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Suggested Reading

Introduction to Quantitative Genetics; Falconer and Mackay (4th edition,
1996; Chapters 7-10)
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Data Files

This lecture includes a few examples in R. You can run these directly on
your Desktop (no need to log into Hong’s server) or personal laptop

To run these, you must first download the data file mod7_data.R

Having started R, you can then load these data in by typing
load("mod7_data.R")

> ls()

[1] "Galton" "kinmice" "pairs1" "pairs2" "squares1"

[6] "squares2" "Y1" "Y2"
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Covariance

Let X and Y be random variables

Their expected values (means) are E(X ) and E(Y )

The variance of X is
Var(X ) = E[X − E(X )]2 = E(X 2)− E(X )2

and the covariance of X and Y is
Cov(X ,Y ) = E[X -E(X )][Y -E(Y )] = E(XY )− E(X )E(Y )

Properties:

Cov(X ,X ) = Var(X )

Cov(A + B,C ) = Cov(A,C ) + Cov(B,C )

Var(A + B) = Var(A) + Var(B) + 2Cov(A,B)

Var(cA) = c2Var(A)
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Correlation

Covariance depends on units, so more usual to report correlation:

Cor(X ,Y ) = Cov(X ,Y )/Var(X ).5Var(Y ).5

Takes values between -1 and +1
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Linear Regression

Regress Y (dependent variable) on X (independent / explanatory variable)
using the linear model

Y = α + βX

Want to see whether change in X effects change in Y (β 6= 0), and if so,
whether X has a positive (β > 0) or negative (β < 0) influence and how
large.

Solve by taking covariance of both sides with X :

Cov(Y ,X ) = Cov(α,X ) + βCov(X ,X )

Covariance between r.v. and constant is zero

∴ β̂ = Cov(X ,Y )/Var(X )

or β̂2 = Cor(X ,Y )2 × Var(Y )/Var(X )
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Why are we Interested in Heritability?

Heritability is a fundamental property in quantitative genetics

It indicates to what extent genetic similarities imply phenotypic similarities

Important for human diseases:
determines how well we can predict individual risk

Important in plant & animal genetics:
determines potential of selective breeding

Often interested in broad comparisons, or in demonstrating a trait has
positive heritability
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Types of Phenotypes

The two major trait types are:

Quantitative
phenotypes are continuous measurements in the real interval
i.e., take values within (−∞,∞)

Binary / case-control
phenotypes take one of two values
typically recorded as 1 (case) and 0 (control)

Will focus on quantitative traits
but most ideas can be applied to binary traits

Other trait types include count and survival data
methods for analysing these are more complicated
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Definition of Heritability

Broad sense heritability considers all genetic contributions

Phenotype = Genetics + Environmental Noise

Y = G + E

Var(Y ) = Var(G ) + Var(E ) (assumes no G × E interactions)

Broad sense heritability: H2 = Var(G )/Var(Y )

Narrow sense heritability considers only additive contributions

Phenotype = Additive Genetics + Environmental Noise

Y = A + E

Var(Y ) = Var(A) + Var(E ) (assumes no A× E interaction)

Narrow sense heritability: h2 = Var(A)/Var(Y )
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Definition of Heritability

Can divide the phenotype further. E.g.,

Phenotype = Additive + Dominant + Common Environment + Noise

Y = A + D + C + E

Var(Y ) = Var(A) + Var(D) + Var(C ) + Var(E )

Broad sense heritability: H2 = (Var(A) + Var(D))/Var(Y )

Narrow sense heritability: h2 = Var(A)/Var(Y )

We typically focus on narrow-sense heritability
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Definition of Heritability

For example, the variance of human height is about 20cm

160 165 170 175 180 185

Total Variation

Of which about 16cm is due to genetics, 4cm due to other factors (noise)
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Therefore, the heritability of height is 16/20 = 80%
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Some Heritabilities of Human Traits

Environment

Genetics

Human Height Schizophrenia Obesity

Crohn's Disease Bipolar Disorder Epilepsy
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Example: Galton height data

> summary(Galton)

father child

Min. :62.22 Min. :61.70

1st Qu.:67.17 1st Qu.:66.20

Median :68.58 Median :68.20

Mean :68.31 Mean :68.09

3rd Qu.:69.99 3rd Qu.:70.20

Max. :74.94 Max. :73.70

> var(Galton[,1])

[1] 6.389121

> var(Galton[,2])

[1] 6.340029
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Example: Galton height data

> plot(Galton[,1],Galton[,2])

> plot(Galton[,1]+rnorm(928,0,.1),Galton[,2]+rnorm(928,0,.1),

xlab="Father’s Height",ylab="Child’s Height")

> abline(v=mean(Galton[,1]),col=2,lty=3,lwd=3)

> abline(h=mean(Galton[,2]),col=2,lty=3,lwd=3)

> abline(a=0,b=1,col=2,lty=3,lwd=3)
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Example: Galton height data

> lm(Galton[,2]~Galton[,1])

Call:

lm(formula = Galton[, 2] ~ Galton[, 1])

Coefficients:

(Intercept) Galton[, 1]

36.872 0.457

We are fitting the model C = α + βF , where F contains fathers’ heights,
C contains childrens’ heights. We estimate α = 36.9 (intercept) and
β = 0.46 (slope/gradient).

Turns out, 2× 0.46 = 0.92 is an estimate of heritability; will see why later
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Ways to measure heritability

There are many possible study designs, but the basic principle is to see
whether closely related individuals tend to have similar phenotypes

If close relatives have more similar phenotypes ⇒ higher heritability

1 - The study can either focus on collecting only one (or two) types of
relations; e.g., recruiting father-son pairs, or only twins

Estimates of heritability follow from The Covariance Equation

2 - The study can recruit entire families

There will be a range of different relationships, so we estimate heritability
using The Mixed Model
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Measuring relatedness

Relatedness can be measured via θ, r and f , the coefficients of coancestry
(or kinship), of relatedness and of inbreeding

The coefficient of coancestry θ between two individuals is the probability
that two homologous alleles, one chosen at random from each individual,
are identical by descent (IBD) from a known common ancestor. If
(k0, k1, k2) denote the fraction of the genome “IBD0”, “IBD1” or “IBD2”

The coefficient of relatedness r is twice the coefficient of kinship

The coefficient of inbreeding (or of consanguinity) of an individual is the
coefficient of kinship of their parents; an individual is outbred if their
parents are unrelated

David will discuss these in more detail
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Identity by Descent

  

FatherMother
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Identity by Descent

  

FatherMother

DaughterSon

Each child inherits a set of maternal
chromosomes and a set of paternal
chromosomes

Matching colours indicate the son
and daughter are IBD for that position

Alleles will match at positions of dif-
ferent colours, simply due to chance
(not common ancestry)

Let (k0, k1, k2) be expected fractions
IBD0, IBD1 and IBD2
Then θ = k1/4 + k2/2

Armidale Genetics Summer Course 2016 Module 7: Traditional Heritability Analysis



Identity by Descent

  

FatherMother

DaughterSon

IBD1

IBD1

IBD1

IBD2

IBD0

Each child inherits a set of maternal
chromosomes and a set of paternal
chromosomes

Matching colours indicate the son
and daughter are IBD for that position

Alleles will match at positions of dif-
ferent colours, simply due to chance
(not common ancestry)

Let (k0, k1, k2) be expected fractions
IBD0, IBD1 and IBD2
Then θ = k1/4 + k2/2
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Identity by Descent

  

Mother SonFather Daughter

 A  B  C  D
Allele picked from Probability common ancestor (same colour)

A & C 1/2
A & D 0
B & C 0
B & D 1/2

Average 1/4

Therefore, full-sibs also have θ = 1/4 and r = 1/2
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Measuring relatedness

Relatedness can be measured via θ, r and f , the coefficients of coancestry
(or kinship), of relatedness and of inbreeding

The coefficient of coancestry θ between two individuals is the probability
that two homologous alleles, one chosen at random from each individual,
are identical by descent (IBD) from a known common ancestor. If
(k0, k1, k2) denote the fraction of the genome “IBD0”, “IBD1” or “IBD2”

The coefficient of relatedness r is twice the coefficient of kinship

The coefficient of inbreeding (or of consanguinity) of an individual is the
coefficient of kinship of their parents; an individual is outbred if their
parents are unrelated

David will discuss these in more detail
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Common coefficients

Relationship (S ,T ) k0, k1, k2 θ r

MZ twins (0,1) 0, 0, 1 1/2 1
DZ twins / Full-sibs (2,2) 1/4, 1/2, 1/4 1/4 1/2
Parent-child (1,1) 0, 1, 0 1/4 1/2
Half-sibs (2,1) 1/2, 1/2, 0 1/8 1/4
Uncle-niece (3,2) 1/2, 1/2, 0 1/8 1/4
Grandparent-grandchild (2,1) 1/2, 1/2, 0 1/8 1/4
Cousins (4,2) 3/4, 1/4, 0 1/16 1/8

Handy formula: if we define each relationship by S , its degree (the number
of links (meioses) between the pairs) and T , the number of common
ancestors, then θ = T × 0.5S+1
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The Covariance Equation

Suppose the phenotype model Y = A + D + C + E

(additive and dominant effects, common environment and noise)

If Individuals i and j have IBD vector (k0, k1, k2), then common to assume:

Cov(Yi ,Yj) = rVar(A) + k2Var(D) + γVar(C ),

= 2θVar(A) + k2Var(D) + γVar(C ),

where γ = 1 if the individuals share environment (else γ = 0)

Proof complicated (see end or Intro to QG), but can check makes sense:

If unrelated, Cov(Yi ,Yj) = 0;

If MZ Twins, Cov(Y1,Yj) = Var(A) + Var(D) + Var(C );

For DZ Twins, get Cov(Y1,Yj) = Var(A)/2 + Var(D)/4 + Var(C )
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Using the Covariance Equation to Estimate Heritability

We want to estimate h2 = Var(A)/Var(Y )

It’s fairly easy to measure Var(Y )

Can estimate from any randomly picked individuals

We use the covariance equation to estimate Var(A)

If we measure the covariance between pairs of individuals, then The
Covariance Equation tells us how this value is related to Var(A)

The Covariance Equation can also be used for binary traits (see end)
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Parent-child studies

Suppose we have heights for fathers F and children C

1 - Estimate Var(Y )

Can get this from either Var(F ) or Var(C )

For Galton data, Var(F ) = 6.4 (inches), while Var(C ) = 6.3

2 - Estimate Var(A)

Putting r = 0.5, k2 = 0 and γ = 0 into the covariance equation gives
Cov(F ,C ) = Var(A)/2

For these data, Cov(F,C) = 2.9 (inches)

so our estimate of Var(A) is 5.8
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Parent-child studies

Suppose we have heights for fathers F and children C

3 - Estimate h2 = Var(A)/Var(Y )

Therefore, our estimate of heritability is 2Cov(F ,C)
Var(F ) = 5.8/6.4 = 0.91

When regressing C on F, the aim is to solve C = α + βF

the least squares estimate of β is Cov(F ,C )/Var(F )

Therefore, with parent-child data, you can estimate h2 simply by
regressing children’s height on father’s height (and multiplying by two)
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MZ twins

Let M1 and M2 be MZ twins (r = 1, k2 = 1, γ = 1)

The covariance equation gives Cov(M1,M2) = Var(A) +Var(D) +Var(C )

If we assume Var(D) = Var(C ) = 0

then Cov(M1,M2) = Var(A)

Therefore Cov(M1,M2)/Var(M1) is an estimate of h2

Probably OK to suppose no dominance contributions, but assuming no
effects of shared environment is unlikely to be accurate ...
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MZ and DZ Twins: The Twin Method / ACE Model

Let D1 and D2 be DZ twins (r = 0.5, k2 = 0.25, γ = 1)

The covariance equations are

Cov(M1,M2) = Var(A) + Var(D) + Var(C )

Cov(D1,D2) = Var(A)/2 + Var(D)/4 + Var(C )

If we assume Var(D) = 0, we get:

Cov(M1,M2) = Var(A) + Var(C )

Cov(D1,D2) = Var(A)/2 + Var(C )

Therefore, 2[Cov(M1,M2)− Cov(D1,D2)] is an estimate of Var(A)

If we divide through by Var(Y)=Var(M1)=Var(M2)=Var(D1)=Var(D2),

we find that 2[Cor(M1,M2)− Cor(D1,D2)] is an estimate of h2
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MZ and DZ Twins: The Twin Method / ACE Model

So to estimate heritability using the twin methods, simply compute
correlation between MZ twins, then correlation between DZ twins, then
twice the difference is an estimate of h2

If the difference is zero, then all similarity must be due to shared
environment

Meanwhile, 2 Cor(D1,D2) - Cor(M1,M2) provides an estimate of Var(C)
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Some Caveats

All heritability values are estimates

so should be accompanied by standard errors / confidence interval

Larger sample size (or higher sample relatedness) ⇒ higher precision

Important to realise that heritability is sample-specific; it depends on
sample make-up and population / environment considered.

h2 for height lower in poor societies reflecting limited access to food
& medical care

h2 for IQ is low in infants and rises with age, presumably due to
changes in environmental effects.
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More Caveats

An estimate’s accuracy depends on accuracy of the model assumptions

Twin studies have consistently estimated high genetic contributions for a
wide range of phenotypes. Some researchers are suspicious of these high
estimates.

We have been ignoring cross terms and assuming additivity

We have made very simple assumption about environment: either entirely
shared or absent. Environment may differ between MZ and DZ twins, e.g.
different parental attitude or in utero environment (DZ twins mistaken for
MZ were found to resemble MZ more than DZ twins in phenotype
concordances for psychological traits

Gunderson et al., Twin Res. Hum. Genet. (2006)

Twins reared apart (adoption studies) can also be used to minimise the
effect of common sibling environment
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Limitations of Using the Covariance Equation

Can be difficult to recruit enough pairs of the desired type (e.g., twins, or
father-son pairs

This approach is very wasteful, as it excludes other family members

Given related pairs of multiple types, in theory, we could perform separate
analyses and combine results

But the more elegant solution is to use the Mixed Model

The Mixed Model generalizes the covariance equation, allowing us to
simultaneously analyse multiple types of relatedness
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Mixed model

The mixed model takes the form: Cov(Y )

 =

 K

Var(A) +

 I

Var(E )

K is (twice) the kinship matrix; each element of K indicates the coefficient
of relatedness between a pairs of individuals

So if individuals 1 and 2 are parent-child, K1,2 = 0.5; if individuals 3 and 4
are twins, K3,4 = 1; if individuals 1 and 3 are unrelated, K1,3 = 0, etc.

I is an identity matrix (1 on diagonal, 0 otherwise)
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Matrices

Matrices allow us to store many equations in an efficient manner

E.g.,† [
7 −2
−6 1

]
=

[
−3 2
−5 8

]
a +

[
3 5
8 −4

]
b,

stores 4 separate equations:

7 = −3a +3b

−6 = −5a +8b

−2 = 2a +5b

1 = 8a −4b

†for demonstration only, these equations don’t make sense mathematically!
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Mixed model explained

The model: Cov(Y) = K Var(A) + I Var(E)


Var(Y1) Cov(Y1, Y2) Cov(Y1, Y3) . . . Cov(Y1, Yn)

Cov(Y2, Y1) Var(Y2) Cov(Y2, Y3) . . . Cov(Y2, Yn)
Cov(Y3, Y1) Cov(Y3, Y2) Var(Y3) . . . Cov(Y3, Yn)

.

.

.
. . .

.

.

.
Cov(Yn, Y1) Cov(Yn, Y2) Cov(Yn, Y3) . . . Var(Yn)



=


1 K1,2 K1,3 . . . K1,n

K2,1 1 K2,3 K2,n

.

.

.
. . .

.

.

.
Kn,1 Kn,2 K2,3 . . . 1

Var(A) +


1 0 0 . . . 0
0 1 0 0
0 0 1 0

.

.

.
. . .

.

.

.
0 0 0 . . . 1

Var(E)

The mixed model represents a collection of n +n C2 = n × (n + 1)/2
equations, each describing the covariance between a pair of individuals:

Cov(Yi ,Yj) =

{
Ki ,jVar(A) when i 6= j

Var(A) + Var(E ) when i = j
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Instructions for using the mixed model

1 - collect individuals for one or more families of any relationship types

2 - record phenotypes Y

3 - construct kinship matrix K

Using software, solve to find estimate of Var(Y), Var(A) and Var(E)

The estimate of h2 is Var(A)/Var(Y )

The usual method of solving is called REML; this finds Var(Y), Var(A)
and Var(E) which maximise the REstricted Maximum Likelihood

Many software exist for this (e.g., ASREML, GCTA, LDAK)

Will cover GCTA and LDAK in later modules
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Kinship matrix example 1

Suppose we have 3 parent-child pairs, (P1 & C1, P2 & C2, P3 & C3)

K =



1 1/2 0 0 0 0
1/2 1 0 0 0 0

0 0 1 1/2 0 0
0 0 1/2 1 0 0
0 0 0 0 1 1/2
0 0 0 0 1/2 1


(Individuals P1 C1 P2 C2 P3 C3)

Kinship is zero for pairs when relatedness not known
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Kinship matrix example 2

Suppose we have a parent-child pair (P & C), two MZ twins (M1 & M2)
and two DZ twins (D1 & D2). The corresponding kinship matrix is

K =



..... .... ..... .... ..... ....

..... .... ..... .... ..... ....

..... .... ..... .... ..... ....

..... .... ..... .... ..... ....

..... .... ..... .... ..... ....

..... .... ..... .... ..... ....


(Individuals P C M1 M2 D1 D2)

(Because we have siblings, we should include common environment Var(C)
in the mixed model: Cov(Y) = K Var(A) + C Var(C) + I Var(E))
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Kinship matrix example 2

Suppose we have a parent-child pair (P & C), two MZ twins (M1 & M2)
and two DZ twins (D1 & D2). The corresponding kinship matrix is

K =



1 1/2 0 0 0 0
1/2 1 0 0 0 0

0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1/2
0 0 0 0 1/2 1


(Individuals P C M1 M2 D1 D2)

Because we have siblings, we could include common environment Var(C)

in the mixed model: Cov(Y) = K Var(A) + γ Var(C) + I Var(E)

where the matrix γ contains pairwise shared environ. coefficients
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Arrays and Matrices in R

Reminder: to construct arrays and matrices in R, use array() and matrix()

array(dim=3)

[1] NA NA NA

array(1,dim=3);array(c(1,2,3),dim=3);array(1:3,dim=3)

array(1:2,dim=3)

[1] 1 2 1

matrix(nrow=2,ncol=3)

[,1] [,2] [,3]

[1,] NA NA NA

[2,] NA NA NA

matrix(1:6,nrow=2,ncol=3);matrix(1:6,nrow=2)

diag(2)

[1,] 1 0

[2,] 0 1

diag(3,2);diag(c(1,2,3));diag(c(1,2),6)

www.r-tutor.com/r-introduction/matrix

www.r-tutor.com/r-introduction/matrix/matrix-construction
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Construct this matrix in R

K =



1 1/2 0 0 0 0
1/2 1 0 0 0 0

0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1/2
0 0 0 0 1/2 1


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Construct this matrix in R

Can do in one step:

> kin1=matrix(c(1,.5,0,0,0,0,.5,1,0,0,0,0,

0,0,1,1,0,0,0,0,1,1,0,0,

0,0,0,0,1,.5,0,0,0,0,.5,1),byrow=T,nrow=6)

Or multiple steps, by first allocating an identity matrix

> kin1=diag(6)

then using square brackets to change elements

> kin1[1,2]=.5; kin1[3,4]=1

and so on
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More general matrix construction

> pairs1

Ind1 Ind2 Relatedness

[1,] 1 2 0.5

[2,] 3 4 1.0

[3,] 5 6 0.5

#fill kin1 using a loop - here is an example loop

>for(row in 1:3)

{

i=pairs1[row,1];

j=pairs1[row,2];

rel=pairs1[row,3]

cat(paste("Individuals ",i," & ",j,", Relatedness: ",

rel,"\n",sep=""))

}
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Construct this matrix in R

> kin1=diag(6)

> for(row in 1:3)

{

i=pairs1[row,1];

j=pairs1[row,2];

rel=pairs1[row,3]

kin1[i,j]=rel;

kin1[j,i]=rel

}

Now make the kinships corresponding to pairs2

Hint: use nrow() to get number of rows, max() to find out how many
individuals
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Construct this matrix in R

> kin2=diag(100)

> for(row in 1:nrow(pairs2))

{

i=pairs2[row,1];j=pairs2[row,2];rel=pairs2[row,3]

kin2[i,j]=rel;kin2[j,i]=rel

}

#see what it looks like

> up=which(upper.tri(kin2,diag=F)) #plot only upper diagonal terms

> hist(kin2[up],n=100,xlab="Relatedness",axes=F)

> axis(1,at=.5^(0:5),lab=c(1,"1/2","1/4","1/8","1/16","1/32"))

> axis(2)

#plot only positive (upper diagonal) terms

> pos=intersect(up,which(kin2>0))

> hist(kin2[pos],n=100,xlab="Relatedness",axes=F)

> axis(1,at=.5^(0:5),lab=c(1,"1/2","1/4","1/8","1/16","1/32"))

> axis(2)
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Solving the mixed model

The proper approach for estimating Var(A) and Var(E) is to use REML,
but an alternative (Haseman Elston regression) is to regress across all
pairs the squared difference between the two phenotypes (Z) on the
kinship value (X). Minus twice the gradient is an estimate of Var(A)

1 - collect n individuals
2 - record phenotypes Y
3 - construct K
4 - for each pair of individuals, i & j, record relatedness (X = Ki ,j) and
squared difference in phenotypes (Z = (Yi − Yj)

2)
5 - regress Z on X (using model Z = α + βX )

α has expected value 2 Var(Y), β has expected value -2 Var(A)
(proof at end)

so −β/α is an estimate of h2
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Mice example

#kinmice is a kinship matrix for 100 highly related mice

> hist(as.numeric(kinmice), n=100)

#Y1 and Y2 are two phenotypes

#squares1 and squares2 contain the squared differences

#hint, to make these, could use a loop within a loop

> squares1=NULL;squares2=NULL

> for(i in 1:99)

{

for(j in (i+1):100)

{

squares1=rbind(squares1,c(i,j,kinmice[i,j],(Y1[i]-Y1[j])^2))

squares2=rbind(squares2,c(i,j,kinmice[i,j],(Y2[i]-Y2[j])^2))

}}

(Ignore for moment that kinships are continuous)
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Which trait is most heritable?

> par(mfrow=c(1,2))

> plot(squares1[,3],squares1[,4],xlab="Relatedness",

ylab="Squared Phenotype Difference",main="Trait 1")

> plot(squares2[,3],squares2[,4],xlab="Relatedness",

ylab="Squared Phenotype Difference",main="Trait 2")
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Hard to tell? Add regression lines

> reg1=lm(squares1[,4]~squares1[,3])

> reg2=lm(squares2[,4]~squares2[,3])

> plot(squares1[,3],squares1[,4],main="Trait 1")

> abline(reg1,col=2,lwd=3)

> plot(squares2[,3],squares2[,4],main="Trait 2")

> abline(reg2,col=2,lwd=3)
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Still can’t tell? Zoom in

> plot(squares1[,3],squares1[,4],main="Trait 1",ylim=c(0,5))

> abline(reg1,col=2,lwd=3)

> plot(squares2[,3],squares2[,4],main="Trait 2",ylim=c(0,5))

> abline(reg2,col=2,lwd=3)
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Estimate h2 by Haseman Elston Regression

> reg1=lm(squares1[,4]~squares1[,3])

> reg1

Call:

lm(formula = squares1[, 4] ~ squares1[, 3])

Coefficients:

(Intercept) squares1[, 3]

2.043 -1.223

> reg1$coeff[1]

(Intercept)

2.043432

> -reg1$coeff[2]/reg1$coeff[1]

0.5986112

> -reg2$coeff[2]/reg2$coeff[1]

0.05966459
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Problems with pedigree-based heritability estimation

Traditional heritability analyses require only pedigree and phenotypic data.
But relying on pedigree information is problematic:

Estimates of heritability depend on the pedigree information available

There is no such thing as a complete pedigree

Discovering a new common ancestor will change estimates

In absence of information we must assume individuals “unrelated”

Moreover, even a “complete” pedigree will provide only expected IBD
fractions / coefficients of kinships. Now we have full-genome SNP data,
we can measure IBD exactly
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Theoretical distribution of θ

Full-siblings are expected to have θ = −.25 (r = 0.5). But actual fraction
of genome they share could be 25% higher or 25% less

From Assumption-Free Estimation from Genome-Wide Identity-by-Descent
Sharing between Full Siblings. PLoS Gen. 2006
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Allelic Correlations

Now genome-wide genotyping of samples is widespread; we can easily
record genotypes (0,1,2 allele counts) for over 1M SNPs.

Therefore, we now construct K using allelic correlations, which measure
genomic similarity between pairs of individuals. These look similar to
coefficients of relatedness (higher values indicate closer relatedness) but
are continuous-valued (rather that restricted to 1s, 1/2s, 1/4s, etc), and
while most values are within 0 and 1, values can lie outside (a negative
value means two individuals are less genetically similar than two individuals
picked at random)

(The mice kinships a few slides ago were estimated by allelic correlations)
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Allelic Correlations

Suppose the matrix S (size n x N) contains for n individuals the genotypes
for each of N SNPs. First, for each SNP, we standardise the genotypes so
they have mean zero and variance one

Then we use XXT/N (“allelic correlations”) as an estimator of relatedness
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Allelic Correlations

XXT/N measures pairwise IBS (identity by state) how similar the
genotype values are for each pair of individuals

For example, to calculate K1,2, correlations between individuals 1 and 2,
you can imagine laying their two genomes side by side
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Using actual relatedness improves accuracy

By measuring actual relatedness, rather than relying on expected
relatedness, we can obtain (slightly) more precise estimate of h2

Purple boxes are estimates using expected relatedness; red use actual
relatedness (green, blue use less accurate measures of actual relatedness)
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Formal Proof for Additive Covariance

Suppose the model Yi = Ai + Di + Ei

= Ai (Gi ) + Di (Gi ) + Ei

where Gi contains genotypes of Individual i

Cov(Yi ,Yj) = Cov(Ai + Di + Ei ,Aj + Dj + Ej)
= Cov(Ai ,Aj) + Cov(Di ,Dj)

Must calculate Cov(Ai ,Aj) and Cov(Di ,Dj); can do separately
Use the identity
Cov(Ai ,Aj) =

∑2
j=0 P(IBD = j)[E(AiAj |IBD = j)− E(Ai )E(Aj)]

=
∑2

j=0 kj [E(AiAj |IBD = j)− E(A)2]

Suppose a single causal SNP with µ = 0, so the SNP genotypes (0, 1, 2)
have effects (-a, d, a) and minor (major) allele frequency p (q = 1− p).

Armidale Genetics Summer Course 2016 Module 7: Traditional Heritability Analysis



Formal Proof for Additive Covariance

E(Ai ) = E(Aj ) = E(A) = a(p2 − q2) = a(p − q)

Var(Ai ) = Var(Aj ) = Var(A) = a2(p2 + q2)− a2(p − q)2 = 2a2pq

IBD=0 Gj (Aj )
Gi P Ai 0 (-a) 1 (0) 2(a)

0 q2 −a q2 2pq p2

1 2pq 0 q2 2pq p2

2 p2 a q2 2pq p2

E(Ai , Aj |IBD = 0)

= q2q2a2 − q2p2a2 − p2q2a2 + p2p2a2

= a2(q4 − 2p2q2 + p4) = a2(p2 − q2)2

= a2(p − q)2

E(Ai , Aj |IBD = 0)− E(A)2 = 0

IBD=1 Gj (Aj )
Gi P Ai 0 (-a) 1 (0) 2(a)

0 q2 −a q p 0
1 2pq 0 q/2 1/2 p/2

2 p2 a 0 q p

E(Ai , Aj |IBD = 1)

= q2qa2 + p2pa2

= a2(p3 + q3)

E(Ai , Aj |IBD = 1)− E(A)2

= a2(p3 + q3 − (p − q)2) = pq = V (Ai )/2

IBD=2 Gj (Aj )
Gi P Ai 0 (-a) 1 (0) 2(a)

0 q2 −a 1 0 0
1 2pq 0 0 1 0

2 p2 a 0 0 1

E(Ai , Aj |IBD = 2)

= q2a2 + p2a2

= a2(p2 + q2) E(Ai , Aj |IBD = 2)− E(A)2

= a2(p2 + q2 − (p − q)2) = 2pq = V (Ai )

Cov(Ai , Aj ) = k0 × 0 + k1Var(A)/2 + k2Var(A) = 2θVar(A)
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The Covariance Equation for Binary Traits

We can use the same strategy for binary traits.

Let Y = 0 indicate a control (healthy individual), Y = 1 a case (diseased
individual)

The prevalence of the disease (population average) is
K = E(Y ) = P(Y = 1)

We still use the same model for covariance:
Cov(Yi ,Yj) = 2θVar(A) + k2Var(D) + γVar(C )

Now, Cov(Yi ,Yj) = E(YiYj)− K 2

= P(Yi = 1,Yj = 1)− K 2
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Recurrence risk ratio

Given a diseased individual, the recurrence risk ratio λr is the probability a
family member with relationship r is also diseased.

Most common is sibling relative risk, λS

Cancer 1st Degree 2nd Degree 3rd Degree 4th Degree 5th Degree
Breast 2.02 1.36 1.21 1.13 1.05
Prostate 1.89 1.36 1.19 1.10 1.10
Lung 2.00 1.39 1.10 1.02 1.04
Kidney 2.30 1.31 1.30 1.08 1.11

Amundadottir et al. PLoS Med. (2004)
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Covariance between individuals

λr =
P(Yi = 1|Yj = 1)

K

=
P(Yi = 1,Yj = 1)

K 2

Leads to:

λr =
Cov(Yi ,Yj) + K 2

K 2

= 1 +
2θVar(A) + k2Var(D) + γVar(C )

K 2

When k2 = 0 and γ = 0:
λr = 1 + r × constant

So with every extra degree of relationship, distance from 1 halves
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Proving Haseman Elston Regression

Construct the vectors Z = (Yi − Yj)
2 and X = Ki ,j . Each has length nC2

E(Z ) = E((Yi − Yj)
2)

= E(Y 2
i + Y 2

j − 2YiYj)

Without loss of generality, assume E(Y ) = 0, then

E(Z ) = Var(Y ) + Var(Y )− 2Cov(Yi ,Yj)

= 2Var(Y )− 2Ki ,jVar(A)

Therefore, when fitting the model Z = α + βX ,

α = 2Var(Y ) and β = −2Var(A)

Therefore, −α/β is an estimate of h2 = Var(A)/Var(Y )
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