Path Analysis

Guilherme J. M. Rosa
University of Wisconsin-Madison

Path Analysis

(Wright, 1921)

- Interpretation of correlation between two variables in terms of hypothetical paths of causation between them
- Quantification of the relative contribution of causal sources of variance and covariance in a system of interrelated variables

Sewall Wright's Path Coefficients

\rightarrow Linear Model: $\mathrm{y}=\mu_{\mathrm{y}}+\beta_{1} \mathrm{x}_{1}+\beta_{2} \mathrm{x}_{2}+\ldots+\beta_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}+\varepsilon_{\mathrm{y}}$

$$
\left\{\begin{array}{l}
x_{i} \sim\left(0, \sigma_{x_{i}}^{2}\right), \varepsilon_{y} \sim\left(0, \sigma_{\varepsilon_{y}}^{2}\right) \\
\operatorname{Cov}\left[x_{i}, x_{j}\right]=\rho_{i j} \sigma_{x_{i}} \sigma_{x_{j}} \text { and } \operatorname{Cov}\left[x_{i}, \varepsilon_{y}\right]=0
\end{array}\right.
$$

$E[y]=\mu_{y}$
$\operatorname{Var}[y]=\sigma_{y}^{2}=\sum_{i=1}^{n} \beta_{i}^{2} \sigma_{x_{i}}^{2}+2 \sum_{i=1}^{n} \sum_{j ; i}^{n} \beta_{i} \beta_{j} \rho_{i j} \sigma_{x_{i}} \sigma_{x_{j}}+\sigma_{\varepsilon_{y}}^{2}$
$\Rightarrow 1=\sum_{i=1}^{n}\left(\beta_{i} \frac{\sigma_{x_{i}}}{\sigma_{y}}\right)^{2}+2 \sum_{i=1}^{n} \sum_{j i i}^{n}\left(\beta_{i} \frac{\sigma_{x_{i}}}{\sigma_{y}}\right)\left(\beta_{j} \frac{\sigma_{x_{j}}}{\sigma_{y}}\right) \rho_{i j}+\frac{\sigma_{\varepsilon_{y}}^{2}}{\sigma_{y}^{2}}$

Let: $p_{y i}=\beta_{i} \frac{\sigma_{x_{i}}}{\sigma_{y}}$ and $e_{y}=\frac{\sigma_{\varepsilon_{y}}}{\sigma_{y}}$, then:

$$
1=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{p}_{\mathrm{yi}}^{2}+2 \sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{i}>\mathrm{j}}^{\mathrm{n}} \mathrm{p}_{\mathrm{yi}} \mathrm{p}_{\mathrm{yj}} \rho_{\mathrm{ij}}+\mathrm{e}_{\mathrm{y}}^{2}
$$

- Equation for "complete determination of y "
$\mathrm{p}_{\mathrm{yi}}^{2}$: Fraction of variance accounted for by variation in x_{j} when all other variables held constant (without affecting variation in x_{j}) e_{y}^{2} : Fraction of variance not explained by model
$2 \mathrm{p}_{\mathrm{yi}} \mathrm{p}_{\mathrm{y}_{\mathrm{j}}} \rho_{\mathrm{ij}}$: Fraction of variance "due to" joint determination by $x_{j}, x_{\mathrm{j}^{\prime}}$ $p_{y i}=\beta_{i} \sigma_{x_{i}} / \sigma_{y}$: is called "Path Coefficient"

Example 1. Basic Genetic Model of Quantitative Traits:

$$
\mathrm{P}=\mu+\mathrm{G}+\mathrm{E}\left\{\begin{array}{l}
\mathrm{E}[\mathrm{P}]=\mu, \mathrm{G} \sim\left(0, \sigma_{\mathrm{G}}^{2}\right), \mathrm{E} \sim\left(0, \sigma_{\mathrm{E}}^{2}\right) \\
\operatorname{Cov}[\mathrm{G}, \mathrm{E}]=\sigma_{\mathrm{GE}}=\rho_{\mathrm{GE}} \sigma_{\mathrm{G}} \sigma_{\mathrm{E}}
\end{array}\right.
$$

$$
\operatorname{Var}[\mathrm{P}]=\sigma_{\mathrm{P}}^{2}=\sigma_{\mathrm{G}}^{2}+\sigma_{\mathrm{E}}^{2}+2 \rho_{\mathrm{GE}} \sigma_{\mathrm{G}} \sigma_{\mathrm{E}}
$$

$$
1=\frac{\sigma_{G}^{2}}{\sigma_{\mathrm{P}}^{2}}+\frac{\sigma_{\mathrm{E}}^{2}}{\sigma_{\mathrm{P}}^{2}}+2 \rho_{\mathrm{GE}} \frac{\sigma_{\mathrm{G}}}{\sigma_{\mathrm{P}}} \frac{\sigma_{\mathrm{E}}}{\sigma_{\mathrm{P}}}
$$

Let: $p_{P G}=\frac{\sigma_{G}}{\sigma_{P}}=h$ and $p_{P E}=\frac{\sigma_{E}}{\sigma_{P}}=e$, then:

$$
1=\mathrm{h}^{2}+\mathrm{e}^{2}+2 \times \mathrm{h} \times \mathrm{e} \times \rho_{\mathrm{GE}}
$$

Example 2. Growth Analysis:

Other examples: total diet of a predator split by prey species; total seed set by a plant partitioned into contributions from various flowers

Notice: There is no residual error term; all partial regression coefficients are equal to one

$$
1=\frac{1}{\sigma_{t}^{2}}\left[\sum_{i=1}^{n} \sigma_{i}^{2}+2 \sum_{i=1}^{n} \sum_{\mathrm{j} i \mathrm{i}}^{n} \sigma_{\mathrm{ij}}\right]
$$

Pigeons Growth

(Lynch and Walsh, 1998, p.831-832)
Growth dynamics of a population of feral pigeons:
Weight at day 26 described as a function of initial weight (day 2) plus 4 subsequent six-day growth increments (days 2-8, 8-14, 14-20 and 20-26).
Let w_{j} be the weight on day j, then:

$$
\begin{aligned}
\mathrm{w}_{26} & =\mathrm{w}_{2}+\left(\mathrm{w}_{8}-\mathrm{w}_{2}\right)+\left(\mathrm{w}_{14}-\mathrm{w}_{8}\right)+\left(\mathrm{w}_{20}-\mathrm{w}_{14}\right)+\left(\mathrm{w}_{26}-\mathrm{w}_{20}\right) \\
& =\mathrm{w}_{2}+\Delta \mathrm{w}_{2}+\Delta \mathrm{w}_{8}+\Delta \mathrm{w}_{14}+\Delta \mathrm{w}_{20}
\end{aligned}
$$

Correlations (above diagonal) and path contributions (diagonal and below) of growth components to weight on day 26 for a sample of 100 feral pigeons (D. Droge, unpubl. data).

	w_{2}	$\Delta \mathrm{w}_{2}$	$\Delta \mathrm{w}_{8}$	$\Delta \mathrm{w}_{14}$	$\Delta \mathrm{w}_{20}$
w_{2}	0.014	0.232	0.100	-0.069	-0.186
$\Delta \mathrm{w}_{2}$	0.027	0.255	-0.014	-0.316	-0.045
$\Delta \mathrm{w}_{8}$	0.015	-0.010	0.437	-0.157	-0.096
$\Delta \mathrm{w}_{14}$	-0.012	-0.244	-0.159	0.584	-0.167
$\Delta \mathrm{w}_{20}$	-0.027	-0.028	-0.079	-0.158	0.385

Some aspects of the growth properties of this population:
Very little of the w_{26} variation is accounted for by the size at birth, i.e. $\left(p_{w_{2}, w_{26}}^{2}=0.014\right)$ - later growth components seem more important

The joint determination of pairs of growth increments are either negative of negligibly positive - compensatory growth
\rightarrow The Standardized Linear Model:

$$
\begin{gathered}
y=\mu_{y}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{n} x_{n}+\varepsilon_{y} \\
\left\{\begin{array}{l}
x_{i} \sim\left(0, \sigma_{x_{i}}^{2}\right), \varepsilon_{y} \sim\left(0, \sigma_{\varepsilon_{y}}^{2}\right) \rightarrow y \sim\left(\mu_{y}, \sigma_{y}^{2}\right) \\
\operatorname{Cov}\left[x_{i}, x_{j}\right]=\rho_{i j} \sigma_{x_{i}} \sigma_{x_{j}} \text { and } \operatorname{Cov}\left[x_{i}, \varepsilon_{y}\right]=0
\end{array}\right. \\
\frac{y-\mu_{y}}{\sigma_{y}}=\beta_{1} \frac{x_{1}}{\sigma_{y}}+\beta_{2} \frac{x_{2}}{\sigma_{y}}+\ldots+\beta_{n} \frac{x_{n}}{\sigma_{y}}+\frac{\varepsilon_{y}}{\sigma_{y}} \\
=\left(\beta \frac{\sigma_{x_{1}}}{\sigma_{y}}\right) \frac{x_{1}}{\sigma_{x_{1}}}+\ldots+\left(\beta_{n} \frac{\sigma_{x_{n}}}{\sigma_{y}}\right) \frac{x_{n}}{\sigma_{x_{n}}}+\left(\frac{\sigma_{\varepsilon_{y}}}{\sigma_{y}}\right) \frac{\varepsilon_{y}}{\sigma_{\varepsilon_{y}}}
\end{gathered}
$$

$$
\mathrm{y}^{*}=\mathrm{p}_{\mathrm{y} 1} \mathrm{x}_{1}^{*}+\mathrm{p}_{\mathrm{y} 2} \mathrm{x}_{2}^{*}+\ldots+\mathrm{p}_{\mathrm{yn}} \mathrm{x}_{\mathrm{n}}^{*}+\mathrm{p}_{\mathrm{y} \varepsilon} \varepsilon^{*}
$$

(Basic Linear Model in Path Analysis)

- $\mathrm{y}^{*}=\left(\mathrm{y}-\mu_{\mathrm{y}}\right) / \sigma_{\mathrm{y}} \rightarrow \mathrm{y} \sim(0,1)$
- $p_{y i}=\beta_{i} \sigma_{x_{i}} / \sigma_{y}$ and $p_{y \varepsilon}=\sigma_{\varepsilon_{y}} / \sigma_{y}=e$
- $\mathrm{x}_{\mathrm{i}}^{*}=\mathrm{x}_{\mathrm{i}} / \sigma_{\mathrm{x}_{\mathrm{i}}} \rightarrow \mathrm{x}_{\mathrm{i}}^{*} \sim(0,1)$
- $\varepsilon^{*}=\varepsilon_{y} / \sigma_{\varepsilon_{y}} \rightarrow \varepsilon^{*} \sim(0,1)$
- $\operatorname{Cov}\left[\mathrm{x}_{\mathrm{j}}^{*}, \mathrm{x}_{\mathrm{j}^{\prime}}^{*}\right]=\operatorname{Cov}\left[\mathrm{x}_{\mathrm{j}} / \sigma_{\mathrm{x}_{\mathrm{j}}}, \mathrm{x}_{\mathrm{j}^{\prime}} / \sigma_{\mathrm{x}_{\mathrm{j}^{\prime}}}\right]=\rho_{\mathrm{ij}}$

$$
\begin{aligned}
\operatorname{Var}\left(\mathrm{y}^{*}\right)=1 & =\mathrm{p}_{\mathrm{y} 1}^{2}+\ldots+\mathrm{p}_{\mathrm{yn}}^{2} \\
& +2 \mathrm{p}_{\mathrm{y} 1} \mathrm{p}_{\mathrm{y} 2} \rho_{12}+\ldots+2 p_{\mathrm{y}(\mathrm{n}-1)} \mathrm{p}_{\mathrm{yn}} \rho_{(\mathrm{n}-1) \mathrm{n}}+\mathrm{e}^{2}
\end{aligned}
$$

\rightarrow Path Diagrams:

The standardized linear model can be represented pictorially by a "path diagram" with cause-effect relationships depicted by straight directed arrows, and correlations by double headed curved arrows.

$$
\mathrm{y}=\mathrm{p}_{\mathrm{y} 1} \mathrm{x}_{1}+\mathrm{p}_{\mathrm{y} 2} \mathrm{x}_{2}+\ldots+\mathrm{p}_{\mathrm{yp}} \mathrm{x}_{\mathrm{p}}+\mathrm{p}_{\mathrm{y} \mathrm{\varepsilon}} \varepsilon
$$

\rightarrow Correlations Between Variables:
Simple System:

$$
\left\{\begin{array}{l}
y=\mu_{y}+\beta_{1} x_{1}+\beta_{2} x_{2}+\varepsilon_{y} \\
z=\mu_{z}+\beta_{3} x_{3}+\beta_{4} x_{4}+\beta_{5} x_{5}+\varepsilon_{z}
\end{array}\right.
$$

Standardized Form: $\left\{\begin{array}{l}y^{*}=p_{y 1} x_{1}^{*}+p_{y 2} x_{2}^{*}+e \varepsilon_{y}^{*} \\ z^{*}=p_{z 3} x_{3}^{*}+p_{z 4} x_{4}^{*}+p_{z 5} x_{5}^{*}+d \varepsilon_{z}^{*}\end{array}\right.$
Note:

$$
\operatorname{Cov}\left[y^{*}, z^{*}\right]=\operatorname{Cov}\left(\frac{y-\mu_{y}}{\sigma_{y}}, \frac{z-\mu_{z}}{\sigma_{z}}\right)=\frac{\operatorname{Cov}(y, z)}{\sigma_{y} \sigma_{z}}=\rho_{y z}
$$

i.e., the covariance between two standardized variables is the correlation between them.

$$
\begin{aligned}
\rho_{y z} & =\operatorname{Cov}\left[y^{*}, z^{*}\right] \\
& =\operatorname{Cov}\left[p_{y 1} x_{1}^{*}+p_{y 2} x_{2}^{*}+e \varepsilon_{y}^{*}, p_{z 3} x_{3}^{*}+p_{z 4} x_{4}^{*}+p_{z 5} x_{5}^{*}+d \varepsilon_{z}^{*}\right] \\
& =\sum_{i=1}^{2} \sum_{j=1}^{3} p_{y i} p_{z j} \operatorname{Cov}\left[x_{i}^{*}, x_{j}^{*}\right]+d \sum_{i=1}^{2} \operatorname{Cov}\left[x_{i}^{*}, \varepsilon_{z}^{*}\right] \\
& +e \sum_{i=3}^{5} \operatorname{Cov}\left[\varepsilon_{y}^{*}, x_{j}^{*}\right]+\operatorname{Cd} \operatorname{Cov}\left[\varepsilon_{\mathrm{y}}^{*}, \varepsilon_{\mathrm{z}}^{*}\right]
\end{aligned}
$$

- Assuming that covariances between residuals and predictor variables are null:

$$
\rho_{\mathrm{yz}}=\sum_{\mathrm{i}=1}^{2} \sum_{\mathrm{j}=1}^{3} \mathrm{p}_{\mathrm{yi}} \mathrm{p}_{\mathrm{z}} \rho_{\mathrm{ij}}+\mathrm{ed} \times \rho_{\varepsilon}
$$

\rightarrow A system of correlations can be described in terms of path coefficients and of correlations between "explanatory" variables

Recursive System:

- Suppose we have the system (in standardized form; we drop the "star" from now on):

$$
\left\{\begin{array}{l}
\mathrm{y}=\mathrm{p}_{\mathrm{y} 1} \mathrm{x}_{1}+\varepsilon_{\mathrm{y}} \\
\mathrm{z}=\mathrm{p}_{\mathrm{z} 1} \mathrm{x}_{1}+\mathrm{p}_{\mathrm{z} 2} \mathrm{x}_{2}+\varepsilon_{\mathrm{z}} \\
\mathrm{w}=\mathrm{p}_{\mathrm{w} 3} \mathrm{x}_{3}+\mathrm{p}_{\mathrm{w} 4} \mathrm{x}_{4}+\varepsilon_{\mathrm{w}} \\
\mathrm{x}_{3}=\mathrm{p}_{31} \mathrm{x}_{1}+\varepsilon_{3}
\end{array}\right.
$$

There are 6 path coefficients and 7 observables variables, with the following correlation matrix:

$$
\mathbf{R}=\left[\begin{array}{ccccccc}
1 & \rho_{12} & \rho_{13} & \rho_{14} & \rho_{1 y} & \rho_{1 z} & \rho_{1 w} \\
& 1 & \rho_{23} & \rho_{24} & \rho_{2 y} & \rho_{2 z} & \rho_{2 w} \\
& & 1 & \rho_{34} & \rho_{3 y} & \rho_{3 z} & \rho_{3 w} \\
& & & 1 & \rho_{4 y} & \rho_{4 z} & \rho_{4 w} \\
& & & & 1 & \rho_{y z} & \rho_{y w} \\
& \text { Symm. } & & & 1 & \rho_{z v} \\
& & & & & & 1
\end{array}\right]
$$

- Correlations can be described in terms of path coefficients and residual correlations:

Note: We assume residuals are uncorrelated with x variables but perhaps correlated themselves.

Example 3

Relation between phenotype, genotype and environment

$$
\begin{aligned}
& \operatorname{Corr}(\mathrm{g}, \mathrm{y})=\rho_{\mathrm{gy}}=\mathrm{h}+\rho_{\mathrm{GE}} \mathrm{e} \\
& \operatorname{Corr}(\mathrm{e}, \mathrm{y})=\rho_{\mathrm{ey}}=\mathrm{e}+\rho_{\mathrm{GE}} \mathrm{~h}
\end{aligned}
$$

Example 4

Genetic, environmental and phenotypic correlations

$$
\begin{aligned}
& X=\mu_{x}+G_{x}+E_{x} \rightarrow x=h_{x} g_{x}+e_{x} \varepsilon_{x} \\
& Y=\mu_{y}+G_{y}+E_{y} \rightarrow y=h_{y} g_{y}+e_{y} \varepsilon_{y}
\end{aligned}
$$

$$
\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\operatorname{Cov}\left(\mathrm{G}_{\mathrm{x}}, \mathrm{G}_{\mathrm{y}}\right)+\operatorname{Cov}\left(\mathrm{G}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}\right) \quad \begin{gathered}
\text { Usually } \\
\text { assumed }
\end{gathered}
$$

$$
-\operatorname{Cov}\left(\mathrm{E}_{\mathrm{x}}, \mathrm{G}_{\mathrm{y}}\right)+\operatorname{Cov}\left(\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}\right) \quad \text { to be null }
$$

$$
\operatorname{Cov}(X, Y)=\boldsymbol{\rho}_{\mathrm{G}_{\mathrm{x}} \mathrm{G}_{\mathrm{y}}} \boldsymbol{\sigma}_{\mathrm{G}_{\mathrm{x}}} \boldsymbol{\sigma}_{\mathrm{G}_{\mathrm{y}}}+\boldsymbol{\rho}_{\mathrm{E}_{\mathrm{x}} \mathrm{E}_{\mathrm{y}}} \boldsymbol{\sigma}_{\mathrm{E}_{\mathrm{x}}} \boldsymbol{\sigma}_{\mathrm{E}_{\mathrm{y}}}
$$

$$
\operatorname{Corr}(\mathrm{X}, \mathrm{Y})=\boldsymbol{\rho}_{\mathrm{G}_{\mathrm{x}} \mathrm{G}_{\mathrm{y}}} \frac{\boldsymbol{\sigma}_{\mathrm{G}_{\mathrm{x}}}}{\boldsymbol{\sigma}_{\mathrm{X}}} \frac{\boldsymbol{\sigma}_{\mathrm{G}_{\mathrm{y}}}}{\boldsymbol{\sigma}_{\mathrm{Y}}}+\boldsymbol{\rho}_{\mathrm{E}_{\mathrm{x}} \mathrm{E}_{\mathrm{y}}} \frac{\boldsymbol{\sigma}_{\mathrm{E}_{\mathrm{x}}}}{\boldsymbol{\sigma}_{\mathrm{X}}} \frac{\boldsymbol{\sigma}_{\mathrm{E}_{\mathrm{y}}}}{\boldsymbol{\sigma}_{\mathrm{Y}}}
$$

$$
=\rho_{\mathrm{G}_{\mathrm{x}} \mathrm{G}_{\mathrm{y}}} \mathrm{~h}_{\mathrm{x}} \mathrm{~h}_{\mathrm{y}}+\rho_{\mathrm{E}_{\mathrm{x}} \mathrm{E}_{\mathrm{y}}} \sqrt{\left(1-\mathrm{h}_{\mathrm{x}}^{2}\right)\left(1-\mathrm{h}_{\mathrm{y}}^{2}\right)}
$$

Using path analysis:

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =e_{x} \rho_{E_{x} E_{y}} e_{y}+h_{x} \rho_{G_{x} G_{y}} h_{y} \\
& =\rho_{G_{x} G_{y}} h_{x} h_{y}+\rho_{E_{x} E_{y}} e_{x} e_{y}
\end{aligned}
$$

Example 5

Recursive system, assuming no residual correlations

Some cases:

$$
\left.\begin{array}{rl}
\rho_{\mathrm{zy}}=\mathrm{p}_{\mathrm{z} 2} \rho_{12} p_{\mathrm{y} 1}+\mathrm{p}_{\mathrm{z} 1} \mathrm{p}_{\mathrm{y} 1} & \rho_{\mathrm{z} 2}=\mathrm{p}_{\mathrm{z} 2}+\rho_{12} \mathrm{p}_{\mathrm{z} 1} \\
\rho_{\mathrm{z} 3}=\mathrm{p}_{\mathrm{z} 2} \rho_{12} p_{31}+\mathrm{p}_{\mathrm{z} 1} \mathrm{p}_{31} & \rho_{\mathrm{zw}}
\end{array}=\mathrm{p}_{\mathrm{z} 2} \rho_{12} \mathrm{p}_{31} p_{\mathrm{w} 3}+\mathrm{p}_{\mathrm{z} 2} \rho_{24} p_{\mathrm{w} 4}\right)
$$

A diagram illustrating the relations between two mated individuals and their progeny. $H, H^{\prime}, H^{\prime \prime}$ and $H^{\prime \prime \prime}$ are the genetic constitutions of the four individuals. $G, G^{\prime}, G^{\prime \prime}$ and $G^{\prime \prime \prime}$ are four germ-cells. E and D represent tangible external conditions and chance irregularities as factors in development. Crepresents chance at segregation as a factor in determining the composition of the germcells. Path coefficients are represented by small letters. (Wright, 1921)

