Introduction to Graphical Models with Applications to Quantitative Genetics and Genomics

Armidale - Australia
Jan 29 - Feb 1, 2019

Instructors:

- Guilherme J. M. Rosa (Gee-Ler-Me)

Department of Animal Sciences
Department of Biostatistics \& Medical Informatics

- Francisco Peñagaricano ("Pancho")

Department of Animal Sciences

OUTLINE

- Correlation and Causation
- Basics of Matrix Algebra, Probability, Random Variables
- Path Analysis
- Test for Independence
- Correlation Networks
- Structural Equation Models in Quantitative Genetics
- Latent Variables
- Bayesian Networks
- GWAS and QTL Analysis

Software

bnlearn
deal
pcalg
catnet
The TETRAD Project
Causal Models and Statistical Data

The Graphical Models Toolkit

Correlation \& Causation

"I wish they didn't turn on that seatbelt sign so much! Every time they do, it gets bumpy."

Simple Linear Regression

$\rightarrow \beta_{0}$ is the intercept; β_{1} is the slope

Simple Linear Regression

$$
E[y]=\beta_{0}+\beta_{1} x
$$

Example: Forage crude protein (\% of dry matter) and beef cattle average daily weight gain (kg)

$C P(\%)$	$D G(\mathrm{~kg})$
6.3	0.48
10.7	0.79
12.4	0.55
15.4	0.72
19.1	1.03
23.3	0.89

- Estimated regression: $D G=0.3534+0.0268 \times C P$
- What is the interpretation of the regression coefficient (slope)?

Association vs. Causation

Selection Bias

Confounding and Selection Bias

Confounding
(x is a common cause for z and y)

Selection Bias (z and y observed only for a subset of x values)

Randomized Trials

Lady tasting tea

Sir R. A. Fisher

Randomized Experiments

\Rightarrow Testing the effect of z on y.

Causal relationship between variables

Effect of randomization applied to variable z

Analysis of Variance (ANOVA)

Sample variance:

$$
\begin{gathered}
\mathrm{s}^{2}=\frac{1}{\mathrm{~N}-1} \sum_{\mathrm{i}=1}^{\mathrm{k}} \sum_{\mathrm{j}=1}^{\mathrm{n}_{\mathrm{i}}}\left(\mathrm{y}_{\mathrm{ij}}-\overline{\mathrm{y}}\right)^{2} \\
\left(\mathrm{~N}=\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots+\mathrm{n}_{\mathrm{k}}\right)
\end{gathered}
$$

$y_{i j}$: observation on individual (unit) j of group i, where $i=1, \ldots, k$ and $j=1, \ldots, n_{i}$

Partitioning Sums of Squares

A fundamental principle of least squares (LS) methods is that variation on a response variable can be partitioned (i.e. divided into parts) according to the sources of the variation. For example, for a 1-way classification model, we have:
Total (corrected) Sum of Squares: $\mathrm{SS}_{\mathrm{T}}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \sum_{\mathrm{j}=1}^{\mathrm{n}_{\mathrm{i}}}\left(\mathrm{y}_{\mathrm{ij}}-\overline{\mathrm{y}}\right)^{2}$
$S S_{T}=\sum_{i=1}^{k} \sum_{\mathrm{j}=1}^{n_{i}}\left(y_{i j}-\bar{y}_{i}+\bar{y}_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{k} n_{i}\left(\bar{y}_{i}-\bar{y}\right)^{2}+\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(y_{i j}-\bar{y}_{\mathrm{i}}\right)^{2}$
Group (between) SS Residual (within) SS
$\mathrm{SS}_{\mathrm{T}}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \sum_{\mathrm{j}=1}^{\mathrm{n}_{\mathrm{i}}} \mathrm{y}_{\mathrm{ij}}^{2}-\mathrm{C} \quad \mathrm{SS}_{\mathrm{B}}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \frac{\mathrm{y}_{\mathrm{i}}^{2}}{n_{i}}-\mathrm{C} \quad \mathrm{SS}_{\mathrm{R}}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \sum_{\mathrm{j}=1}^{\mathrm{n}_{\mathrm{i}}} \mathrm{y}_{\mathrm{ij}}^{2}-\sum_{\mathrm{i}=1}^{\mathrm{k}} \frac{\mathrm{y}_{\mathrm{i}}^{2}}{\mathrm{n}_{\mathrm{i}}}$ where: $C=\frac{y_{. .}^{2}}{N}$ (correction), $y_{i}=\sum_{j=1}^{n_{i}} y_{i j}$ and $y_{. .}=\sum_{i=1}^{k} y_{i}$.

Analysis of Variance (ANOVA)

For a statistical comparison of the groups, the following approach can be used to test the null hypothesis ($H_{0}: \mu_{1}=\ldots=\mu_{k}$) against an alternative hypothesis that there is at least one difference among the group means.

SV	$D F$	$S S$	$M S$	$E[M S]$	F
Groups	$k-1$	$S S_{B}$	$M S_{B}$	$\sigma^{2}+\phi_{B}$	$M S_{B} / M S_{R}$
Residual	$N-k$	$S S_{R}$	$M S_{R}$	σ^{2}	
Total	$N-1$	$S S_{T}$	---		

where: SV = Sources of Variation, DF = Degrees of Freedom, SS = Sum of Squares, MS = Mean Squares, E[.] = Expectation, and F is an MS ratio. Moreover: $\phi_{\mathrm{B}}=\frac{1}{(\mathrm{k}-1)} \sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{n}_{\mathrm{i}}\left(\mu_{\mathrm{i}}-\mu\right)^{2}$ is a quadratic form involving μ_{i} ' s,

$$
\mathrm{MS}_{\mathrm{B}}=\frac{\mathrm{SS}_{\mathrm{B}}}{(\mathrm{k}-1)}, \mathrm{MS}_{\mathrm{R}}=\frac{\mathrm{SS}_{\mathrm{R}}}{(\mathrm{n}-\mathrm{k})}, \quad \mathrm{N}=\sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{n}_{\mathrm{i}} \text { and } \mu=\frac{1}{\mathrm{k}} \sum_{\mathrm{i}=1}^{\mathrm{k}} \mu_{\mathrm{i}}
$$

Analysis of Variance (ANOVA)

- Assuming normality, i.e. $y_{i j} \sim N\left(\mu_{i}, \sigma^{2}\right)$, it can be shown that under the null hypothesis the F statistics has an F (Snedecor) distribution as following:

Example

Suppose three groups of beef cattle, each fed with a different diet. The results in terms of weight gain are given below:

Diets			Model: $\mathrm{y}_{\mathrm{ij}}=\mu_{\mathrm{i}}+\mathrm{e}_{\mathrm{ij}}$	
A	B	C		
106	84	92	$\left\{\begin{array}{c} y_{i j}: w \\ \text { on } \end{array}\right.$	ight gain observed nimal j of diet i
99	99	99		
97	89	85		idual term
104	80	91	$e_{i j}$;	dual term
99	82	89	¢ $i=$	3 (Diets A, B and C)
105		92	\{ $\mathrm{j}=1$,..., n_{i}
95				$\left.n_{2}=5, n_{3}=6\right)$

diets
Sample Means:

Diet		
A	B	C
$y_{1 .}=705$	$y_{2 .}=434$	$y_{3 .}=548$
$y_{. .}=1687$		

ANOVA Table:

SV	DF	SS	$M S$	F (p-value)
Diet	2	616.0	308.0	$10.37(0.0015)$
Residual	15	445.6	29.7	
Total	17	1061.6		

Observational Studies

\Rightarrow Lack of randomization due to legal, ethical, or logistics reasons
\Rightarrow Potential bias and confounding effects
\Rightarrow Example:
Parenthood and life expectancy

Multiple Linear Regression
 $y_{i}=\beta_{0}+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\ldots+\beta_{p} x_{p i}+e_{i}$

Network Approach

$$
\begin{aligned}
& y=\beta_{0}^{(\mathrm{y})}+\beta_{1}^{(\mathrm{y})} \mathrm{x}_{1}+\beta_{4}^{(\mathrm{y})} \mathrm{x}_{4}+\beta_{5}^{(\mathrm{y})} \mathrm{x}_{5}+\mathrm{e}^{(\mathrm{y})} \\
& \mathrm{x}_{4}=\beta_{0}^{(4)}+\beta_{2}^{(4)} \mathrm{x}_{2}+\mathrm{e}^{(4)} \\
& \mathrm{x}_{5}=\beta_{0}^{(5)}+\beta_{3}^{(5)} \mathrm{x}_{3}+\beta_{4}^{(5)} \mathrm{x}_{4}+\mathrm{e}^{(5)}
\end{aligned}
$$

Path Analysis

Sewall Wright
(1889-1988)

Bayesian Networks

