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Preliminaries 2

I My goals
I Key concepts in methods and theory to support solid

empirical work (as before)

I Structure
I What happens when selection acts on more than one trait

at a time?
I The selection gradient concept really comes into its own.

I Set up for following lectures
I Many of the most useful concepts in modern selection

analysis are elaborations of the basic multivariate case we
focus on in this lecture.
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Two views, univariate (from lecture 1)

Two complimentary ways of thinking about natural selection:
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The multivariate distributional view
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The multivariate function view
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Dispensing with misunderstandings about collinearity 1
> S <- matrix(c(1,0.5,0.5,1),2,2)
>
> x <- rmvnorm(200,c(0,0),S) # from pkg mvtnorm
>
> d <- data.frame(x1=x[,1],x2=x[,2])
>
> plot(d$x1,d$x2)
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Dispensing with misunderstandings about collinearity 1

> d$y <- rnorm(200,0.5*d$x1,1) >

> summary(lm(y˜x1,data=d))$coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.03284569 0.07174432 0.4578159 6.475867e-01
x1 0.53123048 0.06472664 8.2072930 2.849766e-14
>
> summary(lm(y˜x2,data=d))$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0828077 0.08010253 1.033771 0.3025040808
x2 0.2734574 0.07188813 3.803930 0.0001896892
>
> summary(lm(y˜x1+x2,data=d))$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.03036372 0.07222198 0.4204222 6.746353e-01
x1 0.54704737 0.07798616 7.0146722 3.610191e-11
x2 -0.02831862 0.07750379 -0.3653838 7.152170e-01
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The multivariate breeder’s equation

Univariate breeder’s equation

∆z̄ = Va
Vp
S

Multivariate breeder’s equation

∆z̄ = GP−1S

where

G =

[
σ2

az1 σa(z1, z2) . . .

σa(z1, z2) σ2
az2

...
. . .

]
, P =

 σ2
pz1 σp(z1, z2) . . .

σp(z1, z2) σ2
pz2

...
. . .

 , S

[
S1
S2
...

]
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Regression parameterisations of the multivariate
breeder’s equation

If we define the regression of an offspring trait vector on a
mid-parent trait vector, we ge

H = GP−1

and so
∆z̄ = HS

But what turns out to be really fun is to note that the multiple
regression of fitness on traits is

β = P−1S

and so
∆z̄ = Gβ

This is referred to as the multivariate Lande equation.
Michael Morrissey Analysis of multivariate phenotypic selection



β points in the direction of most rapidly increasing
fitness
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The duality of covariances: phenotypic and genetic
correlations and their effects 1

Phenotypic covariances map fitness function (surface) geometry
onto changes in the multivariate distribution of phenotype.

S = Pβ
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The duality of covariances: phenotypic and genetic
correlations and their effects 1

Let’s break that down...
I direct selection

Si,direct = σ2
ziβi

I indirect selection

Si,indirect = Σj 6=iσzj ,ziβj

I total multivariate selection

S = Pβ
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The duality of covariances: phenotypic and genetic
correlations and their effects 2

Genetic covariances map the response to selection onto the
selection gradient vector
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The MV response over generations
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The MV response over generations
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Estimation: the multivariate Lande-Arnold regression

wi = α

+ Σjβjzij directional

+ 1
2Σjγj(zij − z̄j)2 quadratic

+ Σt
j=2Σk

k=j+1γjk(zij − z̄j)(zik − z̄k) correlational

+ ei

This is an extension of the univariate Lane-Arnold regression
from lecture 1 to multiple regression.
We will continue in this lecture with the directional component
only.
Multivariate quadratic selection will be treated separately.
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Multivariate selection in Soay lambs

First we’ll back-track and do univariate analyses
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trait S SE[S] βuniv SE[βuniv]
mass (kg) 0.394 0.070 0.082 0.014
hind leg length (mm) 1.525 0.300 0.017 0.003
horn length (mm) 0.281 0.740 0.000 0.002
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Multivariate selection in Soay lambs
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Multivariate directional selection OLS model

wi = α+ βmassmassi + βleglegi + βhornhorni + e1

trait βuniv SE[βuniv] β SE[β]
mass (kg) 0.082 0.014 0.087 0.029
hind leg length (mm) 0.017 0.003 0.004 0.007
horn length (mm) 0.000 0.002 −0.004 0.001
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Multivariate selection in Soay lambs
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Direct and indirect selection in Soay lambs

S = Pβ

P =

mass leg horn
mass 5 18 22
leg 18 86 85
horn 22 85 468

, β = mass 0.087
leg 0.004
horn -0.004

Direct selection of horn length:

Sdirect = σ2
horn · βhorn = 468 · −0.0043 = −2.01

Indirect selection of horn length:

Sindirect = σhorn,mass·βmass+σhorn,leg·βleg = 22·0.087+85·0.0004 = 2.25

Total selection differential:

S = Sdirect + Sindirect = −2.01 + 2.25 = 0.24
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Estimation: average partial gradients

The average gradient concept applies to multivariate analysis
also.

Scheme:
1. estimate W f(z1, z2, ...)
2. predict individual fitness, calculate ¯W (z)
3. add a small amount h to each value of z1, holding all other

traits constant
4. calculate ¯W (z)∗, i.e., predictions with the modified z1 + h

values
5. estimate gradient of W̄ (finite differences), and scale to w

β̂1 =
¯W (z)∗ − ¯W (z)

h

1
W̄

6. restore values of z1; repeat for other traits
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Multivariate selection and variation in fitness

We saw earlier that the combined effect of direct and indirect
selection sum up to the covariance according to

S = Pβ

This is simply the covariance o a linear transformation; when P
is transformed according to β the covariances of z and w that
result are S.

The variance of a linear transformation (β) of a random vector
(z) is similar:

V AR[w] = βTPβ
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Absolute constraints can hide in multivariate space - 1
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Absolute constraints can hide in multivariate space - 2
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Interpretation: if more than two traits, some geometry
makes it less mind-bending

Sorry - couldn’t imbed my animation. I’ll give it in the
presentation.
The distribution depicted is for

G =

 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1


and  1 −0.5 −0.5

−0.5 1 −0.5
−0.5 −0.5 1


bb
b

 =

0
0
0
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Interpreting effect size

Which is more important to fitness: mass, skeletal size, or horn
length?
trait β βσ βµ
mass (kg) 0.087 0.190 1.074
hind leg length (mm) 0.004 0.040 0.671
horn length (mm) -0.004 -0.094 -0.359
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