Introduction to Mixed Models

- Linear Models
- Fixed and Random Effects
- Fixed Models
 - Hypothesis testing
 - Estimation
- Mixed Models
 - Hypothesis testing
 - Prediction

Linear Models

• Needed to correct for unbalancedness in data

– Different sires in different herds

Account for accuracy of information

Genetic level confounded with herds

Problem:

The contemporaries of some animals may have higher genetic mean than of others

Example

Genetic level confounded with herds

Problem 3: The contemporaries of some animals may have higher genetic mean than of others

Genetic level confounded with herds

Conclusion

Need <u>links</u> between herds (reference sires)

Need a <u>simultaneous evaluation</u> of all herd and sire effects

The argument for BLUP sire evaluation.....1970ties

Another example

Cow	Breed	Feeding regime	Weight (kg)
1	Angus	intensive	494
2	Angus	intensive	556
3	Angus	extensive	542
4	Hereford	extensive	473
5	Hereford	intensive	632
6	Hereford	extensive	544

Order data

	Intensive	Extensive	Mean
Angus	494	542	531
	556		
Hereford	632	473, 544	550
Mean	561	520	

Using a Linear Model

=

[X			y]
1	1	1	494
1	1	1	556
1	1	-1	542
1	-1	-1	473
1	-1	1	632
1	-1	-1	544

y = X b + e

= m + breed + feed

class variables

b = inv(X'*X)*X'*y =

 540.1667

 -18.3750
 Angus = - Hereford

 26.6250
 Intensive = - Extensive

Using a Linear Model

[]	Х	y] =	$\mathbf{v} = \mathbf{V} \mathbf{b} + \mathbf{o}$
1	18	494	y - A b + e
1	21	556	
1	19	542	= m + age
1	17	473	111 + uge
1	23	632	
1	19	544	continuous variables

b = inv(X'*X)*X'*y =

- 59 intercept: weight at 0 months
- slope: weight change per month

A linear regression model

Using a Linear Model

	Σ	K =		y = X b + e
1 1	1 1	1 1	18 21	= m + breed + feed + age
1	1 -1	-1 -1	19 17	class variables
1	-1 1	1	23 19	1
1	-1	-1	19	and
b = in	iv(X	'*X)	*X'*y =	continuous variables

-11.3522 weight at age = 0breed effect -0.6981 -12.2642 feeding effect age effect 28.2830

Fixed and Random Effects

Fixed Effects

- Defined classes, comprise all the possible levels of interest
- Number of levels relatively small and confined to this number after repeated sampling.
- E.g. sex, age, breed, contemporary group

Random Effects

- Levels that are considered to be drawn from an infinite large population of levels
- E.g. animal effects

The linear model

- Equation y = Xb + Zu + e
- Expectations and Variance Structures
- Assumptions and restrictions
 - Residuals IID?
 - Random sampling of u?

Expectations and Variance Structures

$$E \begin{pmatrix} y \\ u \\ e \end{pmatrix} = \begin{pmatrix} Xb \\ 0 \\ 0 \end{pmatrix}$$

$$\operatorname{Var} \begin{pmatrix} \mathbf{u} \\ \mathbf{e} \end{pmatrix} = \begin{pmatrix} \mathbf{G} & \mathbf{0} \\ \mathbf{0} & \mathbf{R} \end{pmatrix}$$

var(y) = V = ZGZ' + R

Estimating Fixed effects

 $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{y}$ $\mathbf{V} = \mathbf{I} \ \boldsymbol{\sigma}_e^2$

b = $(X'V^{-1}X)^{-1}X'V^{-1}y$ V = D σ_e^2 **Ordinary Least Squares**

Weighted Least Squares

 $b = (X'V^{-1}X)^{-1}X'V^{-1}y$ V = V

Generalized Least Squares

A simple example of variance structure

animal	l obs'n			[1	0					
1	9	ľ	Z =	1	0					
1	11			0	1					
2 <i>G</i> =	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \sigma_{anm}^2$	Ζ'2	Z =	$\left[\begin{array}{c}2\\0\end{array}\right]$	0 1	ZZ'	=	1 1 0	1 1 0	0 0 1
var	f(y) = ZGZ' + R	=	1 1 0	1 1 0	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \sigma_{ann}^2$	$n + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0 1 00	0 0 1	σ_e^2	2

Estimability

solutions:

$$\hat{b} = X'X^{-}X'Y$$

$$X' X = \begin{pmatrix} 7 & 2 & 4 & 1 \\ 2 & 2 & 0 & 0 \\ 4 & 0 & 4 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \text{ and } \qquad X' y = \begin{pmatrix} 2161 \\ 605 \\ 1226 \\ 330 \end{pmatrix}$$

X is dependent

X'X can not be inverted

Can only estimate 3 parameters from 3 means

Need restriction to solution

(1	1	0)	e.g. put effect of 1992 to zero
1	1	0	•
1	0	1	$b = (X'X)^{-1} X'Y = solutions$
1	0	1	$\begin{pmatrix} 7 & 2 & 4 \end{pmatrix}^{-1} \begin{pmatrix} 2161 \end{pmatrix} \begin{pmatrix} 330 \end{pmatrix}$
1	0	1	$\hat{\mathbf{b}} = \begin{vmatrix} 2 & 2 & 0 \end{vmatrix} \begin{vmatrix} 605 \end{vmatrix} = \begin{vmatrix} -27.5 \end{vmatrix}$
1	0	1	$\begin{pmatrix} 4 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1226 \end{pmatrix} \begin{pmatrix} -23.5 \end{pmatrix}$
(1	0	0)	

There are more solutions possible

General mean zero First year zero Last year zero Sum of years to zero

$\mu = 0$	$\mu = 302.5$	$\mu = 330$	$\mu = 313$
1990 = 320.5	1990 = 0	1990 = -27.5	1990 = -10.5
1991 = 306.5	1991 = +4	1991 = -23.5	1991 = -6.5
1992 = 330	1992 = +27.5	1992 = 0	1992 = 17

estimable functions are unchanged

- expected value of an observation
- difference between years

fitting mean and year effect

$$\hat{b} = \begin{pmatrix} 330 \\ -27.5 \\ -23.5 \end{pmatrix} \rightarrow 4.0$$

the mean of 1992 the effect of year 1990 (relative to 1992) the effect of year 1991 (relative to 1992)

fitting mean, year effect and sexX \hat{b} meaning

the mean of females in 1992 the effect of year 1990 (relative to 1992) the effect of year 1991 (relative to 1992) the effect of males (relative to females)

Note: year 1992 appears not so good after all!

Conclusion

• Linear models are a powerful, and relatively simple way to correct for different fixed effects in unbalanced designs

Connectedness and Confounding

Year	\ sex	Male	Steer	Female
1990		1	0	1
1991		2	0	2
1992		0	1	0

Connectedness and Confounding

model statement: weight ~ mu con(sex) con(year)con(year)12.06 $[DF F_i F_a]$ con(sex)14.361.19 $[DF F_i F_a]$

 model statement: weight ~ mu con(year) con(sex)

 6 con(sex)
 1
 1.19
 1.19
 [DF F_i F_a]

 5 con(year)
 1
 5.23
 2.06
 [DF F_i F_a]

Exmp4.dat

15	109	287
17	116	298
18	119	306
18	116	303
19	117	302
19	119	312
20	121	316
21	122	324

weight ~ mu	heig	ht age
1 age	1	3.03
2 height	1	70.50

	1	3.03	3.03	[DF F_inc F_all]
ght	1	70.50	1.67	[DF F_inc F_all]

weight ~ mu	age h	eight		
2 height	1	1.67	1.67	[DF F_inc F_all]
1 age	1	71.87	3.03	[DF F_inc F_all]

Hypothesis Testing

- H'b = c
- Or: H'b-c = 0

$$F = \frac{s / r(H')}{SSE / (N - r(X))}$$

where $s = (H'b-c)'(H'CH)^{-1}(H'b-c)$

and $C = (X'V^{-1}X)^{-1}$

Accuracy of estimates

• $V(K'b) = K'(X'V^{-1}X)^{-1}K$ se2

Mixed model

$\mathbf{y} = \mathbf{X}\mathbf{b} +$		u +	e	
var(u) = G	$\int \mathbf{X'} \mathbf{R}^{-1} \mathbf{X}$	$X'R^{-1}Z$	b] [$X'R^{-1}y$
var(e) = R	$Z'R^{-1}X$	$Z'R^{-1}Z+G^{-1}$	$\begin{bmatrix} u \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$	$Z'R^{-1}y$
var(y) = ZGZ' + R			-	

simple version

$$\operatorname{var}(\mathbf{u}) = \mathbf{A} \ \boldsymbol{\sigma}_{a}^{2} \qquad \begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{X} & \mathbf{Z}'\mathbf{Z} + \lambda \mathbf{A}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{Z}'\mathbf{y} \end{bmatrix}$$
$$\operatorname{var}(\mathbf{e}) = \mathbf{I} \ \boldsymbol{\sigma}_{e}^{2}$$

In the MMM we estimate

BLUE(b) = β = (X' V-1X)-1 X' V-1y is a GLS estimate

BLUP(u)= \hat{u} =(Z' R⁻¹ Z+G⁻¹)⁻¹ Z' R⁻¹(y-Xβ)

Accuracy of Estimates

$$Var(b) = C_{XX}$$
$$V(\hat{u}) = G - C_{ZZ}$$
And
$$V(u - \hat{u}) = C_{ZZ}$$

Prediction Error variance

Hypothesis Testing in Mixed Models

- Not well defined
- Can
 - Ignore random effects
 - Treat them as fixed
 - Estimate them