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* Correlation and Causation

* Basics of Matrix Algebra, Probability, Random Variables
* Path Analysis

* Test for Independence

* Correlation Networks

* Structural Equation Models in Quantitative Genetics

* Latent Variables

* Bayesian Networks ONO.

* GWAS and QTL Analysis ©
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Correlation & Causation

“T wish they didn't turn on
that seatbelt sign so
much! Every time they do,
it gets bumpy.”

Simple Linear Regression

Data pairs
XY

X1 1Y
Xo 1 Y2

§’=Bo+[§1x

Xp | Yn

Yi =By +PX; +¢€

= P, is the intercept; p; is the slope




Simple Linear Regression

IE[)ﬂI=’ﬁo +'ﬁ1X

/ } Po: intercept

Example: Forage crude protein (% of dry matter) and
beef cattle average daily weight gain (kg) @

11 weight gain
CP (%) | DG (kg) -
6.3 0.48 T o
107 | 079 € s
12.4 0.55 8
15.4 0.72 06
19.1 103 05
23.3 0.89 04

5 10 15 20 25
Crude Protein (%)

+ Estimated regression: DG = 0.3534 + 0.0268 x CP

* What is the interpretation of the regression
coefficient (slope)?
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Association vs. Causation
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"z is associated with y" @
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"z causes y" "y causes z" "x causes z & y"
alcohol and # police officers water consumption
drunkenness and criminality and dehydration
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Confounders

Selection Bias
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Confounding and Selection Bias
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Confounding Selection Bias

(x is a common cause for z and y) (z and y observed only
for a subset of x values)

@ O
\®/

Randomized Trials

Lady tasting tea
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= Testing the effect of zony.

Randomized Experiments
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Causal relationship
between variables
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Effect of randomization
applied to variable z

Analysis of Variance (ANOVA)

Group
Gl 62 e Gk
Yu Y Y
Yio Yo Yo
YInl YZn2 Yknk

Sample variance:

n;

oL N .
T No ZIE(YU y)

(N=n,+n,+...+n,)

: observation on individual (UI’\IT)J of group i,
wherei=1,.kand j=1,.n
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Partitioning Sums of Squares

A fundamental principle of least squares (LS) methods is that
variation on a response variable can be partitioned (i.e. divided
into parts) according to the sources of the variation. For
example, for a 1-way classification model, we have:

k 0
Total (corrected) Sum of Squares: SS, = ZE(yij -y

nz(yu Vi +%,-Y) —En(y, 23 +22(yu v,

Group (be'rween) SS ReS|dua| (within) SS

ssT=EE’yfj-c ssB=ii—‘2'— SSk —EEyu Ey’_
i=1

i i=1 j=l

2 n;j
where: C =% (correction), y,. = zyij and y. =Eyi.
= i=1

Analysis of Variance (ANOVA)

For a statistical comparison of the groups, the following approach can be
used fo test the null hypothesis (Hy: u; = ... = w) against an alternative
hypothesis that there is at least one difference among the group means.

SV DF ss MS | E[MS] F
Groups k-1 SSg MS, o'+, | MSg/MS,
Residual | N-k SS; MS, o’

Total N-1 SS5¢ ---

where: SV = Sources of Variation, DF = Degrees of Freedom, SS = Sum
of Squares, MS = Mean Squares, E[.] = Expectation, and F is an MS ratio.

Moreover: ¢, = (kl 52 n,(w, —w)’> is a quadratic form involving ;" s ,

k k
MS, = % MS, = Be_, N=2ni and u=12u,-
(k-1) (n-k) k &
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Analysis of Variance (ANOVA)

S Assuming normality, i.e. y; ~ N(w;, 02), it can be shown
that under the null hypothesis the F statistics has
an F (Snedecor) distribution as following:

between-group

variation

z MS,

‘§ F= —MSR ‘N\(k_l,N—k)
within-group
variation

F, F
Example

Suppose three groups of beef cattle, each fed with a
different diet. The results in terms of weight gain are

given below :
Diets

A B C
106 84 92
99 99 99
97 89 85
104 | 80 91
99 82 89
105 92
95

Model: Yi =W +¢€;

’yiJ.: weight gain observed

on animal j of diet i

< w;: mean of diet i

e;: residual term
-

(i=1 2,3 (Diets A, B and C)

< j:]., 2, ...,ni

(n;=7,n,=5,n;=6)
&
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Example =
Sample Means: diets
Diet
B C
Yi. = 705 Yo. = 434 Y3. = 548
y.. = 1687

ANOVA Table:
sV DF SS MS F (p-value)
Diet 2 616.0 | 308.0 | 10.37 (0.0015)
Residual | 15 | 4456 | 29.7
Total 17 | 10616

= Lack of randomization due
to legal, ethical, or logistics

reasons

= Potential bias and
confounding effects

= Example:

Parenthood and
life expectancy

Observational Studies
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Multiple Linear Regression

Y. =By +PX;; + B Xy ...+ BPXPi +e,
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Network Approach

Indirect effects

() —> () >(V)
Direct effects
@/@ Total effects

y =By +Bx, +BYx, +BYxs + e

_ @) “4) “4)
Xy =B +B, %, +e

_ PO (5) (5) (5)
Xs =Py +P5 X +B,x, +e€
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Path Analysis

Sewall Wright
(1889-1988)

Bayesian Networks

" P(c=T) P(c=F) ‘
0,5 0,5 |

" ¢ |pR=T) P(R=F) |
T| 08 02
/ | F| 02 08 |

" _c |ps=m ws=n\ V'd
T 0,1 0,9
F 0,5 0,5

S R | P(W=T) P(W=F)
T T 0,99 0,01
T F 0,9 0,1
F T| 09 0,1
F F 0,0 1,0
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