means 

Least square means (LSM) are commonly used in scientific articles as they relate 

directly to the actual measurements of data and are thus readily understood. However 

least square means are not equal to the actual raw means but are estimable functions 

and as such are, of course, unique. In fact LSMs are simply estimators of the marginal 
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means of different classes or subclasses that would be expected in a balanced design, 

for example 

 

 

Here the LSM for sex 1 corrected for year effects is 13.5 or alternatively the LSM for 

Year 1 is 10.0 corrected for sex effects. In the same way least square means can be 

derived for the different sub-classes of each effect in the previous data corrected for 

all other effects through the use of regression coefficients. For instance the least 

square means for the different levels of the effect of age of dam would be 

 

 

These are not simply β0 + β1i , especially in this case as this is not an estimable 

function. Instead these means are estimating β0 + β1i + 1/3(β21 + β22 + β23). 

Alternatively the least square means for the different levels of breed effects are 

 

which are estimating β0 + 1/4(β11 + β12 + β13 + β14) + β2i. 

 

 

 sex 1 sex 2 LSM (Year) 

Year 1 11.0   9.0 10.0 

Year 2 16.0 12.0 14.0 

LSM (sex) 13.5 10.5 12.0 

Age of Dam L.S. Mean 

 2 2.247 

 3 2.299 

 4 2.329 

 5+  2.394 

 Breed L.S. Mean 

   Angus 2.176 

 Hereford 2.275 

Simmental 2.501 



Introduction to mixed models 

 28 

Analysis of Variance 

For the example data, the basic analysis of variance table is 

 

 

The estimate of the error variance is given by the residual means square (MSE). The 

test for the adequacy of the model is given by the calculation of an F-statistic for the 

model: 

FM = MSR/ MSE 

 

which at P < 0.05, is highly significant for this example. A significant FM indicates 

that the solution vector is not a null vector and that the model explains some of the 

major sources of variation. This is generally significant because the solution vector 

includes the mean of the observations, which is usually different from zero. 

Alternatively the multiple correlation coefficient, R2 can be used to determine the 

amount of variation accounted for by the model where 

 

R2 = (SSR - SSM)/(SST - SSM) 

 = 0.987 

 

The higher the value for R2 the better the model, which in this case is a very adequate 

description of the variation in calf growth rates. 

 

 

Source d.f Sums of Squares Means Square F - stat 

Total (SST) 

 

N-1 = 12 y’y = 64.740 5.3950 10295.8 

Mean (SSM) 

 

1 N y2  = 64.496 64.4960 123084.0** 

Model (SSR) 

 

r = 6 b’X’y = 64.7371 10.7895 20590.6** 

Residual (SSE) 

 

N - r = 6 y’y - b’X’y = 0.0031 0.0005  
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Hypothesis Tests  

As mentioned above the test of a models appropriateness is usually significant because 

the solution vector for the model includes the mean of observations. Therefore when 

testing the importance of a model, it is of greater worth to test the significance of the 

elements of b other than the mean. 

 

The General Linear Hypothesis Procedure 

Using the generalised linear hypothesis procedure, the test of SSR is directly 

partitioned into sub-hypotheses which test the various estimable functions of b. For 

the current example the two tests of interest would be 

i) age of dam effects 

ii) breed of calf effects 

 

For the general linear hypothesis, the null hypothesis for testing age of dam effects 

would be H1’b = 0 where 

 

H1’ = 
0 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0

−
−

−

















 

and 

H1’b = 
b b
b b
b b

11 12

11 13

11 14

−
−
−

















 

For H’b to be testable 

i) H’ must have full row rank 

ii) H’b must be an estimable function (determined using methods described 

previously) 

and since these conditions hold, H1’b is testable.  

 

The sum of squares for H1’b is 

 

s1 = (H1’b)’(H1’(X’X)- H1)-1 H1’b 

and given 
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H1’b = 
−
−
−

















0 052
0 082
0 147

.

.

.
 

then 

s1 = 0.0357 

 

with 3 degrees of freedom, ie. n1 - 1. The F-test is 

 

F1 = 
( )

s
r H

1

1
'

e
2σ

 

 = 22.7 

 

which at the 0.05 level means that the differences among age of dam groups is 

significantly different from zero and accounts for some of the variation explained by 

the model. 

 

Similarly to test breed of calf differences 

 

H2’ = 
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1

−
−







, 

 

H2’b = 
−
−






0 099
0 325
.
.

 

 

and the sums of squares for breed effects = 0.174 with 2 degrees of freedom. In 

summary of the partitions of SSR for calf growth data 

 

Source d.f. Sum of Squares Means Square F-test 

Model 6 64.737 10.7895 20590.6 

Mean 1 64.496 64.4960 123084.0 

Age of Dam 3 0.0357 0.0119 22.7** 

Breed of Calf 2 0.174 0.0870 166.0** 
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which shows that both elements of the model are significantly different from zero and 

both explain some of the variation in calf growth rates. 

 

Reduction Notation 

Another means of testing the appropriateness of a model and its elements is to 

examine the significance of the reduction in sums of squares after regressing y on each 

element of the model separately. In the current example, the full model could be 

written in component form as 

 

y =  µ1 + X1 bi + X2bj + e 

 

with the different sub-models being 

 

Model 1: y = µ1 + X2bj + e 

Model 2: y =  µ1 + X1 bi + e 

Model 3: y =  µ1 + e 

 

The notation for the reductions of these models are: 

 

R(µ , bi , bj ) = the sums of squares due to fitting the full model 

R(µ , bj ) = the reduction sums of squares due to fitting model 1 

R(µ , bi ) = the reduction sums of squares due to fitting model 2 

R(µ) = the reduction sums of squares due to fitting the mean 

 

and for each of these models reductions in sums of squares for each of these models 

would be obtained by constructing OLS equations and then solving to give 

 

R(µ , bi , bj ) = 64.737 

R(µ , bj ) = 64.701 

R(µ , bi ) = 64.563 

R(µ) = 64.496 
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To test the null hypothesis bj = 0, ie. that the differences in age of dam effects are not 

significantly different from zero 

 

s1 = R(µ , bi , bj ) - R(µ , bj ) 

 = R(bi | µ , bj )  

 = 0.0357 

 

with 3 degrees of freedom. Similarly for the differences in breed of calf 

 

s2 = R(µ , bi , bj ) - R(µ , bi ) 

 = R(bj  | µ , bi ) 

 = 0.174 

 

with 2 degrees of freedom. Finally to test the significance of the model after correcting 

for the mean gives 

s3 = R(µ , bi , bj ) - R(µ ) 

 = R(bi , bj  | µ)  

 = 0.241 

 

While these results are the same as those obtained from the general linear hypothesis 

procedure, the method requires that individual analyses of variance be performed for 

each effect. In this way, the former technique is a much simpler and easier method in 

that the sums of squares for fixed effects and their significance in the model can be 

determined with greater efficiency. 
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SUMMARY 

The general aim of estimation is to obtain the highest quality estimates of parameters 

for a particular model. When the assumptions of a model are valid the estimates can 

be considered as best, unbiased and if a linear model is fitted then linear, ie. BLUE. 

 

OLS - the model assumes that error terms are independent and they have a common 

variance, ie. V = IN σe
2 which is a diagonal matrix for which all non-zero 

terms are equal. 

 

WLS - equivalent to OLS except that the values along the diagonal in V may differ 

due to, for example, the number of records. 

GLS - equivalent to WLS except that V is a VCV matrix of error terms in which 

diagonal terms will differ due to differing error variances for each 

observation and ijth elements which are the covariances between 

observations 

 

Note that WLS and OLS are simply special cases of GLS. 
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Exercises for linear models 

1) An introductory example 

To get some feel for why it is useful to calculate sums of square in the construction 

and testing of statistical models for prediction, consider the following example.   

Suppose we have 4 observations and a one-way classification with 2 levels (A and B). 

Calculate the sum of squares for the total, the mean, the model and the residual.  

Residual 1 refers to a model where only the mean is fitted and residual 2 to a model 

where also the class effect is fitted.  

Calculate sums of squares ‘by hand’ based on the numbers the column. 

 

class Observation Mean Residual 1 Predicted Y Residual 2 

A 8     

A 9     

B 11     

 

 

B 12     

Sum of 

Squares 

      

 

2) Regression Models: 

We have measured the litter size of a group of sows, and are interested in some effects 

on this trait, in particular the effect of the age of the sow, and the effect of fat depth at 

insemination. 

 

1 single regression:  
 
y =  litter size pigs      [7      8     9     8     9     10     9   10   11    12] 

x = sow weight at insemination (kg)  [ 100 110 120 125 125 130 130 145 150 160]  

 

2 multiple regression  
 

y  =  as before, x1 = as x before 
  x2 = fat depth at insemination (mm) [20 30 25 40 25 30 35 40 35 35] 

Estimate regression coefficients for linear regression models  

Test whether regression coefficients are significantly different from zero. 
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(You may try also 2nd order regression if you like) 

Compare estimates of single and multiple regression. 

 

3) Linear models with class variables 

 

1 One way classification 
Given are data on three pig breeds. Estimate the breed effect 

 

 Yorkshire Landrace Pietrain 

 800  600  600 

 700  700 

 600 

 

Test whether the breed effect is significant 

Test whether the Yorkshire breed is significantly different from Landrace. 

 

2 Two way classification 
 
Given are data of daily growth of cattle in an experiment, where 3 feeding levels were 

tested. Given are observations on some bulls. 

 

   Feeding level 

   Pasture Queensland Feedlot  Pasture Victoria 

Breed Angus  200, 165  450, 460   300, 350 

 Hereford 220   426, 390, 430  310, 320, 330 

 Brahman 260, 240, 235  380, 450  280 

 St. Gertrude 245, 220, 250,240 420, 440,  300 

 

 

In a one-way analysis: 

Analyze the effect of breed. Test the general effect 

Analyze the effect of feeding regime. Test general effect. 

 

Repeat the previous analysis in a 2-way classification. 
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Regression and class effects 

Consider the following data where fat depth was measured on bulls in two feeding 

regimes. The bulls were measured at different ages. 

 

Fat Depth (mm) Feeding Regime Age at measureing (Mo) 
20   Intensive  10 
20   Int   14 
19   Int   15   
24   Int   16 
24   Int   17 
25   Int   20 
26   Int   20 
19   Extensive  17 
19   Ext   19 
21   Ext   21 
20   Ext   23 
 

1) Estimate (and test) the effect of age on Fat Depth without consideration of 

feeding regime 

2) Estimate the same effect with consideration of feeding regime 
 

 
Further revision questions 
1. Define: 

     Fixed effects 

     Random effects 

2.    Write a fixed effect model for two independent variables 

 Give the expectation of the dependant variable (1st moment) 

 Give the variance of the dependant variable (2nd moment) 

   State the assumption of the model 

 

3.    What are the differences between: 

 ordinary least squares estimates 

 weighted least squares estimates 

 generalised least square estimates 
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Mixed Models 
 

The majority of the previous work in this session has examined the estimation of fixed 

effects using linear regression models. However in animal breeding the prediction of 

random effects for individual animals and their variance for a population is of more 

value. 

As presented previously the mixed linear model in matrix form is  

 

y = Xb + Zu + e 

 

Recall that G is the VCV matrix of u and R is the VCV matrix of e such that  

 

V = V(y) = ZGZ’ + R ...(8) 

 

Note that if R was reduced to its simplest form, namely Iσ2
e and u was ignored, the 

mixed model equation would reduce to the standard linear model (5).  

 

If G and R are known, estimates of b and the predicted value of u are 

 

β = (X’V-1X)- X’V-1y 

 

 û  = GZ’V-1(y - Xb) 

 

which as a result of V given in (8) means that these effects have been estimated 

simultaneously and thus 

i) β is the GLS solution for b as well as its best linear unbiased estimator 

(BLUE) 

ii) û  is the best linear unbiased predictor (BLUP) of u 

iii)  

Henderson(1959) developed a set of equation that simultaneously generate BLUE(Xβ)  

and BLUP(u), these equation being called mixed model equations: MME. 
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Hence , there are two subsets of equations:        

X’R-1Xβ +X’ R-1 Z û   =X’ R-1y   

Z’R-1Xβ + (Z’ R-1 Z+G-1)û  = Z’ R-1y    

 

Substituting for û  gives  

 

X’R-1Xβ+X’ R-1Z(Z’ R-1Z+G-1)-1Z’ R-1(y-Xβ)=X’ R-1y  

 

To be short:  X’ V-1Xβ = X’ V-1y    

where V-1= R-1- R-1Z(Z’ R-1Z+G-1)-1Z’ R-1   

Checked by VV-1 

 

Hence, in the MMM we estimate 

 

BLUE(b) = β = (X’ V-1X)-1 X’ V-1y    is a GLS estimate 

 

BLUP(u)= û =( Z’ R-1Z+G-1)-1Z’ R-1(y-Xβ)    

 

It is interesting to note however that with V = Iσ2 the solutions to these mixed model 

equations are merely least square estimates. 

 

Variance of predictors and prediction errors 
 

A prediction from a mixed model uses a combination of estimates of fixed effects and 

predictions of random effects. For example, we can predict the performance of a 

certain daughter of a bull in a certain herd at a certain age. 

 

The predictand is K’b + M’u 

The predictor is a linear function of y, i.e. L’y (practically, a linear combination of the 

estimated parameters, which in themselves are linear functions of the data) 

 

The Prediction error is the difference between the predictor and the predictand, i.e. 

K’b + M’u – L’y. If this is zero, then the prediction is unbiased. 
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The prediction error variance: 

 

V(b - β) = V(β) = (X’V-1X)- 

V(u - û) = V(û) + V(u) -2Cov(u, û)  

 
 = V(u) – V(û)   as   Cov(u, û)  = V(û) 
 

 = G - V(û) 
 
Further: Cov(β , u - û ) = 0, and Cov(β ,  û ) = 0 
 
These PEVs can best be obtained from the mixed model equations. The solutions to 

the MME can be written as 
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Where the matrix is the generalized inverse of the coefficient matrix of the MME, i.e. 

CXX is the ‘fixed effects part’ of the inverse, and NOT the inverse of XR-1X 

 

Now,   Var(β) = CXX 

  V(û) = G - CZZ 

 And V(u - û) = CZZ 

 

PEV’s of estimated breeding values 

In a BLUP model we can have animals’ additive genetic effects as random effects. 

Now the V(û) = the variance of the EBV’s. From quantitative genetic theory we know 

that var(EBV) = rIH
2 VA, where rIH is the accuracy of the EBV and VA is the additive 

genetic variance. From the BLUP model we can first obtain the diagonal element of 

the inverse CZZ (sometimes we approximate this value as the MME coefficient matrix 

is often not inverted), for animal I this is Cii.  

The Prediction Error Variance of the EBV:  PEV = Cii  

 

This is also equal to     (1 - rIH
2 ) VA 
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Note that var(EBV) + PEV  add to VA 

 

Note that MME often have multiplied out R-1, i.e. we use Z’Z rather than  Z’R-1Z etc.  

In that case 

The Prediction Error Variance of the EBV:  PEV = Ciiσe
2  

 

And the Standard Error of Prediction (SEP) is  √(PEV). ASREML gives SEP values 

behind the solution of random effects (*.sln file) 

  

Think again about the extreme cases: 

! when there is no information, and accuracy is 0: all EBV’s will then be 0 

and the variance of the prediction error is equal to VA.   

!
 when there is  full information, the EBV will be equal to the true BV and 

the variance of the prediction error will be 0. 

 
The prediction error of an EBV is important since it gives us a clue of how far the true breeding 

value could be off the EBV. This is important for example to answer questions like: how much 

could an EBV still change if we obtain more information on the animal. Changes in EBV’s are not  

good for the industry’s confidence in the genetic evaluation system. However, we have to realise 

that an EBV is never exact, unless the accuracy is 100%. We expect the true breeding value to be 

the same as the EBV, but there is a certain probability that it will be a bit different. The probability 

distribution of the true EBV, given an EBV looks like in the figure. 

 

prob(TBV)

EBV

SEP
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Hypothesis Testing in Mixed Models 
 
Hypothesis testing in the case of mixed models with unbalanced data is not well 

understood. Many analyse the fixed effects only and ignore random effects. Other treat 

random effects (e.g. sires) as fixed. In hypothesis testing, expectations are derived 

assuming the true model. However, the variance components needed in a mixed 

model are estimates, and therefore strictly solutions for fixed effects (combinations) 

are not BLUE. 

 

If G and R are known,  

then V is also known and estimates of b are BLUE and the hypothesis test is as 

described before. To test H’b-c = 0 

 

We used the test statistic 
))(/(

)'(/
XrNSSE

HrsF
−

=   

 

 where s = (H’β-c)’(H’CH)-1(H’β-c) and C = (X’V-1X)-1 

 

This test is exact and best, given that G and R and known, or known to proportion. 

 

When G and R are not known,  

there is no best test and BLUE of b is not possible. If estimates of G and R are used, 

then hypothesis testing is only approximate.  The possibilities are: 

 

a) Estimation by computing as though random effects were fixed: 
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For this case, if K’b is estimable, K’β is an unbiased estimator of k’b., however, it is 

not a minimum variance estimator of b and it does not have maximum power. 

An exact  test is given by:  Q/f 2ˆeσ  ~ F[f, N-r(X,Z)]  

for Q = (K’β − m)'(K'C11K)-1(K' βm) and 2ˆeσ  is the estimated residual variance from 

the model. 
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If K’b is not estimable, no exact test exists. The estimate k’b depends on the choice of 

m’u, and the F-test can be inflated because the denominator (containing only residual 

variance) is too small. The degree of bias in F depends on the ratio of variance 

components. 

 
b) Estimation ignoring all random effects 
 
β = (X’X)-X’y 
If K’b is estimable, K’β is an unbiased estimator of k’b., however, it is not a 

minimum variance estimator of b and it does not have maximum power. No exact test 

is possible. F-tests are often inflated if K’b is not estimable. An approximate test can 

improve the properties of the test but few statistical packages would accommodate 

this. 

 

c) Estimation by computing with estimates of the variances of the random effects 
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This approach gives unbiased estimates and often with smaller sampling error than 

when treating random effects as fixed. The F test is approximate, with better 

properties if the estimated value for G approximates the true value. Effectively the 

residual variance is corrected for random effects. The denominator of the F-test 

contains residual variance and a term for the variance components. This F-test is more 

precise and the denominator is not inflated as in a) or b). If no good estimates of 

variance components exist, however, it might be safer to follow approach 1)  

 

d) Simultaneous estimation of fixed effects and variance components for random 

effects, e.g. using REML. This gives an approximated F-test as in c). This is often the 

most sensible approach, given that there is a reasonable amount of data to estimate 

variance components. ASREML will provide the most appropriate F statistic for this 

case.  
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Example/Exercise: 
 
Consider the following data set with two treatments measured on 4 cows (2 for each 

treatment) with 5 repeated measurements per cow (i.e. 10 measurements per 

treatment.  

 
  

 Treatment    Cow 

I A 451; 456; 462; 449; 455;

B 472; 469; 476; 467; 462;

II C 481; 475; 482; 489; 483;

D 510; 502; 499; 507; 501;

 

Test the treatment effect, with and without cow fitted. 
 
 
 
RECOMMENDED (backup) READING  
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Quaas, R.L., Anderson, R.D. and Gilmour, A.R. 1984. BLUP School Handbook - Use of mixed models 

for prediction and for estimation of (co)variance components. AGBU, Armidale. 

Mrode, R.A. 1996. Linear Models for the Prediction of Animal Breeding Values. CAB International, 

Wallingford. 

Neter, J., Wasserman, W. and Kutner, M. 1985. Applied Linear Statistical Models. Irwin, Illinois. 
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Introduction to MATLAB  
 

Matlab is a program that handles matrices. It is very convenient for small examples 

 

MATLAB is case-sensitive, i.e. a variabele “x” is not the same as “X” 

 

Statements can be made interactive, but it is also easy to make a program  

Click on  “File"New"Mfile”. This bring you in notepad. Save the file with extensuion M, and as “All 

Files” (NOT as a “Text File”) 

 

A “%” (percent sign) means that you can make comments in that line, it is not executed 

A “;” (semi-colon) at the end of the line means that MATLAB will not print the result 

A matrix is given between [  ], and rows are separated by a semi column, or by a retrun 

You can use submatrices within a matrix 

 

Other ‘tricks’:  

identity matrix of order n :  eye(n) 

 Nr. of rows of a matrix  nr=size(A,1) 

 Nr. of columns    nc=size(A,2) 

 matrix (or vector) with ones only: ones(n,m) 

 inverse of matrix A  inv(A) 

 multiplication   A*B 

 transpose   A’ 

 only diagonals (or make diagonal)  diag(B) 

 Add a column b to A  A=[A b] 

 sub matrices   B=A(1:3,2:4) matrix B has elements of rows 1 to 3  

and rows 2 to 4 from matrix A. 

     b=A(:,2)  b is equal to the 2nd column of A 

    c=b([1,4,7]) b contains the 1st, 4th and 7th elem’s of  

b.  sums all elements of y  sum(y)  

       

 

» % program for a simple regression example 

 

y=[74; 82; 84]; 

X=[1 160; 

      1 170; 

     1 180]; 

n=size(y); 

 



Introduction to mixed models 

 45 

% solutions: 

b=inv(X'*X)*X'*y 

 

% Analysis of Variance 

% sums of squares for total 

SST=y'*y 

 

% sums of squares for mean 

SSM=n*(sum(y)/2)^2   %  x^2 takes the square of variable x 

 

% sums of squares for model & regression 

SSMod= y'*X*inv(X'*X)*X'*y; 

SSA=SSMod-SSM 

 

% sums of squares for residual 

SSE=SST-SSMod 
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