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Probability and 
Random Variables 

Guilherme J. M. Rosa 
University of Wisconsin-Madison 

Probability 
Problem: What are the chances of getting the 

number 6 when rolling a die? 
Solution: The chances are 1 in 6, or one sixth  

Definition Example 
Experiment: process that leads to non-

deterministic results called outcomes  Rolling a die 

Outcome: each possible result of a 
single trial of an experiment 

Possible outcomes:  
1, 2, 3, 4, 5, and 6 

Sample space (S): set of all possible 
outcomes in an experiment S = {1, 2, 3, 4, 5, 6} 

Event (E): subset of the sample space Even number:  
E = {2, 4, 6} 

Probability: measure of how likely an 
event is P(even number) = 0.5 
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Probability 
•  The relative frequency viewpoint 

P(E) = Number of ways event E can occur
Total number of possible outcomes

=
N(E)
N(S)

Size of E 

Size of S 

0 ≤ P(E) ≤1
P(S) =1
P(E) =1−P(E)

⎧

⎨
⎪

⎩
⎪

P(2,3) =1/ 3

P(Q) =1/13

P(T) =1/ 2

Probability 

•  Empirical (or Statistical) Probability: 

P(A) = lim
n→∞

nA
n

number of times event A 
occurs after n trials 

•  The subjective viewpoint  
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Probability of Two Events 

P(A∪B) = P(A)+P(B)−P(A∩B)

What is the probability that we get a Queen (Q) or a King (K)? 

P(Q∪K) = P(Q)+P(K)−P(Q∩K)

               = 4
52

+
4

52
−

0
52

=
2

13

Mutually 
independent 

events 

Suppose we draw one card from a standard deck. What is 
the probability that we get a red card (R) or a King (K)? 

P(R∪K) = P(R)+P(K)−P(R∩K)

               = 26
52

+
4

52
−

2
52

=
7

13

Conditional Probability  

S 
A B P(A | B) = P(A∩B)

P(B)

6 

P(A∩B) = P(B)×P(A | B) = P(A)×P(B | A)

•  If events A and B are independent: 

P(A∩B) = P(B)×P(A)

P(A | B) = P(A)
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Example: Conditional Probability 

In pigs, animals with genotypes WW and Ww  have a white 
belt around their shoulders, while the ww animals have 
a solid color (i.e., no belt) -- Complete Dominance 

Suppose the genotypic frequencies in a specific population 
of pigs are P, H, and Q (P + H + Q = 1), for genotypes 
WW, Ww and ww, respectively. 

Question: What is the proportion of heterozygotes among 
belted animals in this population? 

P(Ww | B) = P(Ww∩B)
P(B)

=
P(Ww)

P(WW)+P(Ww)
=

H
P+H

Marker: two alleles (A & a) with allelic frequencies pA and pa 
QTL: two alleles (B, b) with allelic frequencies pB and pb 

B b Marginal 
A pApB+Δ pApb-Δ pA 
a papB-Δ papb+Δ pa 

Marginal pB pb 

Example: Linkage Disequilibrium 

Frequencies of the four possible haplotyes 

Linkage equilibrium (Δ = 0): P(BA) = pBpA → P(B | A) = pB

P(BA) = pBpA +Δ→ P(B | A) = pB +Δ / pA
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Consider the pedigree below, in which individuals affected by 
a recessive congenital defect are represented by solid 

geometric figures. Frequency of the recessive allele q = 0.1. 
For simplicity, assume Hardy-Weinberg equilibrium. 

Example: Carriers (recessive alleles) 

male,      female 
,      deceased 

Joint Probability 

P(QQ∩Affected) = 0.05
Example: 

Joint probability of genotype and status 
for a specific locus and health condition 

Condition 
Genotype Affected Normal 

QQ 0.05 0.40 
Qq 0.15 0.30 
qq 0.08 0.02 
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Marginal Probability 
Condition 

Genotype Affected Normal Overall 
QQ 0.05 0.40 0.45 
Qq 0.15 0.30 0.45 
qq 0.08 0.02 0.10 

Overall 0.28 0.72 1.00 

Example; Condition Prevalence: 

P(Affected) = P(QQ∩Affected)+P(Qq∩Affected)+P(qq∩Affected)

P(A) = P(A∩Bj)
j=1

J

∑ P(B) = P(Ai∩B)
i=1

I

∑and 

= 0.05+ 0.15+ 0.08 = 0.28

Conditional Probability 
Condition 

Genotype Affected Normal Overall 
QQ 0.05 0.40 0.45 
Qq 0.15 0.30 0.45 
qq 0.08 0.02 0.10 

Overall 0.28 0.72 1.00 

Example: 

P(Ai | B) =
P(Ai∩B)
P(B)

=
P(Ai )P(B | Ai )

P(Ak )P(B | Ak )
k=1

J

∑

P(Affected | qq) = 0.08
0.10

= 0.80
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Phenotypic Traits 

Continuous and discrete distributions 
of complex traits 

Expected Value (Mean) 

Notation: E[X]= µX

•  Discrete random variable, finite case: 

E[X]= xipi
i=1

k

∑ pi = Pr[X = xi ], where                            (weighted average) 

E[X]= 1
k

xi
i=1

k

∑ (simple average) 

p1 = p2 =…= pk =1/ kIf                                         then: 
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Expected Value 

•  Discrete random variable, countable case: 

E[X]= xipi
i=1

∞

∑ E[g(X)]= g(xi )pi
i=1

∞

∑and 

•  Continuous random variable: 

E[X]= xf(x)dx
−∞

∞

∫ and E[g(X)]= g(x)f(x)dx
−∞

∞

∫

f(x)where         : probability density function 

Expected Value 
•  Properties: 

E[cX]= cE[X]
E[c]= cConstant c: 

E[X +Y]= E[X]+E[Y]

E[X | Y = y]= xPr(X = x | Y = y)∑
E[X]= EY[E[X | Y]]

E[XY]= E[X]E[Y]+Cov(X,Y)



9 

Variance 

Notation: Var[X]= σX
2

•  Definition: expected value of the square deviation  
                   from the mean, i.e. Var[X]= E[(X −µ)2 ]

Var[X]= E[(X −E[X])2 ]
           = E[X2 − 2XE[X]+ (E[X])2 ]
           = E[X2 ]− 2E[X]E[X]+ (E[X])2

           = E[X2 ]− (E[X])2

Variance 

•  Discrete random variable: 

Var[X]= (xi −µ)
2 pi

i=1

∞

∑ = xi
2pi

i=1

∞

∑ −µ2

•  Continuous random variable: 

Var[X]= (x −µ)2 f(x)dx
−∞

∞

∫ = x2f(x)dx
−∞

∞

∫ −µ2
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Variance 

•  Properties: 

Var[c +X]= Var[X]
Var[c]= 0Constant c: 

Var[X +Y]= Var[X]+Var[Y]+ 2Cov[X,Y]

Var[cX]= c2Var[X]

Var[X −Y]= Var[X]+Var[Y]− 2Cov[X,Y]

Var[X]= EY[Var[X | Y]]+VarY[E[X | Y]]

Covariance 

Notation: Cov[X,Y]= σX,Y

Cov[X, Y]= E[(X −µX )(Y−µY )]
                = E[XY]−µXµY

Correlation 

Notation: Corr[X,Y]= ρX,Y

ρX,Y =
Cov[X,Y]
σXσY
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Binomial Distribution 
Distribution of the number of successes in a 
sequence of n independent yes/no experiments, 
each of which yields success with probability p 
Such a success/failure experiment is also called 
a Bernoulli experiment or Bernoulli trial 
When n = 1, the binomial distribution is a 
Bernoulli distribution 

Y ~ Bin(n,  p)  →   Pr(Y = y) = n
y

"

#
$$

%

&
''py(1− p)n−y

Binomial Distribution 

where y (y = 0, 1, 2,…,n) is the number of successes in 
n trials, and p is the probability of success (0 ≤ p ≤ 1) 
 
It is seen that the expectation of Y is:  
        E[Y] = n x p,  
and its variance is:  
     Var[Y] = n x p x (1 – p) 

Pascal's Triangle 
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Example: n = 7 and p = 0.3 
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Poisson Distribution 
Distribution that expresses the probability of a 
given number of independent events occurring 
in a fixed interval of time and/or space 
The Poisson distribution can also be used for 
the number of events in other specified 
intervals such as distance, area or volume 
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Pr(y | λ) = λ
ye−λ

y!

E[y | λ]= Var[y | λ]= λ

y | λ ~ Poisson(λ) λ > 0
y = 0,  1,  2,…

Poisson Distribution 

)1(oissonP
)5(oissonP
)15(oissonP

Poisson Distribution 
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Multinomial Distribution 
Generalization of the binomial distribution for n 
independent trials with outcome in one of k 
categories, with each category having a given 
fixed success probability pi 
The multinomial distribution gives the probability 
of any particular combination of numbers of 
successes for the various categories 

(Y1, Y2,…, Yk ) ~ Multin(n,  p1, p2,…, pk )

Multinomial Distribution 

where i is an index to indicate each of k possible 
categories,  yi  is  the  number  of  cases  in  category 
i  (yi = 0, 1, 2,…,n,   Σiyi = n), and pi is the probability 
associated with category i (0 ≤ pi ≤ 1; Σipi = 1) 
 
It is seen that E[Yi] = n x pi, Var[Yi] = n x pi x (1 – pi) 
and Cov(Yi, Yj) = - n x pi x pj 

Pr(Y = y) = n!
y1!y2!…yk !

p1
y1p2

y2…pk
yk

Y = (Y1,Y2,…, Yk )
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Galton Board 

Normal (Gaussian) Distribution 
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p(y |µ,σ2 ) = 1
2πσ2

exp −
1
2σ2

(y−µ)2
⎧
⎨
⎩

⎫
⎬
⎭

−∞ <µ <∞

σ2 > 0
−∞ < y <∞

Normal (Gaussian) Distribution 

è Expectation                 , and variance E[y]=µ Var[y]= σ2

y ~ N(µ,σ2 )

ð  z ~ N(0, 1)  →  y = μ + σz ~ N(μ, σ2) 

ð  w > 0 and log(w) ~ Normal  →  w: lognormal variable 

1
n

xi
i=1

n

∑ ~
n→∞
Normal (Central Limit Theorem) ð 

Normal (Gaussian) Distribution 
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Bivariate Normal Distribution 

Bivariate Normal Distribution 

y1
y2
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ρ =
σ12
σ1
2σ2

2

ρ: coefficient of correlation 
σ12: covariance between y1 and y2 

p(y1, y2 ) =
1

2πσ1σ2 1−ρ
2

×exp −
1

2(1−ρ2 )
(y1 −µ1)

2

σ1
2 +

(y2 −µ2 )
2

σ2
2 − 2ρ (y1 −µ1)(y2 −µ2 )

σ1σ2

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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Bivariate Normal Distribution 

y1 y1 

y2 y2 

y ~ NP (µ,  Σ)
−∞ <µ <∞

−∞ < y <∞
Σ: positive definite 

Multivariate Normal Distribution 

z ~ N(0,  I)→ y =µ+Az ~ N(µ,Σ) Σ = AAT

è Mean vector  

è Variance-covariance matrix 

è                                                   , where 

E[y]=µ
Var[y]= Σ

p(y) = (2π)−p/2 | Σ |−1/2 exp −
1
2
(y−µ)TΣ−1(y−µ)

⎧
⎨
⎩

⎫
⎬
⎭
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Multivariate Normal:  
Marginal and Conditional Distributions 

yT = (y1
T,  y2

T ) µT = (µ1
T,  µ2

T ) Σ =
Σ11 Σ12
Σ21 Σ22

"

#
$
$

%

&
'
'

and 

p(y1) = p(y1, y2 )dy2
−∞

∞

∫

= (2π)−p1/2 | Σ11 |
−1/2 exp −

1
2
(y1 −µ1)

TΣ11
−1(y1 −µ1)

$
%
&

'
(
)

Marginal Distributions 

y1 and y2: p1- and p2-dimensional vectors; p1 + p2 = p 

è  y1 ~ N(µ1,Σ11)
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E(y1 | y2 ) = µ1 + Σ12Σ22
−1(y2 −µ2 ) Var(y1 | y2 ) = Σ11 − Σ12Σ22

−1Σ21; 

Conditional Distributions 

yT = (y1
T,  y2

T ) µT = (µ1
T,  µ2

T ) Σ =
Σ11 Σ12
Σ21 Σ22

"

#
$
$

%

&
'
'

and 

y1 and y2: p1- and p2-dimentional vectors; p1 + p2 = p 

p(y1 | y2 ) = (2π)
−p1/2 | Var(y1 | y2 ) |

−1/2

×exp −
1
2
(y1 −E[y1 | y2 ])

T Var(y1 | y2 )[ ]−1 (y1 −E[y1 | y2 ])
⎧
⎨
⎩

⎫
⎬
⎭

è  y1 ~ N E(y1 | y1), Var(y1 | y1)( )

Conditional Distributions 

y1 y1 

y2 y2 


