

SNP-based Heritability Analysis with Unrelated Individuals

Armidale Genetics Summer Course 2016

Recap of Module 7

The focus is on estimating $h^2 = Var(A)/Var(Y)$, the narrow-sense (additive) heritability. Var(Y) is in general easy to estimate

We explained how to estimate h^2 from (a single type of) related pairs: the Covariance Equation explains how phenotypic covariance ($Cov(Y_i, Y_j)$) is related to additive variance (Var(A))

When we have multiple types of related pairs, a generalization of the Covariance Equation is the Mixed Model. Key to this analysis is construction of the kinship matrix \mathbf{K} , which provides pairwise genetic similarities

Traditionally, K_{ij} represented expected relatedness (twice IBD) between Individuals *i* and *j* based on the known pedigree. When SNP data are available, can instead use actual relatedness / genetic similarity

Armidale Genetics Summer Course 2016

Allelic Correlations

Suppose the matrix S (size n x N) contains for n individuals the genotypes for each of N SNPs. First, for each SNP, we standardise the genotypes so they have mean zero and variance one[†]

0	2		2		3	.8	 1.2
2	2		1	Subtract column means	2.6	.8	 .3
:	÷		:		:	÷	:
1	1		0		1.3	2	 6
S						Х	

Then we use $\mathbf{K} = \mathbf{X}\mathbf{X}^T / N$ ("allelic correlations") as an estimator of genetic similarities

[†]as discussed in Module 8, other standardizations can be used

Armidale Genetics Summer Course 2016

Allelic Correlations

 $\mathbf{X}\mathbf{X}^{T}/N$ measures pairwise IBS (identity by state) how similar the genotype values are for each pair of individuals

For example, to calculate $K_{1,2}$, correlations between individuals 1 and 2, you can imagine laying their two genomes side by side, then examining for each SNP in turn, how similar their genotypes

Allelic Correlations

 $\mathbf{X}\mathbf{X}^{T}/N$ measures pairwise IBS (identity by state) how similar the genotype values are for each pair of individuals

For example, to calculate $K_{1,2}$, correlations between individuals 1 and 2, you can imagine laying their two genomes side by side, then examining for each SNP in turn, how similar their genotypes

c	0	2	2	1	2
5,					
S	2	2	0	1	1
Effect on K ₁₂	-	+	-	+	
X ₁	3	.8	.9	.8	1.2
X ₂	2.6	.8	5	1.6	.3
K ₁₂ =	(78	+.64	45	+1.28	+.36) /N

Armidale Genetics Summer Course 2016

Using actual relatedness improves accuracy

By measuring actual genetic similarity, rather than relying on expected similarity, we can obtain more precise estimate of h^2

Purple boxes are estimates using expected relatedness; red use actual relatedness (green, blue use less accurate measures of actual relatedness)

Even bigger benefit - we can use "unrelated" individuals

Armidale Genetics Summer Course 2016

Armidale Genetics Summer Course 2016

Using unrelated individuals

In 2010, Jian Yang, Peter Visscher, et al. considered estimating heritability using only "unrelated individuals"

Why? Estimates of h^2 become less precise as number of close relatives in the sample decreases

However, using unrelated individuals has three key advantages:

Less of a problem that we ignore effects of common environment (and dominance / epistasis)

Can use GWAS data, so sample sizes are much larger than using family data

The resulting estimates, referred to as h_{SNP}^2 , are estimates of "SNP heritability", the total variance explained by all SNPs

This area is referred to as **SNP-based heritability analysis**. The major software is GCTA; our software is LDAK

From about 2006 - 2012 human geneticists were increasingly referring to the missing heritability problem

Maher, Nature news feature (2008)

Armidale Genetics Summer Course 2016

Although GWAS had found a number of associations for a wide range of phenotypes, the proportion of variance explained by the associations for any particular phenotype (h_{GWAS}^2) was typically slight compared to the phenotype's heritability

The classic example was height. The heritability is about 80% In 2008, 20 associations had been found, but these explained only a few percent of variation (Genome-wide association analysis identifies 20 loci, Nature Genetics - next slide)

A 2014 study by the GIANT consortium increased the number of loci to > 100, but h_{GWAS}^2 remains only 10% (Defining the role of common variation ... in human height, Nature Genetics)

Display Settings: V Abstract

Send to:

Nat Genet. 2008 May;40(5):575-83. doi: 10.1038/ng.121. Epub 2008 Apr 6.

Genome-wide association analysis identifies 20 loci that influence adult height.

Weedon MN¹, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, Freathy RM, Perry JR, Stevens S, Hall AS, Samani NJ, Shields B, Prokopenko I, Farrall M, Dominiczak A: Diabetes Genetics Initiative: Wellcome Trust Case Control Consortium, Johnson T, Bergmann S, Beckmann JS, Vollenweider P, Waterworth DM, Mooser V, Palmer CN, Morris AD, Ouwehand WH; Cambridge GEM Consortium, Johnson T, Bergmann S, Beckmann JS, Vollenweider P, Wheeler E, Soranzo N, Inouve M, Wareham NJ, Caulfield M, Munroe PB, Hatterslev AT, McCarthy MI, Fraviling TM.

Author information

Abstract

Adult height is a model polygenic trait, but there has been limited success in identifying the genes underlying its normal variation. To identify genetic variants influencing adult human height, we used genome-wide association data from 13,665 individuals and genotyped 39 variants in an additional 16,482 samples. We identified 20 variants associated with adult height (P < 5 x 10(-7), with 10 reaching P < 1 x 10(-10)). <u>Combined, the 20 SNPs</u> explain approximately 3% of height variation, with a approximately 5 cm difference between the 6.2% of people with 17 or fewer 1all' alleles compared to the 5.5% with 27 or more 1all' alleles. The loci we identified implicate genes in hedgehog signaling (HH, HHP, PTCH1), extracellular matrix (EFEMP1, ADAMTSL3, ACAN) and cancer (CDK6, HMGA2, DLEU7) pathways, and provide new insights into human growth and developmental processes. Finally, our results provide insights into the genetic architecture of a classic quantitative trait.

Armidale Genetics Summer Course 2016

Trait or Disease	h ² Pedigree Studies	h ² GWAS Hits ^a
Type 1 diabetes	0.9 ⁹⁸	0.6 ^{99 ,c}
Type 2 diabetes	0.3-0.6 ¹⁰⁰	0.05-0.1034
Obesity (BMI)	0.4-0.6 ^{101,102}	0.01-0.0236
Crohn's disease	0.6-0.8 ¹⁰³	0.111
Ulcerative colitis	0.5 ¹⁰³	0.05 ¹²
Multiple sclerosis	0.3-0.8 ¹⁰⁴	0.145
Ankylosing spondylitis	>0.90 ¹⁰⁵	0.2 ¹⁰⁶
Rheumatoid arthritis	0.6 ¹⁰⁷	
Schizophrenia	0.7-0.8 ¹⁰⁸	0.0179
Bipolar disorder	0.6-0.7 ¹⁰⁸	0.0279
Breast cancer	0.3 ¹¹⁰	0.08 ¹¹¹
Von Willebrand factor	0.66-0.75 ^{112,113}	0.13 ¹¹⁴
Height	0.8115,116	0.113
Bone mineral density	0.6-0.8 ¹¹⁷	0.05 ¹¹⁸
QT interval	0.37-0.60119,120	0.07 ¹²¹
HDL cholesterol	0.5 ¹²²	0.157
Platelet count	0.8 ¹²³	0.05-0.158

 h^2 pedigree = narrow sense heritability (estimated from relateds)

$$h^2$$
 GWAS hits = h^2_{GWAS}

Five years of GWAS Discovery. AJHG. 2012

Armidale Genetics Summer Course 2016

Armidale Genetics Summer Course 2016

Armidale Genetics Summer Course 2016

ANALYSIS

genetics

Common SNPs explain a large proportion of the heritability for human height

Jian Yang¹, Beben Benyamin¹, Brian P McEvoy¹, Scott Gordon¹, Anjali K Henders¹, Dale R Nyholt¹, Pamela A Madden², Andrew C Heath², Nicholas G Martin¹, Grant W Montgomery¹, Michael E Goddard³ & Peter M Visscher¹

0 Nature America, Inc. All rights reserved

SNPs discovered by genome-wide association studies (GWASs) account for only a small fraction of the genetic variation of complex traits in human populations. Where is the remaining heritability? We estimated the proportion of variance for human height explained by 294,831 SNPs genotyped on 3.925 unrelated individuals using a linear model analysis, and validated the estimation method with simulations based on the observed renotype data. We show that 45% of variance can be explained by considering all SNPs simultaneously. Thus, most of the heritability is not missing but has not previously been detected because the individual effects are too small to pass stringent significance tests. We provide evidence that the remaining heritability is due to incomplete linkage disequilibrium between causal variants and genotyped SNPs, exacerbated by causal variants having lower minor allele frequency than the SNPs explored to date.

of variation that their effects do not reach stringent significance thresholds and/or the causal variants are not in complete linkage discutilizition (LD) with the SNNs that have been generyped. Lack of compilet LD might, for instance, occur if causal variants have lower minor allicef response; (MAR) than genotyped SNNs. Here we test these two hypotheses and estimate the contribution of each to the heritability of higher th humans as an model complex trait.

Height in humans is a classical quantitative trait, any to measure and studied for well over a century as a model for investigating the gravit-basis of complex train^{10,49}. The heritability of height has been studied by the -60 km s⁻¹ m s⁻¹. The metations that cause extreme short or tail stature have been found^{10,49}, but these do not explain to set of thousand or limits/mails have detected—-50 variants that are associated with height in the population, but these in total account for only -50 of physical statistical statistical

Data from a GWAS that are collected to detect statistical associations

Figure 3.41 pairwise comparisons contribute to the estimate of genetic variance. Show are the squared z-core difference between individuals (Δr_A^*) plotted against the adjusted estimates of genetic relationship (A_B) . The blue line is the linear regression line of Δr_A^* on A_B^* . The intercept and mixes wice the genetic variance and mixes wice the genetic variances?", respectively. The intercept is 1.98 (s.s. = 0.001), and the regression coefficient is -1.01 (s.e. = 0.27), consistent with estimates of the horophylic and addives genetic variance of 0.990 and 0.505, respectively, and a proportion of variance explained by all SNPs of 0.51.

Estimating h_{SNP}^2 using mixed model analysis with unrelateds found SNPs explain at least 45% of variation in height - over half the heritability

Armidale Genetics Summer Course 2016

Armidale Genetics Summer Course 2016

Armidale Genetics Summer Course 2016

When our sample contains related individuals, h^2 was an estimate of narrow-sense heritability, the proportion of variance explained by ANY ADDITIVE genetic variation

When individuals are unrelated, h^2 becomes an estimate of h^2_{SNP} , the total variance explained by all SNPs

This is because, when two individuals are related, the similarities between their SNP genotypes are (mainly) due to the relatedness, and there will be similar patterns of similarities between other types of genetic variation

When individuals are unrelated, any similarities are due to chance, so similarities observed across SNPs will be independent of (uncorrelated with) similarities across other types

Consider two full-sibs - they share 50% of genetic variation due to IBD

Armidale Genetics Summer Course 2016

Consider two full-sibs - they share 50% of genetic variation due to IBD

Armidale Genetics Summer Course 2016

Consider two full-sibs - they share 50% of genetic variation due to IBD

Armidale Genetics Summer Course 2016

Consider two full-sibs - they share 50% of genetic variation due to IBD

Armidale Genetics Summer Course 2016

Consider two full-sibs - they share 50% of genetic variation due to IBD

So can not tell whether any phenotypic similarity due to SNPs or other genetic variation

Armidale Genetics Summer Course 2016

When two individuals are unrelated, they will still match for some genetic variation

But these matching variants will occur at random (be independent)

So if they match for one SNP, this does not mean they will match for other SNPs, or for other genetic variation

Therefore, if individuals with a particular SNP mutation tend to have higher phenotype, then the phenotypic similarity must be due to this SNP, rather than being due to a different source of genetic variation correlated with this SNP

Stay tuned for Explanation 2 later :)

GCTA: Recipe for a Nature Paper (2010-2012)

Collect GWAS data for a particular trait (say > 5000 individuals with genome-wide genotyping)

Compute allelic correlations K

Remove individuals so that no pair remains with $K_{i,j} > 0.05$

Perform REML to estimate Var(A) and Var(E)

 $h_{SNP}^2 = Var(A)/Var(Y)$ is an estimate of the total variance explained by all SNPs

Write up paper explaining how much higher h_{SNP}^2 than h_{GWAS}^2

The Liability Model

One way to model binary traits is to assume for each individual, there is a normally distributed, underlying liability. We can not observe the liability directly, but only know whether it is above (case) or below (control) a threshold, T

This is the model behind the probit link discussed in Module 3

Armidale Genetics Summer Course 2016

The Liability Model

If we knew the liability *L*, we could fit $L \sim \mathbb{N}(\alpha, K\sigma_L^2 + I\sigma_e^2)$ and estimate $h_{Liab}^2 = \sigma_L^2 / Var(L)$, the heritability estimate on the liability scale directly

But with L unknown, we instead analyse the phenotype pretending it is continuous, then use the following transformation:

$$h_{Liab}^2 = h_{SNP}^2 \frac{K^2 (1-K)^2}{P(1-P)z^2}$$

where K is the prevalence, P the ascertainment, and z is the "height of the standard normal distribution" at the liability threshold, T

Armidale Genetics Summer Course 2016

Since the application to human height in 2010, this approach has been applied to over 40 traits, including:

Crohns DiseaseIType I DiabetesIIntelligenceISchizophreniaIHuman PersonalityIMultiple SclerosisICardiovascular DiseaseIAtherosclerotic StrokeIExecutive FunctioningIRheumatoid ArthritisIEating DisordersICannabis UseI

Bipolar Disorder Body Mass Index Economic & Political Preferences Parkinsons Disease Major Depressive Disorder Cilantro soapy taste detection Childhood Leukaemia Adult Antisocial Behaviour Canine Leishmaniasis Neuroticism & Extraversion Life Span Bird wing span

In two years, there were at least 10 publications in Nature or Nature Genetics, all identical except for the trait considered

Armidale Genetics Summer Course 2016

h_{GWAS}^2 vs h_{SNP}^2 vs narrow sense heritability

Table 1. Population Variation Explained by GWAS for a Selected Number of Complex Traits

Trait or Disease	h ² Pedigree Studies	h ² GWAS Hits ^a	h ² All GWAS SNPs ^b
Type 1 diabetes	0.9 ⁹⁸	0.6 ^{99 ,c}	0.3 ¹²
Type 2 diabetes	0.3-0.6 ¹⁰⁰	$0.05 - 0.10^{34}$	
Obesity (BMI)	0.4-0.6 ^{101,102}	0.01-0.02 ³⁶	0.214
Crohn's disease	0.6-0.8 ¹⁰³	0.111	0.4 ¹²
Ulcerative colitis	0.5 ¹⁰³	0.05 ¹²	
Multiple sclerosis	0.3-0.8 ¹⁰⁴	0.145	
Ankylosing spondylitis	>0.90105	0.2 ¹⁰⁶	
Rheumatoid arthritis	0.6 ¹⁰⁷		
Schizophrenia	0.7-0.8 ¹⁰⁸	0.0179	0.3 ¹⁰⁹
Bipolar disorder	0.6-0.7 ¹⁰⁸	0.0279	0.4 ¹²
Breast cancer	0.3110	0.08111	
Von Willebrand factor	0.66-0.75 ^{112,113}	0.13 ¹¹⁴	0.2514
Height	0.8115,116	0.113	0.513,14
Bone mineral density	0.6-0.8 ¹¹⁷	0.05 ¹¹⁸	
QT interval	0.37-0.60119,120	0.07 ¹²¹	0.214
HDL cholesterol	0.5 ¹²²	0.157	
Platelet count	0.8 ¹²³	0.05-0.158	

 h^2 pedigree = narrow sense heritability (estimated from relateds)

$$h^2$$
 GWAS hits = h^2_{GWAS}

 h^2 all GWAS SNPs = h^2_{SNP}

Armidale Genetics Summer Course 2016

Is it that estimates of h_{SNP}^2 are wrong?

Suggested that estimates of h_{SNP}^2 are inflated by genotyping errors or population stratification. (Population structure can inflate SNP-based heritability estimates. AJHG. 2011)

Inflation is a problem - you are estimating the total contribution of 500 000+ SNPs, so even if you over-estimate the contribution of each SNP by 0.00001% (one ten-thousandth of a percent), your estimate of h_{SNP}^2 will be 50% higher than the truth

But shown that with careful quality control and checks, inflation can be avoided (Improved Heritability Estimation. AJHG. 2012)

Now estimates of h_{SNP}^2 are generally accepted ... ish

Why is $h_{SNP}^2 \gg h_{GWAS}^2$

GWAS are only powered to find strong SNPs with large effect sizes

Manhattan Plot for Crohn's Disease

Armidale Genetics Summer Course 2016

Why is $h_{SNP}^2 \gg h_{GWAS}^2$

GWAS are only powered to find strong SNPs with large effect sizes

e.g., a GWAS with 5000 individuals can only find SNPs explaining at least 0.6% of variance. So one explanation is that most phenotypes are highly polygenic, with 100s or 1000s of SNPs causal, but most of these contribute only tiny heritability

Armidale Genetics Summer Course 2016

Epilepsy

For epilepsy, no individual SNPs reach genome-wide significance

But collectively, all SNPs explain about 25% of (liability) variance

Armidale Genetics Summer Course 2016

Epilepsy

Consider different ways heritability is distributed across causal loci for each, calculate probability of a GWAS finding no significant SNPs

Number of Causal Loci

This gives an indication of how many SNPs contribute heritability

Describing the genetic architecture of epilepsy. Brain. 2014

Epilepsy

Which in turn allows us to speculate how heritability is spread across contributing SNPs

Describing the genetic architecture of epilepsy. Brain. 2014

Armidale Genetics Summer Course 2016
Is the missing heritability problem solved?

For most phenotypes we have found that h_{GWAS}^2 is much less than SNP heritability

...but that SNP heritability remains less than trait h^2

This has led to talk of the "still missing heritability problem"

Even the latest genotyping arrays do not include all SNPs

SNP genotypes only focus on common variants (present in >1% of population), so h_{SNP}^2 does not capture the contribution of rare SNPs

SNPs are only one type of genetic variation; there are also structural variants (e.g., CNVs), epigenetic effects, and a whole host of "omics" (e.g., proteomics, lipidomics, transcriptomics, metabolics, etc)

SNP-based Heritability Analysis with Unrelated Individuals

Equivalence with Random Effects Regression

Armidale Genetics Summer Course 2016

The Mixed Model

The mixed model of Module 7 states:[†] $Cov(Y) = \mathbf{K}\sigma_{g}^{2} + \mathbf{I}\sigma_{e}^{2}$

This corresponds to assuming $Y \sim \mathbb{N}(\mathbf{Z}\boldsymbol{\theta}, \mathbf{K}\sigma_g^2 + \mathbf{I}\sigma_e^2)$

heta denotes fixed effects corresponding to Z, a matrix of covariants

Note, that we could extend this to, say,

$$Cov(Y) = \mathbf{K}\sigma_g^2 + \gamma Var(C) + \mathbf{I}\sigma_e^2,$$

but because we are using only unrelated individuals, the shared environment contributions (off-diagonal values of γ) are expected to be negligible

[†]Note, to be consistent with SNP-Based heritability analysis, we have replaced Var(A) by σ_g^2 and Var(E) by σ_e^2

Armidale Genetics Summer Course 2016

With SNP data available, the most common way[†] to compute **K** is via allelic correlations, $\mathbf{K} = \mathbf{X}\mathbf{X}^T/N$,

With related individuals, allelic correlations are a good choice, because they provide an (almost) unbiased estimate of the coefficient of relatedness; i.e., the average allelic correlation for full-sibs will be 0.5 (strictly, the average will be 0.5-1/n, because SNP MAFs are estimated from the data)

When individuals are unrelated, we can justify the use of allelic correlations as the consequence of assuming a specific random effects regression model

[†]Alternative methods typically attempt to identify (relatively long) shared regions between pairs of individuals (e.g., FASTIBD, Chromopainter)

Suppose we assume the following linear model:

 $\mathbf{Y}=\mathbf{Z}\boldsymbol{\theta}$

$$\begin{aligned} &+\beta_{1}X_{1}+\beta_{2}X_{2}+\beta_{3}X_{3}+\beta_{4}X_{4}+\beta_{5}X_{5}+\beta_{6}X_{6}+\beta_{7}X_{7}\\ &+\beta_{8}X_{8}+\beta_{9}X_{9}+\beta_{10}X_{10}+\beta_{11}X_{11}+\beta_{12}X_{12}+\beta_{13}X_{13}+\beta_{14}X_{14}\\ &+\beta_{15}X_{15}+\beta_{16}X_{16}+\beta_{17}X_{17}+\beta_{18}X_{18}+\beta_{19}X_{19}+\beta_{20}X_{20}+\beta_{21}X_{21}\\ &+\beta_{22}X_{22}+\beta_{23}X_{23}+\beta_{24}X_{24}+\beta_{25}X_{25}+\beta_{26}X_{26}+\beta_{27}X_{27}+\beta_{28}X_{28}\\ &+\ldots+\beta_{500\ 000}X_{500\ 000}\\ &+e,\end{aligned}$$

where
$$\beta_j \sim \mathbb{N}(0, \sigma_g^2/N)$$
 and $e \sim \mathbb{N}(0, \sigma_e^2)$

Then
$$g = \sum_{j=1}^{N} \beta_j X_j \sim \mathbb{N}(0, \mathbf{K}\sigma_g^2)$$

and therefore $Y \sim \mathbb{N}(\mathbf{Z}\boldsymbol{\theta}, \mathbf{K}\sigma_g^2 + \mathbf{I}\sigma_e^2)$, where $\mathbf{K} = \mathbf{X}\mathbf{X}^T/N$

Armidale Genetics Summer Course 2016

Motivating allelic correlations, $\mathbf{K} = XX^T/N$

So when we perform mixed model analysis with $Y \sim \mathbb{N}(\mathbf{Z}\theta, \mathbf{K}\sigma_g^2 + I\sigma_e^2)$, where $\mathbf{K} = XX^T/N$, we are asking how much phenotypic variation is explained under a linear model in which every SNP is allowed to contribute towards the phenotype:

 $\mathbf{Y} = \mathbf{Z}\boldsymbol{\theta} + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_N X_N$

and where we assume that each effect size has distribution $\mathbb{N}(0, \sigma_g^2/N)$ and that the noise terms have distribution $\mathbb{N}(0, \sigma_e^2)$

When individuals are "unrelated", each SNP X_j captures only the genetic variation at that basepair and very nearby basepairs (in high LD), and therefore, we end up with an estimate of how much phenotypic variation is explained BY THE SNPs

This is Explaination 2 ... easier, right?

Armidale Genetics Summer Course 2016

Assumptions in SNP-Based Heritability Analysis

While (implicitly) assuming a specific random effects regression model, provides motivation for using allelic correlations

... it also makes clear that we are making a lot of assumptions

In particular, we assume:

- All SNPs are Causal
- Gaussian Effect Sizes
- Gaussian Noise Terms
- Inverse Relationship between MAF and Effect Size
 i.e., all SNPs contribute equally h²

Therefore, we set out to test these assumptions:

Improved Heritability Estimation from Genome-wide SNPs, AJHG (2012)

Armidale Genetics Summer Course 2016

We simulated traits with varying numbers of SNPs contributing heritability

Even when relatively few were causal, estimation remained reasonably precise

Assuming Gaussian Effect Sizes

We simulated using alternative distributions for effect size estimation remained reasonably good

Armidale Genetics Summer Course 2016

Assuming Gaussian Noise Terms

We simulated using alternative distributions for noise terms estimation remained reasonably good

Armidale Genetics Summer Course 2016

Assuming All SNPs Contribute Equal h^2

We simulated using alternative relationships between MAF and effect size estimation remained reasonably good

Armidale Genetics Summer Course 2016

Without Weightings

A common problem when performing principal component analysis

Armidale Genetics Summer Course 2016

Levels of LD vary greatly across the genome

Values are sums of r^2 between each SNP and neighbours within 100 kb

Armidale Genetics Summer Course 2016

Allelic correlations represent average genome-wide similarity

Armidale Genetics Summer Course 2016

Allelic correlations represent average genome-wide similarity

C I	0	2	2	1	2
51					
S	2	2	0	1	1
J ₂					
Effect on K ₁₂	-	+	-	+	
12					
c i	0	2	2	11 1 1 1 111	2
\mathbf{S}_{1}				HIGH LD REGION	
S	2	2	0	11 1 1 1 111	1
Effect on K ₁₂	_	+	-	++ + + + +++	

More highly tagged genetic variation contributes more to ${\bf K}$

Armidale Genetics Summer Course 2016

Estimates Can be Sensitive to LD of Causal Variants

Causal variants in high LD areas \Rightarrow over-estimation of h_{SNP}^2 Causal variants in low LD areas \Rightarrow under-estimation of h_{SNP}^2

Armidale Genetics Summer Course 2016

LDAK assumes that the observed SNPs are tagging independent underlying signal

Armidale Genetics Summer Course 2016

Adjusting for Uneven Tagging

 $\ldots then\ calculates\ SNP\ weightings\ so\ that\ each\ underlying\ signal\ contributes\ once$

Armidale Genetics Summer Course 2016

Estimates are Sensitive to LD

Then instead of computing standard (unweighted) allelic correlations where each SNP contributes evenly to ${\bf K}$

LDAK constructs "LD-Adjusted" Allelic Correlations where the contribution of each SNP is weighted according to local patterns of LD

Armidale Genetics Summer Course 2016

LDAK: Linkage Disequilibrium Adjusted Kinships

LDAK estimates are unaffected by whether causal variants are in low or high LD regions (e.g., tend to be rare or common)

Armidale Genetics Summer Course 2016

LDAK: Linkage Disequilibrium Adjusted Kinships

LDAK weights offer an alternative to pruning

e.g., when performing PCA or computing genetic profile risk scores

Armidale Genetics Summer Course 2016

Different Methods Give Different Estimates

For each of 22 (almost) independent GWAS traits (on average 6500 individuals), we estimated h_{SNP}^2 from imputed SNP data (N = 2-4 M) using LDAK and three versions of GCTA

MS: MAF Stratification; **LDMS**: LD+MAF Stratification. **GCTA-SPARSE** is **GCTA** using only genotyped SNPs (*N* =200-500 k)

Armidale Genetics Summer Course 2016

Different Methods Give Different Estimates

Also estimated analysed 21 traits where individuals were genotyped using the "Metabochip" (captures approximately 25% of genome-wide variation)

Armidale Genetics Summer Course 2016

GCTA weights each SNP equally

LDAK (attempts to) weight each source of genetic variation equally

Across 22 (21) traits, estimates of h^2_{SNP} from LDAK are on average 66% (50%) higher than those from GCTA

Neither the GCTA nor LDAK assumption is correct - but if the LDAK model was closer to the truth, then this indicates the "still missing heritability" is even smaller

Armidale Genetics Summer Course 2016

Inflation due to Population Structure

Am J Hum Genet. 2011 Jul 15; 89(1): 191–193. doi: <u>10.1016/j.ajhg.2011.05.025</u>

Population Structure Can Inflate SNP-Based Heritability Estimates

Sharon R. Browning^{1,*} and Brian L. Browning²

Author information
Copyright and License information

This article has been cited by other articles in PMC.

To the Editor: Recently, Lee et al.¹ presented a method to estimate the proportion of phenotypic variation explained by common SNPs for case-control phenotypes. This extends the work of Yang et al.² for estimating the proportion of phenotypic variation that can be explained by common SNPs for quantitative traits. Yang et al.² found that 45% of variation in height in Australian individuals of European descent can be explained by common SNPs. Lee et al. showed that a high proportion

Armidale Genetics Summer Course 2016

Module 3

C

S

S

≜UCL

Doug Speed – 18/4/2012

Effect of relatedness on heritability estimates

Proportion of Genome Included in Calculation of Correlation Matrix

Armidale Genetics Summer Course 2016

≜UCL

Doug Speed – 18/4/2012

Criticism One: Contribution of Population Structure

"Replicated" Browning and Browning's results using WT controls

First denoted 90% of English individuals to be controls (remainder cases) Denoted 90% of Non-English individuals to be cases (remainder controls)

Diseased (no known cure)

Armidale Genetics Summer Course 2016

Criticism One: Contribution of Population Structure

Replicated Browning and Browning's results using WT controls

First denoted 90% of English individuals to be controls (remainder cases) Denoted 90% of Non-English individuals to be cases (remainder controls)

Found same results - significantly non-zero estimates (even with 20 PCs)

Armidale Genetics Summer Course 2016

Solution to Criticism One

(Inspired by Suggestion of Yang, Visscher et. al.)

Armidale Genetics Summer Course 2016

Testing for Inflation due to Population Structure

Testing for Inflation due to Population Structure

Am J Hum Genet. 2011 Jul 15; 89(1): 193-195.

doi: 10.1016/j.ajhg.2011.05.022

Response to Browning and Browning

Michael E. Goddard, ^{1,2} S. Hong Lee, ³ Jian Yang, ³ Naomi R. Wray, ³ and Peter M. Visscher ³

Author information
Copyright and License information

Main Text

Go to: 🕑

We thank Browning and Browning for questioning the effect of fine-scale population structure on variance explained by consideration of all SNPs together in methods we have proposed and implemented. Recently, we have taken the methodology further and have partitioned additive genetic variation across the genome.¹ Browning and Browning investigate the effect of two sources of bias in estimates of the variance explained by SNPs—these sources are population stratification and correlation between environment and genotype—but their examples refer mainly to the latter.

PMCID: PMC3135797

Armidale Genetics Summer Course 2016

"Limitations of GCTA"

SANG

Limitations of GCTA as a solution to the missing heritability problem

Siddharth Krishna Kumar^{a,1}, Marcus W. Feldman^a, David H. Rehkopf^b, and Shripad Tuljapurkar^a

^aDepartment of Biology, Stanford University, Stanford, CA 94305-5020; and ^bSchool of Medicine, Stanford University, Stanford, CA 94305-5020

Edited by Mary-Claire King, University of Washington, Seattle, WA, and approved November 20, 2015 (received for review October 9, 2015)

Genome-wide association studies (GWASs) seek to understand the relationship between complex phenotype(s) (e.g., height) and up to millions of single-nucleotide polymorphisms (SNPs). Early analyses of GWASs are commonly believed to have "missed" much of the additive genetic variance estimated from correlations between relatives. A more recent method, genome-wide complex trait analysis (GCTA), obtains much higher estimates of heritability using a model of random SNP effects correlated between genotypically similar individuals. GCTA has now been applied to many phenotypes from schizophrenia to scholastic achievement. However, recent studies runstion GCTA's estimates of heritability tare was chown that GCTA GCTA are satisfied exactly, heritability estimates produced by GCTA will be biased, and it is unlikely that the confidence intervals will be accurate. When there is genetic stratification in the population, we show that GCTA's heritability estimates are guaranteed to be unstable and unreliable, which is especially relevant because stratification is common in human GWASS.

Our analysis has two other important consequences: (i) the heritability estimate produced by GCTA is sensitive to the choice of the sample used; and (ii) the estimate is sensitive to measurement errors in the phenotype. We argue that this instability

Kumar et al, PNAS (December 2015)

Armidale Genetics Summer Course 2016

"Limitations of GCTA"

Analysed 2 698 individuals from the Framingham study, which (in their words) "is known to be stratified"

They first estimated h_{SNP}^2 for Blood Pressure to be 26.3 (SD 5)

Then they repeatly estimated $h^2_{10\%}$, the variance explained by a random 10% of the genome. $h^2_{10\%}$ was typically much higher than 2.6%, which they declared "proof" that the approach is flawed

Armidale Genetics Summer Course 2016

For many years, estimating h^2 involved recruiting related individuals

Recently, it was realised that with SNP data, the same methods could be applied to unrelated individuals. The resulting estimates correspond to h_{SNP}^2 , the total proportion of phenotypic variance explained by all SNP

For human traits, this approach has largely solved the missing heritability debate, and as we will see in Module 14, this is just the start of things!

SNP-based heritability analysis is largely accepted, although some Americans still don't believe

but then a third of Americans believe in Donald Trump ...

Armidale Genetics Summer Course 2016