Module 2: Introduction to PLINK and Quality Control

(1) Introduction to PLINK
(2) Quality Control
(2) Quality Control

Armidale Genetics Summer Course 2016 Module 2: PLINK \& Quality Control

Single Nucleotide Polymorphism (SNP)

A SNP (pronounced snip) is a single basepair at which more than one nucleotide is observed. E.g., if Basepair 1000000 is nucleotide C for many genomes in the population, but some genomes have nucleotide T , then this position is a SNP, with alleles C and T . Because mutations occur rarely, only two alleles are observed at the majority of SNPs, but three or even all four possible alleles (A,C,G,T) are possible

The Minor Allele Fraction (MAF) is the relative frequency in a relevant population of the minor (2nd most common) allele. People often talk of common and rare SNPs, although the distinction is not well defined, and likely depends on sample size: some consider common as MAF >0.05, others MAF >0.01

Single Nucleotide Polymorphisms

SNP genotypes are usually encoded as 0,1 or 2 , based on the number of copies of non-reference alleles. E.g., suppose a SNP has reference allele G, and A is the only variant allele observed, then

- genotype CC is coded as 0 (homozygous non-reference)
- genotype CT is coded as 1 (heterozygous)
- genotype TT is coded as 2 (homozygous reference)

The reference allele is sometimes referred to as the "wildtype" allele, while the non-reference is referred to as the alternative or "mutant" allele

Usually the reference allele is the most common one, but this is not universally true, and the most common allele in one population may not be most common in another. Care must be taken when combining datasets to ensure that the reference alleles are the same.

Genotype calling is a major challenge

Good SNP

Bad SNP

Each circle represents an individual's genotype at the SNP. We want to see tight clusters, one for each genotype, otherwise the SNP may be rejected. Individual genotypes can be assigned probabilities based on their positions relative to the clusters. Genotypes below a threshold (e.g. 0.9 or 0.95) can be coded as missing, or genotype probabilities can be incorporated into some analyses.

Armidale Genetics Summer Course 2016 Module 2: PLINK \& Quality Control

Storing SNP Data in PLINK

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml

Suppose we have n individuals genotyped for N SNPs

$$
\begin{aligned}
\mathbf{X}= & {\left[\begin{array}{ccccc}
A A & C G & T T & \ldots & G G \\
A G & C G & A T & \ldots & C G \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
G G & C G & 00 & \ldots & C C
\end{array}\right] \begin{array}{c}
\leftarrow \text { Individual } 1 \\
\leftarrow \text { Individual } 2 \\
\vdots \\
\leftarrow \text { Individual } \mathrm{n}
\end{array} } \\
& \text { SNP } 1 \text { SNP } 2 \text { SNP } 3
\end{aligned}
$$

The genotypes correspond to a matrix \mathbf{X} of size $n \times p$, where N is usually $\gg n$ (i.e. the matrix is short and very fat)

Pedigree Files

```
doug@doug-laptop:~/Desktop/workingdir/wtccc$ head test.ped -n 9
IND1 IND1 0 0 2 1 A A G A A T
IND2 IND2 0 0 1 1 A A A A A T
IND3 IND3 0 0 2 1 A A A A A T
IND4 IND4 0 0 2 1 A A O O A T
IND5 IND5 0 0 1 1 A A A A T T
IND6 IND6 0 0 2 1 A A A A A T
```

Ped files have $6+2 n$ columns, providing:
(1) Family ID,
(2) Individual ID,
(3) Paternal ID (0 if father not in dataset),
(9) Maternal ID (0 if mother not in dataset),
(6) Sex ($1=$ Male, $2=$ Female, Other=Unknown $)$,
(0) Phenotype (here 1 or 2 , corresponding to case and control),
(2 alleles for each SNP ($0=$ missing $)$

Pedigree Files

Joug@doug-laptop:~/Desktop/workingdir/wtccc\$ head test.map
1
rs12025928
1

Map files have 4 columns, providing:
(1) Chromosome,
(2) SNP Name,
(3) Genetic Distance from previous SNP $(0=$ unknown $)$,
(3) Basepair

Bed (Binary Pedigree) Files

PLINK also offers a (much) more efficient binary format, which uses fam(ily), bim (binary mapping) and bed (binary pedigree) files.

Fam files are first six columns of ped file

```
doug@doug-laptop:~/Desktop/workingdir/wtccc$ head -n 9 test.fam
IND1 IND1 0 0 2 1
IND2 IND2 0 0 1 1
IND3 IND3 0 0 2 1
IND4 IND4 0 0 2 1
IND5 IND5 0 0 1 1
IND6 IND6 0 0 2 1
IND7 IND7 0 0 1 1
IND8 IND8 0 0 1 1
IND9 IND9 0 0 2 1
```


Bed (Binary Pedigree) Files

PLINK also offers a (much) more efficient binary format, which uses bed (binary pedigree, next slide), bim (binary mapping) and fam(ily) files.

Bim files are map files plus two columns, providing the A 1 and A 2 alleles

doug@doug-laptop:~/Desktop/workingdir/wtccc\$	head test.bim					
1	rs12025928	0	536560	G	A	
1	rs6421779	0	555887	G	A	
1	rs1780604	0	15449253	A	T	

In PLINK, the SNP genotype ($0 / 1 / 2$) represents the number of copies of the A1 allele; when performing association analysis (see later modules), effect sizes / odds ratios will be reported w.r.t. the A1 allele

However, this is not universally true, so be careful!

The Bed File

The bed file is a matrix of $0 \mathrm{~s}, 1 \mathrm{~s}, 2 \mathrm{~s}$ or NAs stored in binary format In computer lingo, a bit is one pieice of information (represented by 0 or 1) A byte is 8 bits (e.g., 01101011) - can store $2^{8}=256$ bits of information To save the four possible genotypes ($0 / 1 / 2 / \mathrm{NA}$) requires two bits so each byte can store 4 genotypes

PLINK uses the following two-bit coding of genotypes:

- $00=\mathrm{A} 1 / \mathrm{A} 1$ (Homozygous non-reference)
- 01 = A1/A2 (Heterozygous)
- 11 = A2/A2 (Homozygous reference)
- $10=0 / 0$ (Missing)

The Bed File

The first three bytes of the bed file are headers:

$$
\begin{array}{c|c|}
\mid- \text { magic number }-\mid & \mid \text { mode } \mid \\
0110110000011011 & 0000001
\end{array}
$$

The remainder each contain 4^{\dagger} genotypes, which are "read backwards":

$$
\begin{aligned}
& 01101100 \\
& \text { HGFEDCBA }
\end{aligned}
$$

\[

\]

† SNPs are "padded-out" to ensure they have a multiple of four genotypes. So suppose there were 998 individuals, bits HGFE of the final byte would not be used

The Bed File

Each bed file has size $3+p \times$ ceiling($n / 4$) bytes
e.g., to store 100 SNPs for 10 individuals takes $3+100 * 3=303$ bytes

It might actually be more efficient to compress the ped file. However, a key feature of bed files is that genotypes can be accessed immediately

Suppose we have 10 individuals; to obtain the genotype for individual 5, SNP 10, read the byte located at position $3+(9 \times 3)+1$
(this will contain genotypes for SNP 10 for individuals 5 to 8)

See http://pngu.mgh.harvard.edu/~purcell/plink/binary.shtml for more information

Other file formats include VCF and Oxford (a.k.a. Chiamo)
Armidale Genetics Summer Course 2016 Module 2: PLINK \& Quality Control

C code for reading SNPs from bedfile

```
//int num_samples / num_preds contain total numbers of individuals / SNPs in bed file
//will read from SNP (start+1) to SNP end and put into matrix data (num_samples x num_preds)
//in most implementations, sizeof(char)=1
int read_bed_fly(char *bedfile, double *data, int num_samples, int num_preds, \
int start, int end, double missingvalue)
{
int i, j, count, current, rowlength, gen, gen2;
unsigned char check[3], *rowbytes;
double conv[4], *datatemp;
FILE *input;
//four values stored per byte, each SNP will take up ceiling(num_samples/4) bits
rowlength=(int)((num_samples-1)/4)+1;
rowbytes=malloc(sizeof(unsigned char)*rowlength);
//the codes 0, 1, 2, 3 map to genotypes 2, NA, 1, 0
conv[0]=2.0; conv[1]=missingvalue; conv[2]=1.0; conv[3]=0.0;
//open the file
if((input=fopen(bedfile,"rb"))==NULL)
{printf("Error opening %s\n\n",bedfile);exit(1);}
//check the file has length (3+num_preds*rowlength) bytes
fseeko(input, 0, SEEK_END);
if(ftello(input)!=(off_t)sizeof(unsigned char)*rowlength*num_preds+sizeof(unsigned char)*3)
{printf("Error reading %s; should have size %jd (%d ind x %d predictors), but instead has \
size %jd\n\n", bedfile, (off_t)sizeof(unsigned char)*rowlength*num_preds+sizeof(unsigned char)*3,\
num_samples, num_preds, ftello(input));exit(1);}
```


Armidale Genetics Summer Course 2016 Module 2: PLINK \& Quality Control

C code for reading SNPs from bedfile

```
//check the file has length (3+num_preds*rowlength) bytes
fseeko(input, 0, SEEK_END);
if(ftello(input)!=(off_t)sizeof(unsigned char)*rowlength*num_preds+sizeof(unsigned char)*3)
{printf("Error reading %s; should have size %jd (%d ind x %d predictors), but instead has size \
%jd\n\n", bedfile, (off_t)sizeof(unsigned char)*rowlength*num_preds+sizeof(unsigned char)*3, \
num_samples, num_preds, ftello(input));exit(1);}
//check the first three bytes have expected values
fseeko(input, 0, SEEK_SET);
if(fread(check, sizeof(unsigned char), 3, input)!=3)
if(check[0] !=108||check[1] !=27)
{printf("Error reading %s; does not appear to be a binary PLINK file\n\n", bedfile);exit(1);}
if(check[2]!=1)
{printf("Error reading %s; can only read in SNP-major mode\n\n", bedfile);exit(1);}
//read each SNP in turn
for(j=start;j<end;j++)
{
//move to the correct SNP in file
if(fseeko(input, (off_t)sizeof(unsigned char)*rowlength*j+sizeof(unsigned char)*3, SEEK_SET)!=0)
{printf("Error reading %s; unable to find Predictor %d\n\n", bedfile, j+1);exit(1);}
//read the SNPs values
if(fread(rowbytes, sizeof(unsigned char), rowlength, input)!=rowlength)
{printf("Error reading values for Predictor %d from %s\n\n", j+1, bedfile);exit(1);}
```


C code for reading SNPs from bedfile

```
//convert to basepairs - convert each byte to (up to) 4 SNPs
i=0;
for(count=0; count<rowlength; count++)
{
//gen contains all 4 SNPs; gen2 examines one SNP at a time
gen=(int)rowbits[count];
gen2=gen%4;
data[i+(j-start)*num_samples]=conv[gen2];i++;
if(i==num_samples){break;}
gen2=(gen>>2)%4;
data[i+(j-start)*num_samples]=conv[gen2];i++;
if (i==num_samples) {break;}
gen2=(gen>>4)%4;
data[i+(j-start)*num_samples]=conv[gen2];i++;
if(i==num_samples){break;}
gen2=(gen>>6)%4;
data[i+(j-start)*num_samples]=conv[gen2];i++;
if(i==num_samples){break;}
}
}
fclose(input);
free(rowbytes);
return(0);
} //end of read_bed_fly
```


Armidale Genetics Summer Course 2016 Module 2: PLINK \& Quality Control

Phenotypes and Covariates

```
doug@doug-laptop:~/Desktop/workingdir/wtccc$ head phen.pheno
IND1 IND1 NA
IND2 IND2 1.544696
IND3 IND3 -0.219270
IND4 IND4 1.360046
IND5 IND5 -1.721269
IND6 IND6 2.212904
IND7 IND7 -1.026232
IND8 IND8 -1.306353
IND9 IND9 -0.929093
IND10 IND10 1.928810
```

Phenotype files have $2+M$ columns, providing Family ID, Individual ID, then value for each of M phenotypes
when analysing, use --mpheno to specify the phenotype

Covariate files take same format (do not include covariate for mean)

PLINK commands

Consist of the command plink followed by at least 3 options specifying:

- the function to be executed,
- an input datafile,
- an output filestem.

Examples:
plink --make-bed --file data_ped --out data_bed
plink --hardy --bfile data_bed --out stats
plink --linear --bfile data_bed --out assoc

Note: options are preceded by two dashes

For a full list of options see http://pngu.mgh.harvard.edu/~purcell/plink/reference.shtml

Profile Scoring

plink --score <profile> --bfile <data> --out <output>
The profile has three columns: SNP Name, Test Allele, Effect. E.g.

SNPA	A	1.95
SNPB	C	2.04
SNPC	C	-0.98
SNPD	C	-0.24

Suppose Individual 1 has genotypes AA (2), GG (0), AC (1), 00 (NA)

Variant(1/2)
Freq. of allele 1
Ind 1 genotype \# ref alleles

Score

$$
=\begin{gathered}
\left(2^{*} 1.95\right. \\
2.74 / 4+\begin{array}{c}
0 * 2.04
\end{array}=0.68
\end{gathered}
$$

SNP Pruning

```
plink --indep-pairwise <window> <step> <rsq> --bfile <data> --out <output>
```


SNP Pruning

$$
\text { plink --indep-pairwise } 83 \text { <rsq> --bfile <data> --out <output> }
$$

SNP Pruning

$$
\text { plink --indep-pairwise } 83 \text { <rsq> --bfile <data> --out <output> }
$$

SNP Pruning

```
plink --indep-pairwise 8 3 <rsq> --bfile <data> --out <output>
```


SNP Pruning

```
plink --indep-pairwise 8 3 <rsq> --bfile <data> --out <output>
```


SNP Pruning

```
plink --indep-pairwise 8 3 <rsq> --bfile <data> --out <output>
```


SNP Pruning

plink --indep-pairwise 83 <rsq> --bfile <data> --out <output>

Problems: assymetric; windows are fixed no. of SNP (not genetic distance)
Armidale Genetics Summer Course 2016 Module 2: PLINK \& Quality Control

(1) Introduction to PLINK

(2) Quality Control

Armidale Genetics Summer Course 2016 Module 2: PLINK \& Quality Control

Sources of bias in GWAS

Compared with other epidemiological studies, GWAS are subject to very few sources of bias or confounding

- genotypes rarely change in an individual's lifetime, and therefore there are few possibilities for a variable to affect both genotype and phenotype (i.e. confounding variables).

The two principle classes of confounders that can affect GWAS are:
(1) Population structure and cryptic relatedness - to be discussed in Module 4 this afternoon.
(2) Technical artefacts arising from sample handling or lab processing that are correlated with phenotype; confounding can arise in case-control studies if the case samples have been stored or analysed differently from the control samples.

Quality Control

Stringent quality control (QC) of both individuals and SNPs (possibly multiple rounds of each) can ensure high-quality genotypes and eliminate much of the effect, and statistical analyses can look for systematic differences between cases and controls that might reflect technical artefacts.

QC should be dataset-specific AND analysis-specific In my opinion, QC should be agnostic of phenotype

It's usually best to err in the direction of being cautious: if we have a lot of data, it is better to lose some than to be misled by erroneous data

Can check impact of QC by repeating analyses with alternative thresholds In some analyses, it is possible to flag QC outliers rather than remove them e.g., in single-SNP association testing, can include dodgy SNPs

Armidale Genetics Summer Course 2016 Module 2: PLINK \& Quality Control

Quality Control

I tend to perform individual QC first, then SNP QC.
For individuals, common metrics are

- missing rate (--missing),
- heterozygosity (--het) and
- check of recorded with genotyped sex (--check-sex)

I tend to compute these using pruned / decent-quality SNPs

For SNPs, common metrics are

- MAF (--freq),
- callrate (--missing) and
- Hardy-Weinberg Equilibrium (--hwe).

For binary traits, can also test for differential missingness (--test-missing)

Heterozygosity/HWE checks

Individuals: High homozygosity can reflect poor genotyping due to a poor-quality sample, or sample contamination generating additional variation. Extreme outliers for heterozygosity should be discarded.
SNPs: testing for HWE is routinely performed at each SNP because poor-quality genotyping can result in heterozygotes being called as homozygotes, generating more homozygotes than expected. However, deviation from HWE may also be due to processes related to disease, and in general it is best not to discard SNPs that are only mildly discordant with HWE, but only to flag them for extra checking if they do show association with phenotype. SNPs extremely discordant with HWE are usually removed: setting $P<10^{-6}$ as the threshold implies one SNP per million will be removed when HWE holds.

Missingness and MAF

In most genotyping systems a quality score is assigned to the genotype calls, and below a threshold no call is made and the genotype is reported as "missing". Overall rates of missingness need to be interpreted with care:

- lower quality thresholds lead to a lower rate of missingness but can allow more doubtful calls to be included in the analyses;
- higher thresholds increase the rate of missingness but ensure higher quality of the analysed SNPs.
Extreme outliers for missingness in either SNPs or individuals should be investigated and/or discarded:

SNPs: excessive missingness can reflect a problem assay,
Individuals: excessive missingness can reflect poor sample quality.
Screening on minor allele frequency (MAF) removes SNPs below a threshold, often around 1%. Low MAF SNPs are more susceptible to genotyping errors, and also they have low power to detect any association for a given effect size.
Armidale Genetics Summer Course 2016 Module 2: PLINK \& Quality Control

A Cautionary Tale: Markers for Longevity

PublMed.gov	PubMed		Sea
US National Libray of Medicine National Institutes of Heallh		Advanced	

Full text links
See comment in PubMed Commons below
Science, 2010 Jul 1;2010. doi: 10.1126/science.1190532. Epub 2010 Jul 1.

Science vews

Genetic signatures of exceptional longevity in humans.

Sebastiani P1', Solovieff N, Puca A, Hartley SW, Melista E, Andersen S, Dworkis DA, Wilk JB, Myers RH, Steinberg MH, Montano M, Baldwin CT, Peris TT.
\oplus Author information

Retraction in

Retraction. [Science. 2011]
Abstract
Healthy aging is thought to reflect the combined influence of environmental factors (lifestyle choices) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity (EL) in 1055 centenarians and 1267 controls. Using these data, we built a genetic model that includes 150 single-nucleotide polymorphisms (SNPs) and found that it could prodict EL with 77% accuracy in an indopendent sct of centenarians and controls. Further in silico analysis revealed that 90% of centenarians can be grouped into 19 clusters characterized by different combinations of SNP genotypes-or genetic signatures-of varying predictive value. The different signatures, which attest to the genetic complexity of EL, correlated with differences in the prevalence and age of onset of age-associated diseases (e.g., dementia, hypertension, and cardiovascular disease) and may help dissect this complex phenotype into subphenotypes of healthy aging.

Comment in

Editorial expression of concern. Science. 2010]
PMIT
http://classic.sciencemag.org/content/early/2011/07/20/science.1190532.long

Armidale Genetics Summer Course 2016 Module 2: PLINK \& Quality Control

A Cautionary Tale: Markers for Longevity

Science

SHARE

LETTERS

Retraction

Paola Sebastiani ${ }^{1,{ }^{,},}$, Nadia Solovieff ${ }^{1}$, Annibale Puca ${ }^{2}$, Stephen W. Hartley ${ }^{1}$, Efthymia Melista ${ }^{3}$, Stacy Montano ${ }^{3}$, Clinton T. Baldwin ${ }^{6,7}$, Thomas T. Perls ${ }^{4,}{ }^{\text {, }}$

+ Author Affiliations
\leftrightarrow "To whom correspondence should be addressed. E-mail: sebas@bu.edu (P.S.); thperls@bu.edu (T.T.P.)
Science 22 Jul 2011:
Vol. 333. Issue 6041, pp. 404
DOI: 10.1126/science.333.6041.404-a

Article

Info \& Metrics
eLetters

After online publication of our Report "Genetic signatures of exceptional longevity in humans" (1), we discovered that technical errors in the Illumina 610 array and an inadequate quality control protocol introduced false-positive single-nucleotide polymorphisms (SNPS) in our findings. An independent laboratory subsequently performed stringent quality control measures. ambiguous SNPs were then removed. and resultant genotvne data were validated

A Cautionary Tale: Markers for Longevity

nature

nature news home
comments on this story

Stories by subject

- Genetics
- Health and medicine
- Lab life

Stories by keywords

- Longevity
- Retraction
- Genome-wide association studies
- GWAS

This article elsewhere

- Blogs linking to this article

领 Add to Digg
[f Add to Focebook
相 Add to Newsvine

- Add to Del.icio.us
(5) Add to Twitter

news archive

Related stories

- Dwarfism may stymie diseases of old age 16 February 2011
- Ageing cells lose protein pumps 25 July 2010
- Genetic variations offer longer life 01 July 2010
- A pill for longer life? 08 July 2009

Natureiobs

Research and Teaching Positions Available in Estuarine, Coastal and Marine Research at the East China Normal University, Shanghai, China State Key Laboratory of Estuarine and Coastal State Key Laboratory of Estuarine and Coastal
Research
SKLEC), East China Normal University

Research and Teaching Positions Available in Estuarine, Coastal and Marine Research at the East China Normal University, Shanghai, China State Key Laboratory of Estuarine and Coastal Research (SKLEC), East China Normal University

* More science jobs
\rightarrow Post a job

Resources

Send to a Friend
Reprints \& Permissions

But shortly after the paper was published, a host of criticisms arose. In particular, geneticists noted that the control samples and the samples from centenarians were analysed in slightly different ways. Last November, Science editor Bruce Alberts published an editorial expression of concern ${ }^{3}$ and noted that the authors were working to address the issue.

Whether someone lives to their 100th birthday is determined by more complicated genetics than the retracted study suggested.

Tom Benitez/ MCT via Getty Images

Armidale Genetics Summer Course 2016 Module 2: PLINK \& Quality Control

A Cautionary Tale：Markers for Longevity

Genetic Signatures of Exceptional Longevity in Humans

Paola Sebastiani $⿴ 囗 ⿰ 丿 ㇄$ Stacy Andersen，Daniel A．Dworkis，Jemma B．Wilk，Richard H．Myers，Martin H．Steinberg，Monty Montano，［．．．］，

Thomas T．Perls
［ viow all］
Published：January 18， 2012 －DOI：10．1371／journal．pone． 0029848

Article	About the Authors	Metrics	Comments	Related Content
\approx				

Abstract

introduction
Results
Discussion
Materials and Methods Supporting Information

Acknowledgments
Author Contributions
References

Reader Comments（4）
Media Coverage（0）
Figures

Abstract

Like most complex phenotypes，exceptional longevity is thought to reflect a combined influence of environmental（e．g．，lifestyle choices，where we live）and genetic factors．To explore the genetic contribution，we undertook a genome－wide association study of exceptional longevity in 801 centenarians（median age at death 104 years）and 914 genetically matched healthy controls．Using these data，wo built a genetic model that includes 281 single nucleotide polymorphisms（SNPs）and discriminated between cases and controls of the discovery set with 89% sensitivity and specificity，and with 58% specificity and 60% sensitivity in an independent cohort of 341 controls and 253 genetically matched nonagenarians and centenarians（median age 100 years）．Consistent with the hypothesis that the genetic contribution is largest with the oldest ages，the sensitivity of the model increased in the independent cohort with older and older ages（ 71% to classify subjects with an age at death＞102 and 85% to classify subjects with an age at death＞105）．For further validation，we applied the model to an additional，unmatched 60 centenarians（median age 107 years） resulting in 78% sensitivity，and 2863 unmatched controls with 61% specificity．The 281 SNPs include the SNP rs2075650 in TOMM40／APOE that reached irrefutable genome wide significance（posterior probability of association＝1）and replicated in the independent cohort． Removal of this SNP from the model reduced the accuracy by only 1% ．Further in－silico analysis suggests that 90% of centenarians can be grouped into clusters characterized by different＂genetic signatures＂of varying predictive values for exceptional longevity．The correlation between 3 signatures and 3 different life spans was replicated in the combined replication sets．The different signatures may help dissect this complex phenotype into sub－phenotypes of exceptional longevity．

Article metrics are unavailable for recently published articles．

（1）CrossMark

Subject Areas

ADVERTISEMENT

PLOS ONE

Armidale Genetics Summer Course 2016 Module 2：PLINK \＆Quality Control

A Cautionary Tale: Markers for Longevity

Scholar
About 797 results (0.04 sec)

Articles
Case law
My library

Any time
Since 2016
Since 2015
Since 2012
Custom range...

Search

Sort hu relpyance

User profiles for paola sebastiani
 Paola Sebastiani
Boston University Verified email at bu.edu Cited by 6605
[HTML] Genetic signatures of exceptional longevity in humans P Sebastiani, N Solovieff, AT DeWan, KM Walsh... - PloS one, 2012 - dx.plos.org Abstract Like most complex phenotypes, exceptional longevity is thought to reflect a combined influence of environmental (eg, lifestyle choices, where we live) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association ... Cited by 167 Related articles All 32 versions Web of Science: 79 Cite Save More
[HTML] Genetic signatures of exceptional longevity in humans
P Sebastiani, N Solovieff, A Puca, SW Hartley... - Science, 2010 - sciencemag.org Abstract Healthy aging is thought to reflect the combined influence of environmental factors (lifestyle choices) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity (EL) in 1055 centenarians and ... Cited by 108 Related articles All 11 versions Web of Science: 14 Cite Save

Armidale Genetics Summer Course 2016 Module 2: PLINK \& Quality Control

Individual QC: where to draw the line?

Armidale Genetics Summer Course 2016 Module 2: PLINK \& Quality Control

Individual QC: where to draw the line?

Armidale Genetics Summer Course 2016 Module 2: PLINK \& Quality Control

Individual QC

No hard rules - can try and model distribution
Watch out for merged datasets
E.g., missingness $\sim \operatorname{Binomial}(n, p)$ or heterozygosity $\sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$
estimate parameters
compute p-value
exclude individuals with (say) $P<0.0001$

For more ideas, see Mike Weale's Chapter on Quality Control:
link.springer.com/content/pdf/10.1007\%2F978-1-60327-367-1_19.pdf

Individual QC

I decide by eye:

On a 2-D plot, can also exclude based on diagonal lines / ellipses
I DO NOT remove population outliers at this point

Individual QC

plink --check-sex --bfile <data> --out <output>

y-axis provides (estimate of) heterozygosity across X chromosome. Females (XX) will have (expected) heterozygosity 0 , males (XY) 1

I use a threshold of 0.8. PLINK stresses importance of pruning
I DO NOT exclude sex miss-matches
Armidale Genetics Summer Course 2016 Module 2: PLINK \& Quality Control

SNP QC

Typical thresholds: HWE $P>10^{-6}, \mathrm{CR}>0.95, \mathrm{MAF}>0.01$
At this point I remove population outliers (see later module)

