Phenotypic selection: elaborations

Michael Morrissey Phenotypic selection: elaborations

Preliminaries

My goals

 Key concepts in methods and theory to support solid empirical work

æ

▲□▶ ▲圖▶ ▲필▶ ▲필▶

My goals

- Key concepts in methods and theory to support solid empirical work
- 1. Episodes of selection
 - ▶ lifetime selection and now it is composed of episodes
 - ▶ what if episodes are missed?

My goals

- Key concepts in methods and theory to support solid empirical work
- 1. Episodes of selection
 - ▶ lifetime selection and now it is composed of episodes
 - ▶ what if episodes are missed?
- 2. Missing variable problems
 - erroneous estimates of selection
 - assessing genetic associations between traits and fitness

・ロト ・団ト ・ヨト ・ヨト

E

My goals

- Key concepts in methods and theory to support solid empirical work
- 1. Episodes of selection
 - ▶ lifetime selection and now it is composed of episodes
 - ▶ what if episodes are missed?
- 2. Missing variable problems
 - erroneous estimates of selection
 - assessing genetic associations between traits and fitness
- 3. A closer look at non-linear selection
 - interpreting all those γ terms

Michael Morrissey

Phenotypic selection: elaborations

《曰》《卽》《言》《言》

▲□▶ ▲□▶ ▲□▶ ▲□▶ →

Ξ.

5900

Preliminaries

My goals

- Key concepts in methods and theory to support solid empirical work
- 1. Episodes of selection
 - ▶ lifetime selection and now it is composed of episodes
 - ▶ what if episodes are missed?
- 2. Missing variable problems
 - erroneous estimates of selection
 - assessing genetic associations between traits and fitness
- 3. A closer look at non-linear selection
 - interpreting all those γ terms
- 4. Does the selection gradient measure what we really want?
 - ▶ what traits are materially relevant to fitness?

æ

The additive partition of S

The total selection differential over k episodes is

$$S_T = \Sigma_j^k S_j$$

From before, $S_1 = 0.39$ kg.

Among survivors of the first winter, subsequent selection is
S₂ = 0.49 kg.

So,

The additive partition of β

The total selection gradient over k episodes is

$$\beta_T = \sum_{j=1}^k \frac{\sigma_{j-1}^2}{\sigma_0^2} \beta_j$$

- this is a weighted additive partitioning of selection gradients.
- since viability selection changes the variance, and the variance is in the denominator of the formula for β , this change must be taken into account.

э

 $\beta_1 = 0.082, \ \beta_2 = 0.111, \ \beta = 0.184$ $V_0 = 4.78, \ V_1 = 4.38$

$$\beta_1 = 0.082, \ \beta_2 = 0.111, \ \beta = 0.184$$

 $V_0 = 4.78, \ V_1 = 4.38$
 $\beta = \beta_1 + \frac{V_1}{V_0}\beta_2 = 0.082 + \frac{4.38}{4.78}0.111 = 0.184$

< □ →

< ⊡ >

< ≣ >

∢ ≣ ≯

5900

E

If you have lifetime fitness, why break it down?

- ▶ It is worth knowing where in the life cycle selection arises
- It is statistically equally powerful, despite more stuff being calculated.

for e.g., episodes of selection analysis for lamb mass:

gradient	estimate	standard error
S_1	0.394	0.091
S_1	0.488	0.183
S_{total}	0.881	0.215
$S_1 + S_1$	0.881	0.201

Michael Morrissey Phenotypic selection: elaborations What about missing episodes of selection?

• • •

< ⊡ >

< ≣ >

< ∃ >

臣

What about missing episodes of selection?

Missing traits

- Any trait or environmental variable that causes trait-fitness covariance will leave a mistaken signature of selection.
- Solution (part): do more multivariate analyses.
- Solution (other part): include environmental variables in regression-based selection analyses.
- This has been considered and prematurely rejected.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

æ

Signatures of missing traits: red deer

5 9 Q C

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

This amounts to applying the secondary theorem of selection

$$E[\Delta \bar{z}] = E[\Delta \bar{a}] = \sigma_{a,w}$$

UVBE
 MVBE
 Secondary theorem

æ.

Empirical application of the STS without stats-on-stats 1

The secondary theorem (Robertson-Price equation applied to breeding values) is

$$\Delta \bar{z} = \sigma_a(z, w)$$

and the breeder's equation is

$$\Delta \bar{z} = h^2 \sigma_p(z, w)$$

Set these to be equal:

$$\sigma_a(z,w) = \frac{\sigma_a^2(z)}{\sigma_p^2(z)} \sigma_p(z,w)$$

Michael Morrissey

Phenotypic selection: elaborations

< / □ > < 三 >

< /i>
▲

< ∃ >

э

500

æ.

500

Empirical application of the STS without stats-on-stats 1

The secondary theorem (Robertson-Price equation applied to breeding values) is

$$\Delta \bar{z} = \sigma_a(z, w)$$

and the breeder's equation is

$$\Delta \bar{z} = h^2 \sigma_p(z, w)$$

Set these to be equal:

$$\sigma_a(z,w) = \frac{\sigma_a^2(z)}{\sigma_p^2(z)} \sigma_p(z,w)$$
$$\frac{\sigma_a(z,w)}{\sigma_a^2(z)} = \frac{\sigma_p(z,w)}{\sigma_p^2(z)}$$
$$\beta_a = \beta$$

Michael Morrissey Phenotypic selection: elaborations

The condition for the breeder's (Lande) equation to be predictive, namely equality of genetic and phenotypic (partial) regressions of traits on fitness, can be decomposed further:

$$\frac{\sigma_a(z,w)}{\sigma_a^2(z)} = \frac{\sigma_p(z,w)}{\sigma_p^2(z)}$$

The condition for the breeder's (Lande) equation to be predictive, namely equality of genetic and phenotypic (partial) regressions of traits on fitness, can be decomposed further:

$$\begin{aligned} \frac{\sigma_a(z,w)}{\sigma_a^2(z)} &= \frac{\sigma_p(z,w)}{\sigma_p^2(z)} \\ \frac{\sigma_a(z,w)}{\sigma_a^2(z)} &= \frac{\sigma_a(z,w) + \sigma_e(z,w)}{\sigma_a^2(z) + \sigma_e^2(z)} \\ \frac{\sigma_a(z,w)}{\sigma_a^2(z)} &= \frac{\sigma_e(z,w)}{\sigma_e^2(z)} \end{aligned}$$

Thus, a corollary of the condition $\beta_a = \beta$, $\beta_a = \beta_e$ The numerators and denominators of β , β_a and β_e are all estimable by multi-response mixed model methods.

< ロ > < 同 > < 三 > < 三 >

э

SQA

LMM and GLMM analysis of the STS and associated relationships

GLMM analysis seems most natural:

$$\begin{bmatrix} z_i \\ log(E[W])_i \end{bmatrix} = \mathbf{X}\beta + \begin{bmatrix} a_{z,i} \\ a_{W,i} \end{bmatrix} + \dots$$

Where \mathbf{a}_i , and especially their covariance, is estimated using the pedigree.

Michael Morrissey Phenotypic selection: elaborations

- 4 目 ト - 4 目 ト

・ロト ・団ト ・ヨト ・ヨト

E

5900

긑.

500

LMM and GLMM analysis of the STS and associated relationships

GLMM analysis seems most natural:

$$\begin{bmatrix} z_i \\ log(E[W])_i \end{bmatrix} = \mathbf{X}\beta + \begin{bmatrix} a_{z,i} \\ a_{W,i} \end{bmatrix} + \dots$$

Where \mathbf{a}_i , and especially their covariance, is estimated using the pedigree. But what matters is relative fitness on the scale upon which it is expressed...

LMM and GLMM analysis of the STS and associated relationships

GLMM analysis seems most natural:

$$\begin{bmatrix} z_i \\ log(E[W])_i \end{bmatrix} = \mathbf{X}\beta + \begin{bmatrix} a_{z,i} \\ a_{W,i} \end{bmatrix} + \dots$$

Where \mathbf{a}_i , and especially their covariance, is estimated using the pedigree. But what matters is relative fitness on the scale upon which it is expressed... ...but it turns out that the log-link GLMM has a cool justification:

$$x_i = \log(E[W]_i)$$

FTNS analogue:

$$\Delta \bar{w} = e^{\sigma_a^2(x)} - 1$$

Michael Morrissey Phenotypic selection: elaborations

LMM and GLMM analysis of the STS and associated relationships

GLMM analysis seems most natural:

$$\begin{bmatrix} z_i \\ log(E[W])_i \end{bmatrix} = \mathbf{X}\beta + \begin{bmatrix} a_{z,i} \\ a_{W,i} \end{bmatrix} + \dots$$

Where \mathbf{a}_i , and especially their covariance, is estimated using the pedigree. But what matters is relative fitness on the scale upon which it is expressed... ...but it turns out that the log-link GLMM has a cool justification:

$$= log(E[W]_i)$$

FTNS analogue:

 x_i

$$\Delta \bar{w} = e^{\sigma_a^2(x)} - 1$$

STS analogue:

$$\Delta \bar{z} = \sigma_a^2(z, x)$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

æ.

500

So, theGLMM consistency measure is:

$$\mathbf{G}_{a}^{-1}\sigma_{a}(x,z)=oldsymbol{\beta}$$

Non-linear selection, example 1

 \mathbf{Z}_2

0,0

Michael Morrissey

Phenotypic selection: elaborations

<⊡>

- ₹ ₹ >

▲御▶ ▲産▶ ▲産▶ … 産…

590

< □ ▶

590

æ.

Non-linear selection, example 2

 \mathbf{Z}_2

< □ ►

 $oldsymbol{\gamma} = egin{bmatrix} -0.5 & 0 \ 0 & -0.1 \end{bmatrix}$

Non-linear selection, example 3

• ([-0.5]	0.2
$\gamma =$	0.2	-0.1

Michael Morrissey Phenotypic selection: elaborations Non-linear selection, example 4

 \mathbf{Z}_2

 $oldsymbol{\gamma} = egin{bmatrix} 0 & 0.2 \\ 0.2 & 0 \end{bmatrix}$

↓ □ ▶ ↓ @ ▶ ↓ E ▶ ↓ E ▶

Non-linear selection, example 5

 $\boldsymbol{\gamma} = \begin{bmatrix} 0.3 & 0\\ 0 & -0.3 \end{bmatrix}$

The γ matrix can be rotated so that it can be described in a new set of axes, which experience no correlational selection.

< □ ▶

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

E

- ▶ traits: mass, leg length, horn length
- variance-standardised analysis

$$\boldsymbol{\beta} = \begin{bmatrix} 0.16\\ 0.08\\ -0.12 \end{bmatrix}$$

$$oldsymbol{\gamma} = egin{bmatrix} -0.35 & 0.30 & 0.15 \ 0.30 & -0.33 & -0.07 \ 0.15 & -0.07 & -0.05 \end{bmatrix}$$

Michael Morrissey

Bias in directions of selection relative to axes of phenotype

- ▶ simulated bivariate selection gradient analysis
- ▶ no relationship between trait and fitness

Do black balls make it to the bottom?

E

< ∃ →

590

< □ →

∢⊡ ▶ ∢ ≣ ▶

Do black balls make it to the bottom? Yes. There is *selection of* black colour

Does β reflect the relevance of traits to fitness?

Do black balls make it to the bottom? Yes. There is *selection of* black colour; it is *associated* with passage through the toy.

< □ > < □ >

Phenotypic selection: elaborations

Э

æ

590

590

< □ ▶

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Do black balls make it to the bottom? Yes. There is *selection of* black colour; it is *associated* with passage through the toy. Do does black colour *cause* balls to get to the bottom?

Does β reflect the relevance of traits to fitness?

Do black balls make it to the bottom? Yes. There is *selection of* black colour; it is *associated* with passage through the toy. Do does black colour *cause* balls to get to the bottom?No, there is *no*

< (□) < (□) >

Phenotypic selection: elaborations

æ.

590

selection for black colour.

< ∃⇒

∢⊡ ▶ ∢ ≣ ▶

< □ ▶

Do black balls make it to the bottom? Yes. There is *selection of* black colour; it is *associated* with passage through the toy. Do does black colour *cause* balls to get to the bottom?No, there is *no selection* for black colour.

S is widely interpreted as representing total selection, something like *selection of*. β is erroneously interpreted as representing something like *selection for*; however, it is something rather more specific.

ㅋ 🛛 🖉 🕨 🤞 🖻 🕨 🦉 🖻

■ わえで

Ξ.

《曰》《卽》《臣》《臣》

590

Michael Morrissey

Phenotypic selection: elaborations

The $A \to B \to W$ toy model

А В С

	S	
A	\checkmark	
B	\checkmark	
C	\checkmark	

Michael Morrissey Phenotypic selection: elaborations The $A \to B \to W$ toy model

	S	eta	
A	\checkmark	X	
B	\checkmark	\checkmark	
C	\checkmark	X	

$\eta,$ genetic variation, and evolution 1

- ▶ a Greek letter (η) does not a selection coefficient make!
- does η have a role in a $\Delta \bar{z} = f(genetics, selection)$ equation?

1 9 Q C

・ロト ・回ト ・ヨト ・ヨトー

η , genetic variation, and evolution 1

- ▶ a Greek letter (η) does not a selection coefficient make!
- does η have a role in a $\Delta \bar{z} = f(genetics, selection)$ equation?

Total effects of traits on one another are given by

$$\mathbf{\Phi} = (\mathbf{I} - \mathbf{b})^{-1}$$

where \mathbf{b} is a matrix containing a certain arrangement of effects of traits on one another.

It then turns out, if \mathbf{G}_{ϵ} contains genetic variation that is independent of effects in the path model, then

$$\mathbf{G} = \mathbf{\Phi} \mathbf{G}_{\epsilon} \mathbf{\Phi}^T$$

and

 $\boldsymbol{\eta} = \boldsymbol{\Phi}^T \boldsymbol{\beta}$

Michael Morrissey Phenotypic selection: elaborations η , genetic variation, and evolution

Key facts from the previous slide:

$$\mathbf{G} = \mathbf{\Phi} \mathbf{G}_{\epsilon} \mathbf{\Phi}^T$$

and

$$\boldsymbol{\eta} = \boldsymbol{\Phi}^T \boldsymbol{\beta}$$

I = ►

< 47 ▶

< ∃ >

э

Key facts from the previous slide:

$$\mathbf{G} = \mathbf{\Phi} \mathbf{G}_{\epsilon} \mathbf{\Phi}^T$$

and

 $\boldsymbol{\eta} = \boldsymbol{\Phi}^T \boldsymbol{\beta}$

So, from the Lande equation

 $\Delta \bar{\mathbf{z}} = \mathbf{G} \boldsymbol{\beta}$

Michael Morrissey Phenotypic selection: elaborations η , genetic variation, and evolution

æ

590

Key facts from the previous slide:

$$\mathbf{G} = \mathbf{\Phi} \mathbf{G}_{\epsilon} \mathbf{\Phi}^T$$

and

$$\eta = \Phi^T \beta$$

So, from the Lande equation

$$\Delta ar{\mathbf{z}} = \mathbf{G} oldsymbol{eta}$$

 $\Delta ar{\mathbf{z}} = \mathbf{\Phi} \mathbf{G}_{\epsilon} \mathbf{\Phi}^T oldsymbol{eta}$

< ∃→

< 🗗 ▶

< ∃→

э

Key facts from the previous slide:

$$\mathbf{G} = \mathbf{\Phi} \mathbf{G}_{\epsilon} \mathbf{\Phi}^T$$

and

$$\boldsymbol{\eta} = \boldsymbol{\Phi}^T \boldsymbol{\beta}$$

So, from the Lande equation

$$egin{aligned} \Delta ar{\mathbf{z}} &= \mathbf{G} oldsymbol{eta} \ \Delta ar{\mathbf{z}} &= oldsymbol{\Phi} \mathbf{G}_\epsilon oldsymbol{\Phi}^T oldsymbol{eta} \ \Delta ar{\mathbf{z}} &= oldsymbol{\Phi} \mathbf{G}_\epsilon oldsymbol{\eta} \end{aligned}$$

< □ →

< ⊡ >

< ≣ >

∢ ≣ ≯

E

Example of estimation of η

$m60 \sim dgerm$	_					_
$mass \sim m60$	[0	-0.01	0	0	0	0]
	0	0	-0.20	0.30	0	0
$dtf \sim m60$	0	0	0	0	-0.58	-0.60
$rpt \sim mass + dtf$ D =	= 0	0	0	0	0.13	0.39
$mrt \sim mass + dtf$	0	0	0	0	0	0
$w \sim mass + rpt + mrt$	$\lfloor 0$	0	0	0	0	0

Michael Morrissey

Phenotypic selection: elaborations

《曰》《卽》《言》《言》

1 9 Q (P

æ

▲□▶ ▲□▶ ▲□▶ ▲□▶

5900

Example of estimation of η

	Γο	-0.01	0	0	Ο	0 7		0
	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	0.01	-0.20	0.30	0	0		0
h —	0	0	0	0	-0.58	-0.60	$\beta =$	0
D —	0	0	0	0	0.13	0.39	ρ –	-0.03
	0	0	0	0	0	0		0.15
	0	0	0	0	0	0		0.21

Example of estimation of η

$\mathbf{\Phi} = (\mathbf{I} \!-\! \mathbf{b})^{-1} =$	Γ1	-0.01	0.02	-0.003	-0.002	-0.003]
	0	1	-0.20	0.30	0.157	0.242
	0	0	1	0	-0.580	-0.605
	0	0	0	1	0.135	0.396
	0	0	0	0	1	0
	$\lfloor 0$	0	0	0	0	1

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ろくぐ

▲□▶ ▲□▶ ▲ ≧▶ ▲ ≧▶ ≧ のへで

Michael Morrissey

Phenotypic selection: elaborations

Example of estimation of η

$$\boldsymbol{\beta}_{path} = \begin{bmatrix} 0\\ 0\\ 0\\ -0.0333\\ 0.157\\ 0.207 \end{bmatrix} \qquad \boldsymbol{\beta}_{ols} = \begin{bmatrix} 0.009\\ 0.004\\ 0.040\\ -0.028\\ 0.142\\ 0.207 \end{bmatrix} \qquad \boldsymbol{\eta} = \begin{bmatrix} -0.001\\ 0.065\\ -0.216\\ 0.070\\ 0.157\\ 0.207 \end{bmatrix}$$