Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

1. Overview

Seek, and you shall find.

Brian Kinghorn

University of New England Armidale, Australia

Course aims

• To empower participants

Evolutionary algorithms

- String together about 3,000,000,000 nucleotides ATGC
- Number of combinations = $4^{3 \text{ billion}} = \langle \text{error} \rangle$
- How get that right !? ... Impossible ?? But it has happened !
- Lean on that power to solve other complex problems
- Gain insight into the power of evolution

Evolutionary algorithms

- Not a 'Hard' science
- Tips and tricks
- Not constrained to how evolution works in biology

Problems NOT for evolutionary algorithms

- Problems where we can *calculate* the answer. Eg $\hat{b} = (X'X)^{-1}X'Y$
- Problems where we can *numerically solve* for the answer eg. IOC BLUP, segregation analysis
- Problems where we can *intelligently sample* solutions. Eg.
 Gibbs sampling
- ... UNLESS the above make assumptions that are violated.
- Evolutionary algorithms can *find* solutions for all these problems but probably not the best route!

Information systems

Sampling in data analysis ...

PS. This is a fit, not a plot. Interpret with kindness.

Problems for evolutionary algorithms

Virtually any problem, such as:

- Assignment of individuals to groups
 - Eg. To management groups ; to be tested; to be genotyped; to be selected
- Problems involving thresholds and rules
 - Eg. Supply chain optimisation; animal production models
- Combinatorially tedious problems
 - Eg. Setting up matings; which SNPs to genotype; which SNPs to fit

1. <u>Problem representation:</u>

Produce the input variables/states ("Phenotypes") from a vector of simple numbers ("Genotype"). Ideally produce only legal solutions to the problem.

- 2. <u>Objective function</u>: Evaluates the "Fitness" of each of these solutions.
- **3.** <u>Optimization engine:</u> Make genotypes of progeny out of the genotypes of parents. It seeks the Genotype that gives the highest fitness.

1. <u>Problem representation:</u>

Produce the input variables/states ("Phenotypes") from a vector of simple numbers ("Genotype"). Ideally produce only legal solutions to the problem.

- 2. <u>Objective function</u>: Evaluates the "Fitness" of each of these solutions.
- **3.** <u>Optimization engine:</u> Make genotypes of progeny out of the genotypes of parents. It seeks the Genotype that gives the highest fitness.

[Gene Expression Programming will be covered in Chapter 5]

Data	$\frac{a*b}{c} + \sqrt{d-e}$	Error ²
4.4	3.5	0.81
3.2	3.1	0.01
5.3	3.4	3.61
6.2	7.4	1.44
7.1	5.9	1.44
1.2	2.1	0.81
	SSE:	8.12

Fitness = -1 * SSE

- **1.** Problem representation: Produce the input variables/states ("Phenotypes") from a vector of simple numbers ("Genotype"). Ideally produce only legal solutions to the problem.
- 2. <u>Objective function</u>: Evaluates the "Fitness" of each of these solutions.
- **3.** <u>Optimization engine:</u> Make genotypes of progeny out of the genotypes of parents. It seeks the Genotype that gives the highest fitness.

1. <u>Problem representation:</u>

Produce the input variables/states ("Phenotypes") from a vector of simple numbers ("Genotype"). Ideally produce only legal solutions to the problem.

- 2. <u>Objective function</u>: Evaluates the "Fitness" of each of these solutions.
- **3.** <u>Optimization engine:</u> Make genotypes of progeny out of the genotypes of parents. It seeks the Genotype that gives the highest fitness.

Let your computer make you famous

