Probability and Random Variables

Guilherme J. M. Rosa University of Wisconsin-Madison

Probability Problem: What are the chances of getting the number 6 when rolling a die? Solution: The chances are 1 in 6, or one sixth				
Definition	Example			
Experiment: process that leads to non- deterministic results called outcomes	Rolling a die			
Outcome: each possible result of a single trial of an experiment	Possible outcomes: 1, 2, 3, 4, 5, and 6			
Sample space (S): set of all possible outcomes in an experiment	5 = {1, 2, 3, 4, 5, 6}			
Event (E): subset of the sample space	Even number: E = {2, 4, 6}			
Probability: measure of how likely an event is	P(even number) = 0.5			

Conditional Probability					
	Condition				
Genotype	Affected	Normal	Overall		
ର୍ଦ୍ଦ	0.05	0.40	0.45		
Qq	0.15	0.30	0.45		
99	0.08	0.02	0.10		
Overall	0.28	0.72	1.00		
$P(A_{i} B) = \frac{P(A_{i} \cap B)}{P(B)} = \frac{P(A_{i})P(B A_{i})}{\sum_{k=1}^{J} P(A_{k})P(B A_{k})}$					
xample: $P(Affected qq) = \frac{0.08}{0.10} = 0.80$					

$$\begin{array}{c} \mbox{Expected Value (Mean)}\\ \mbox{Notation: } E[X] = \mu_X\\ \mbox{\cdot Discrete random variable, finite case:}\\ E[X] = \sum_{i=1}^k x_i p_i \ , \mbox{where } p_i = \Pr[X = x_i] \ (\mbox{weighted average})\\ \mbox{If } p_1 = p_2 = \ldots = p_k = 1/k \ \mbox{then:}\\ E[X] = \frac{1}{k} \sum_{i=1}^k x_i \ (\mbox{simple average}) \end{array}$$

Expected Value
• Discrete random variable, countable case:

$$E[X] = \sum_{i=1}^{\infty} x_i p_i \text{ and } E[g(X)] = \sum_{i=1}^{\infty} g(x_i) p_i$$
• Continuous random variable:

$$E[X] = \int_{-\infty}^{\infty} xf(x) dx \text{ and } E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) dx$$
where $f(x)$: probability density function

Expected Value
 Properties:
Constant c: $E[c] = c$
E[cX] = cE[X]
E[X + Y] = E[X] + E[Y] $E[X Y = y] = \sum x Pr(X = x Y = y)$ $E[X] = E_{Y}[E[X Y]]$ E[XY] = E[X]E[Y] + Cov(X, Y)

Variance

• Properties:

Constant c: Var[c] = 0

Var[c + X] = Var[X] $Var[cX] = c^{2}Var[X]$

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

Var[X - Y] = Var[X] + Var[Y] - 2Cov[X, Y]

 $Var[X] = E_{Y}[Var[X | Y]] + Var_{Y}[E[X | Y]]$

Poisson Distribution

$$y \mid \lambda \sim \text{Poisson}(\lambda) \begin{cases} \lambda > 0 \\ y = 0, 1, 2, \dots \end{cases}$$

$$\Pr(y \mid \lambda) = \frac{\lambda^{y} e^{-\lambda}}{y!}$$

$$E[y \mid \lambda] = \operatorname{Var}[y \mid \lambda] = \lambda$$

<text><text><text><text>

$$\begin{aligned} & \textbf{Marginal Distributions} \\ & \textbf{y}^{T} = (\textbf{y}_{1}^{T}, \textbf{y}_{2}^{T}) \rightarrow \boldsymbol{\mu}^{T} = (\boldsymbol{\mu}_{1}^{T}, \boldsymbol{\mu}_{2}^{T}) \text{ and } \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \\ & \textbf{y}_{1} \text{ and } \textbf{y}_{2} \text{: } \textbf{p}_{1} \text{- and } \textbf{p}_{2} \text{-dimensional vectors; } \textbf{p}_{1} + \textbf{p}_{2} = \textbf{p} \end{aligned}$$
$$\begin{aligned} & p(\textbf{y}_{1}) = \int_{-\infty}^{\infty} p(\textbf{y}_{1}, \textbf{y}_{2}) d\textbf{y}_{2} \\ &= (2\pi)^{-p_{1}/2} |\boldsymbol{\Sigma}_{11}|^{-1/2} \exp\left\{-\frac{1}{2}(\textbf{y}_{1} - \boldsymbol{\mu}_{1})^{T} \boldsymbol{\Sigma}_{11}^{-1}(\textbf{y}_{1} - \boldsymbol{\mu}_{1})\right\} \end{aligned}$$
$$\Rightarrow \quad \textbf{y}_{1} \sim N(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11}) \end{aligned}$$

