

OUTLINE

- Correlation and Causation
- Basics of Matrix Algebra, Probability, Random Variables
- Path Analysis
- Test for Independence
- Correlation Networks
- Structural Equation Models in Quantitative Genetics
- Latent Variables
- Bayesian Networks
- GWAS and QTL Analysis

Analysis of Variance (ANOVA)

For a statistical comparison of the groups, the following approach can be used to test the null hypothesis (H_0 : $\mu_1 = \dots = \mu_k$) against an alternative hypothesis that there is at least one difference among the group means.

SV	DF	SS	MS	E[MS]	F
Groups	k - 1	SSB	MSB	$\sigma^2 + \phi_B$	MS_B/MS_R
Residual	N - k	SS _R	MS _R	σ^2	
Total	N - 1	SS_T			

where: SV = Sources of Variation, DF = Degrees of Freedom, SS = Sum of Squares, MS = Mean Squares, E[.] = Expectation, and F is an MS ratio.

Moreover: $\phi_B = \frac{1}{(k-1)} \sum_{i=1}^k n_i (\mu_i - \mu)^2$ is a quadratic form involving μ_i 's,

$$MS_{_{B}} = \frac{SS_{_{B}}}{(k-1)} \,, \ MS_{_{R}} = \frac{SS_{_{R}}}{(n-k)} \,, \ N = \sum_{_{i=1}}^{^{k}} n_{_{i}} \ \text{and} \ \mu = \frac{1}{k} \sum_{_{i=1}}^{^{k}} \mu_{_{i}}$$

Suppose differer given be	three 1t diet. low :	groups The res	Example of beef cattle, each fed with a sults in terms of weight gain are
	Diets		Model: $y_{ij} = \mu_i + e_{ij}$
Α	В	С	
106	84	92	(y _{ij} : weight gain observed
99	99	99	on animal j of aler i
97	89	85	μ_i : mean of aler 1
104	80	91	c eij: residual term
99	82	89	(i = 1, 2, 3 (Diets A, B and C)
105		92	\downarrow j = 1, 2,, n
95			$(n_1 = 7, n_2 = 5, n_3 = 6)$

Sam	ole Med	ans:			die
		Die	t		
	A	В		С	-
y ₁ . 7	= 705	y ₂ . = 4	34	y ₃ . = 548	
		y = 16	687		
ANOVA T	Table:	55	MS	F (n-vo	
ANOVA T SV Diet	Table: DF 2	SS 616.0	MS 308.0	F (p-vo	ulue) 0015)
ANOVA T SV Diet Residual	Table: DF 2 15	SS 616.0 445.6	MS 308.0 29.7	F (p-vo 0 10.37 (0.	ulue) 0015)

