
Brian Kinghorn

University of New England

Armidale, Australia

7. Managing constraints

Those that trespass will be penalized. Or otherwise fixed up.

Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

Simple logic constraints: examples

• The number of mates to allocate to a bull should not be

negative.

• The amount of feed to offer an animal should not be

negative.

• The date to wean should not be before birth date.

• A natural mating bull can be used on a maximum of one

farm at a time.

Stakeholder applied constraints: examples

• Maximum breeding herd size should be 200 females mated.

• The maximum acceptable coancestry among parents in this

mating round is 0.1.

• The maximum number of individuals in a group for pooled

tissue quantitative genotyping is ten.

• The maximum permissible number of genetic marker

mismatches per animal (various applications …)

Ask your self: Do I need this constraint?

• Constraints often requested because of preconceived ideas

about the optimal solution.

• This prevents the computer from “thinking outside the box”!

• You might get a surprise and discover an unusual solution ...

(see “Let your computer make you famous.” in Chapter 1).

• Investigate the impact of removing constraints that are not

needed to give a feasible solution.

• If these constraints were well-founded, then the optimal

solution should not break them.

How to apply a constraint

Penalise: Apply penalty in the objective function to solutions

that break constraints. The penalty should be

sufficiently large to prevent the optimal solution being

one that breaks the constraint.

Fix: If the constraint is on the variables passed to the

objective function, you can choose to change these

appropriately before passing them to the objective

function.

Application of constraints

1. Problem

Representation

2. Objective

function

3. Optimisation

engine

“Genotype”

Raw variables for

each solution

“Phenotype”

Usable

variables or

states

“Fitness” value

for each solution

“Fix” ?

“Penalise” ?

Simple Fix – make boundaries

• Simple fix is to set bounds for variables, as in DE_Demo

For j = 1 To loci

 If allele(j) < MinVal(j) Then allele(j) = MinVal(j)

 If allele(j) > MaxVal(j) Then allele(j) = MaxVal(j)

Next

• … before allele() gets evaluated in the Criterion subroutine.

Setting values exactly to the boundaries is simple but not the

best strategy.

• See “Assigning animals into groups” in Chapter 6.

Fix: Dealing cards

Female

 1 2 3 4 …

Male
No of

uses

Ranking

criterion
Rank 1 0 1 1

1 2
5.32

2.16

2

3

2 0 - -

3… 1 7.64 1 

 

Fixing up: comments

• “Fixing up” is the better strategy for most “logical”

constraints. Fix them up before going to the objective

function.

• Store the solution in its fixed state, especially if the fixing

process is stochastic.

• Misleading in notes: “However, you must do this in a repeatable manner. If two

solutions have exactly the same “unfixed” set of parameters, they should have the

same “fixed” set of parameters” … Not needed if store population member in the

fixed state.

• Some danger that the strategy you use prevents good

exploration of the solution space.

• Preferably do not “Fix” parameters to the same sort of region, for example

at the boundaries of constraints.

Penalising fitness

• “The big advantage of the “Penalise” strategy is that it so

easy to apply…

If (ConstraintBroken) fitness = fitness – 999999

 … that should cure the problem!

• Penalisation is easy to implement, but it makes for much

slower convergence if most solutions are illegal.

Penalising: Hard constraints and Soft constraints

• In some such cases all solutions break one or more constraints in

the first generation(s) of optimization.

• So, apply “softer” penalties – so that the optimization engine can

give reward to solutions that break fewer constraints.

• Eventually it finds solutions that break no constraints.

• You might have to play with constraint penalties to help a

complex optimization to “get off the ground”.

• A „hard constraint‟ would allocate the smallest possible fitness.

That is rarely needed ...

Penalising: Hard constraints and Soft constraints

• A hard constraint:

 If (Para > ParaConstraint) fitness = minus infinity

• A softer constraint:

 If (Para > ParaConstraint) fitness = -999

• A soft constraint with reward:

 If (Para > ParaConstraint) fitness = fitness – 99*(Para – ParaConstraint)

