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7.  Managing constraints 

 

Those that trespass will be penalized.  Or otherwise fixed up. 

 

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics  



Simple logic constraints: examples 

• The number of mates to allocate to a bull should not be 

negative. 

• The amount of feed to offer an animal should not be 

negative. 

• The date to wean should not be before birth date. 

• A natural mating bull can be used on a maximum of one 

farm at a time. 



Stakeholder applied constraints: examples 

• Maximum breeding herd size should be 200 females mated. 

• The maximum acceptable coancestry among parents in this 

mating round is 0.1. 

• The maximum number of individuals in a group for pooled 

tissue quantitative genotyping is ten. 

• The maximum permissible number of genetic marker 

mismatches per animal (various applications …) 

 



Ask your self:  Do I need this constraint? 

• Constraints often requested because of preconceived ideas 

about the optimal solution. 

• This prevents the computer from “thinking outside the box”!   

• You might get a surprise and discover an unusual solution ... 

(see “Let your computer make you famous.” in Chapter 1). 

• Investigate the impact of removing constraints that are not 

needed to give a feasible solution.   

• If these constraints were well-founded, then the optimal 

solution should not break them. 

 



How to apply a constraint 

Penalise: Apply penalty in the objective function to solutions 

that break constraints.  The penalty should be 

sufficiently large to prevent the optimal solution being 

one that breaks the constraint. 

  

 

Fix: If the constraint is on the variables passed to the 

objective function, you can choose to change these 

appropriately before passing them to the objective 

function. 

 



Application of constraints 
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Simple Fix – make boundaries 

• Simple fix is to set bounds for variables, as in DE_Demo 

For j = 1 To loci 

    If allele(j) < MinVal(j) Then allele(j) = MinVal(j) 

    If allele(j) > MaxVal(j) Then allele(j) = MaxVal(j) 

Next 

 
• … before allele() gets evaluated in the Criterion subroutine.  

Setting values exactly to the boundaries is simple but not the 

best strategy.   

• See “Assigning animals into groups” in Chapter 6. 



Fix: Dealing cards 
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Fixing up: comments 

• “Fixing up” is the better strategy for most “logical” 

constraints.  Fix them up before going to the objective 

function.   

• Store the solution in its fixed state, especially if the fixing 

process is stochastic. 

• Misleading in notes:  “However, you must do this in a repeatable manner.  If two 

solutions have exactly the same “unfixed” set of parameters, they should have the 

same “fixed” set of parameters” … Not needed if store population member in the 

fixed state. 

• Some danger that the strategy you use prevents good 

exploration of the solution space. 

• Preferably do not “Fix” parameters to the same sort of region, for example 

at the boundaries of constraints. 



Penalising fitness 

• “The big advantage of the “Penalise” strategy is that it so 

easy to apply… 

If (ConstraintBroken) fitness = fitness – 999999 

  … that should cure the problem! 

 

• Penalisation is easy to implement, but it makes for much 

slower convergence if most solutions are illegal. 



Penalising:  Hard constraints and Soft constraints 

• In some such cases all solutions break one or more constraints in 

the first generation(s) of optimization. 

• So,  apply “softer” penalties – so that the optimization engine can 

give reward to solutions that break fewer constraints. 

• Eventually it finds solutions that break no constraints. 

• You might have to play with constraint penalties to help a 

complex optimization to “get off the ground”.   

• A „hard constraint‟ would allocate the smallest possible fitness.  

That is rarely needed ... 

 



Penalising:  Hard constraints and Soft constraints 

• A hard constraint: 

 If (Para > ParaConstraint) fitness = minus infinity 

 

• A softer constraint: 

 If (Para > ParaConstraint) fitness = -999 

 

• A soft constraint with reward: 

 If (Para > ParaConstraint) fitness = fitness – 99*(Para – ParaConstraint) 

 

 




