
Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics  

Brian Kinghorn 

University of New England 

Armidale, Australia 

1.  Overview 

 

Seek, and you shall find. 

 

 



Course aims 

• To empower participants 

 



Evolutionary algorithms 

• String together about 3,000,000,000 nucleotides  A T G C 

• Number of combinations = 43 billion = <error> 

• How get that right !? … Impossible ??  But it has happened ! 

• Lean on that power to solve other complex problems 

• Gain insight into the power of evolution 



Evolutionary algorithms 

• Not a „Hard‟ science 

• Tips and tricks 

• Not constrained to how evolution works in biology 

 



Problems NOT for evolutionary algorithms 

• Problems where we can calculate the answer. Eg   

• Problems where we can numerically solve for the answer 

eg. IOC  BLUP, segregation analysis 

• Problems where we can intelligently sample solutions. Eg. 

Gibbs sampling 

• ... UNLESS the above make assumptions that are violated. 

• Evolutionary algorithms can find solutions for all these 

problems – but probably not the best route!  

 

YXXXb ')'(ˆ 1



Sampling in data analysis ... 

Time 

„Power‟ 

 

[also 

Log CPU] 

4 

 

3 

 

2 

 

1 

 

0 

Class       Least       BLUP      AI-reml      MCMC       Genetic 

Means    squares    REML     Meth. R       Gibbs      Algorithms 

 

„Analytical power‟ 

„Sampling power‟ 

PS.  This is a fit, not a plot.  Interpret with kindness. 

Information systems 



Problems for evolutionary algorithms 

Virtually any problem, such as: 

• Assignment of individuals to groups 

• Eg. To management groups ; to be tested; to be genotyped; to be selected 

• Problems involving thresholds and rules 

• Eg. Supply chain optimisation; animal production models 

• Combinatorially tedious problems 

• Eg. Setting up matings; which SNPs to genotype; which SNPs to fit 

 

 



Architecture of an Evolutionary Algorithm 

1. Problem 
Representation 

2. Objective 
function 

3. 
Optimisation 

engine 

“Genotype” or 
“DNA” 

Raw variables for 
each solution 

“Phenotype” 
Usable 

variables or 
states 

“Fitness”  value 
for each solution 

1. Problem representation:  

Produce the input variables/states 

(“Phenotypes”) from a vector of 

simple numbers (“Genotype”).  

Ideally produce only legal 

solutions to the problem. 

2. Objective function:   Evaluates 

the “Fitness” of each of these 

solutions. 

3. Optimization engine:   Make 

genotypes of progeny out of the 

genotypes of parents.   It seeks 

the Genotype that gives the 

highest fitness. 

 



Architecture of an Evolutionary Algorithm 

1. Problem representation:  

Produce the input variables/states 

(“Phenotypes”) from a vector of 

simple numbers (“Genotype”).  

Ideally produce only legal 

solutions to the problem. 

2. Objective function:   Evaluates 

the “Fitness” of each of these 

solutions. 

3. Optimization engine:   Make 

genotypes of progeny out of the 

genotypes of parents.   It seeks 

the Genotype that gives the 

highest fitness. 

 

+ 

/ 

* 

a e d b 

- c 

Q 

+/Q*c-abde 

“Genotype”   “Phenotype”   

ed
c

ba


*

[ Gene Expression Programming will be covered in Chapter 5 ] 



Architecture of an Evolutionary Algorithm 

1. Problem representation:  

Produce the input variables/states 

(“Phenotypes”) from a vector of 

simple numbers (“Genotype”).  

Ideally produce only legal 

solutions to the problem. 

2. Objective function:   Evaluates 

the “Fitness” of each of these 

solutions. 

3. Optimization engine:   Make 

genotypes of progeny out of the 

genotypes of parents.   It seeks 

the Genotype that gives the 

highest fitness. 

 

ed
c

ba


*

Data 

4.4 3.5 0.81 

3.2 3.1 0.01 

5.3 3.4 3.61 

6.2 7.4 1.44 

7.1 5.9 1.44 

1.2 2.1 0.81 

  SSE: 8.12 

Error² 

Fitness = -1 * SSE 



Architecture of an Evolutionary Algorithm 

1. Problem representation:  

Produce the input variables/states 

(“Phenotypes”) from a vector of 

simple numbers (“Genotype”).  

Ideally produce only legal 

solutions to the problem. 

2. Objective function:   Evaluates 

the “Fitness” of each of these 

solutions. 

3. Optimization engine:   Make 

genotypes of progeny out of the 

genotypes of parents.   It seeks 

the Genotype that gives the 

highest fitness. 

 

pr
op

. o
f e

w
es

 in
 n

uc
le

us

cu
lli

ng
 a
ge

 o
f n

uc
le

us
 e
w

es

cu
lli

ng
 a
ge

 o
f n

uc
le

us
 ra

m
s

cu
lli

ng
 a
ge

 o
f b

as
e 
ew

es

pr
op

. n
uc

le
us

 e
w

es
 fr

om
 b

as
e

pr
op

. b
as

e 
ra

m
s f

ro
m

 n
uc

le
us

no
. o

f r
am

s i
n 

nu
cl

eu
s

nu
m

be
r o

f r
am

s i
n 

ba
se

Recombination

0.11    89      6        0.91

0.08    83      6        0.85

  5            3        0.43       5

  4            2        0.42       5
0.45

Mutation



Let your computer make you famous 




