Deregression and weighting information from various sources

Training on EBVs

Ideal Model (Equation) & data

- $g = 1\mu + Ma + \varepsilon$
- **g** is (true) genetic merit (BV)
- M is columns of covariates (genotypes)
- **a** are substitution effects
- ε is lack-of-fit (hopefully small)

Ideal Model & data

 $g = 1\mu + Ma + \varepsilon$ g is genetic merit (BV) var(g) = A? or G? var(Ma) = G genomic relationships $var(\varepsilon) = I\sigma_{\varepsilon}^{2}? \text{ or } cA? \text{ for } c = \frac{\sigma_{\varepsilon}^{2}}{\sigma_{g}^{2}}$

the fraction of var(g) unaccounted by markers

 $g = 1\mu + Ma + \varepsilon$ g is genetic merit (BV) $var(\mathbf{g}) = \mathbf{T}\sigma_{g}^{2}$ where **T** from LD / LA $var(Ma) = G\sigma_M^2$ genomic relationships $var(\varepsilon) = \mathbf{E}\sigma_c^2$ (= 0 if markers competely explained merit) approximate **E** as $c\mathbf{A}\sigma_g^2$, for $c = \frac{\sigma_\varepsilon^2}{\sigma_g^2}$

Ma is random even if a is fixed

Towards a Practical Model

- $\mathbf{g} + \mathbf{e} = \mathbf{1}\boldsymbol{\mu} + \mathbf{M}\mathbf{a} + (\boldsymbol{\varepsilon} + \mathbf{e})$
- g is (true) genetic merit (BV)
- e is usual e
- $(\mathbf{g} + \mathbf{e})$ is phenotype (no fixed effects)

 $\operatorname{var}(\varepsilon + \mathbf{e}) = c\mathbf{A}\sigma_g^2 + \mathbf{I}\sigma_e^2$ since $\operatorname{cov}(\varepsilon, \mathbf{e'}) = \mathbf{0}$

Practical Model

 $y = Xb + Ma + (\varepsilon + e)$ **Xb** are usual fixed effects $\operatorname{var}(\boldsymbol{\varepsilon} + \mathbf{e}) = \mathbf{c} \mathbf{A} \boldsymbol{\sigma}_{e}^{2} + \mathbf{I} \boldsymbol{\sigma}_{e}^{2}$ Not reasonable to assume $var(\varepsilon + e) = I\sigma_{a}^{2}$ unless markers are fitting very well or a polygenic effect is fitted

But we do all the time ! And the results are fairly similar

Repeated records on the Individual $\overline{\mathbf{y}}_k = \mathbf{X}\mathbf{b} + \mathbf{M}\mathbf{a} + (\varepsilon + \overline{\mathbf{e}}_k)$

(i.e. y is means of varying k numbers of observations)

$$\operatorname{var}(\overline{\mathbf{e}}_{k}) = \left[\frac{1+(n-1)t}{n} - h^{2}\right]\sigma_{P}^{2}$$
$$\operatorname{var}\left(\varepsilon + \overline{\mathbf{e}}_{k}\right) = \mathbf{R} = \operatorname{var}(\varepsilon) + \operatorname{var}(\overline{\mathbf{e}}_{k})$$
ignoring off-diagonals in **E**,
$$\mathbf{R}^{-1} = \left[c\sigma_{g}^{2} + \operatorname{var}(\overline{\mathbf{e}}_{k})\right]^{-1}$$
$$\frac{w_{n}}{\sigma_{e}^{2}} = \frac{1-h^{2}}{ch^{2} + \frac{1+(n-1)t}{ch^{2}} - h^{2}} \quad (=1 \text{ if } c = 0, n = 1)$$

n

Family Data

When means are from relatives, rather than the same individuals, genetic relationships can contribute to the intraclass correlation

Half-sib offspring averages as data

$$\overline{\mathbf{y}}_p = \mathbf{X}\mathbf{b} + \mathbf{M}\mathbf{a} + \left(\boldsymbol{\varepsilon} + \overline{\mathbf{e}}_p\right)$$

(i.e. y is means of observations on varying p offspring)

$$\operatorname{var}(\overline{\mathbf{e}}_{p}) = \left[\frac{0.75\sigma_{g}^{2} + \sigma_{e}^{2}}{p}\right]$$
$$\frac{w_{p}}{\sigma_{e}^{2}} = \frac{1 - h^{2}}{ch^{2} + \frac{4 - h^{2}}{p}}$$

FBVs as data $g = Ma + \varepsilon$ $\mathbf{g} + (\hat{\mathbf{g}} - \mathbf{g}) = \hat{\mathbf{g}} = \mathbf{M}\mathbf{a} + \varepsilon + (\hat{\mathbf{g}} - \mathbf{g})$ with $var(\hat{g} - g) = PEV > 0$ Similar to previous $g + e = Ma + \varepsilon + e$

where var(g+e) > var(g)

EBVs as data

 $g = Ma + \varepsilon$ $\mathbf{g} + (\hat{\mathbf{g}} - \mathbf{g}) = \hat{\mathbf{g}} = \mathbf{M}\mathbf{a} + \varepsilon + (\hat{\mathbf{g}} - \mathbf{g})$ with $var(\hat{g} - g) = PEV > 0$ Generally $\operatorname{var}(\hat{g} - g) = \operatorname{var}(g) + \operatorname{var}(\hat{g}) - 2\operatorname{cov}(\hat{g}, g)$ But BLUP has special shrinkage properties $\operatorname{cov}(\hat{g},g) = \operatorname{var}(\hat{g})$ so that $\operatorname{var}(\hat{g} - g) = \operatorname{var}(g) - \operatorname{var}(\hat{g})$ $r^2 = \frac{\operatorname{var}(\hat{g})}{1} \le 1$ so $0 \le \operatorname{var}(\hat{g}) \le \operatorname{var}(g)$ var(g)

Other Relevant Properties of BLUP

$$cov(\hat{g}, \hat{g} - g) = var(\hat{g}) - cov(\hat{g}, g)$$
$$= var(\hat{g}) - var(\hat{g}) = 0$$

So prediction errors are uncorrelated with estimated merit

Other Relevant Properties of BLUP

But
$$cov(g, \hat{g} - g) = cov(\hat{g}, g) - var(g)$$

= $var(\hat{g}) - var(g) < 0$
Really good animals are underestimated

Really bad animals are overestimated

Genomic Prediction

usual linear regression of y on (fixed) x

$$\beta_{y.x} = \frac{\operatorname{cov}(y, x)}{\operatorname{var}(x)},$$

(random) regression of EBV on markers $\hat{\mathbf{g}}$ on Ma involves $\operatorname{cov}(\hat{\mathbf{g}}, \mathbf{Ma}) \approx \operatorname{cov}(\hat{\mathbf{g}}, \mathbf{g})$ for small *c* But $\operatorname{cov}(\hat{\mathbf{g}}, \mathbf{g}) = \operatorname{var}(\hat{\mathbf{g}})$ will differ for every animal according to its accuracy r^2

Need to "inflate" observations

 $\mathbf{g} = \mathbf{M}\mathbf{a} + \varepsilon$ $\mathbf{g} + (\mathbf{k}\hat{\mathbf{g}} - \mathbf{g}) = \mathbf{k}\hat{\mathbf{g}} = \mathbf{M}\mathbf{a} + \varepsilon + (\mathbf{k}\hat{\mathbf{g}} - \mathbf{g})$ Want to choose k so that $\operatorname{cov}(\mathbf{g}, \mathbf{k}\hat{\mathbf{g}} - \mathbf{g}) = 0$ $\operatorname{cov}(\mathbf{k}\hat{\mathbf{g}}, \mathbf{g}) \text{ to be constant}$

Finding k

Want
$$\operatorname{cov}(\mathbf{g}, \mathbf{k}\hat{\mathbf{g}} - \mathbf{g}) = 0$$

 $\operatorname{cov}(\mathbf{g}, \mathbf{k}\hat{\mathbf{g}} - \mathbf{g}) = \mathbf{k}\operatorname{cov}(\mathbf{g}, \hat{\mathbf{g}}) - \operatorname{var}(\mathbf{g}) = \mathbf{k}\operatorname{var}(\hat{\mathbf{g}}) - \operatorname{var}(\mathbf{g})$
so we want $\mathbf{k} = \frac{\operatorname{var}(\mathbf{g})}{\operatorname{var}(\hat{\mathbf{g}})} = \frac{1}{r^2}$

Want $\operatorname{cov}(\mathbf{k}\hat{\mathbf{g}},\mathbf{g})$ to be $\operatorname{constant}(\operatorname{test}\operatorname{above}\mathbf{k})$ $\operatorname{cov}(\mathbf{k}\hat{\mathbf{g}},\mathbf{g}) = \mathbf{k}\operatorname{var}(\hat{\mathbf{g}}) = \frac{\operatorname{var}(\mathbf{g})}{\operatorname{var}(\hat{\mathbf{g}})}\operatorname{var}(\hat{\mathbf{g}}) = \operatorname{var}(\mathbf{g})$

Implications

Deregress by dividing EBV by their reliability

$$\frac{\hat{g}}{r^2} = d$$
, a deregressed EBV is

really an "observation" with $h^2 = r^2$ Observations have $h^2 = cov(g,y) / var(p)$ the regression of genotype on phenotype

$$\operatorname{cov}(g, \frac{\hat{g}}{r^2}) = \frac{1}{r^2} \operatorname{var}(\hat{g}) \quad and \quad \operatorname{var}(\frac{\hat{g}}{r^2}) = \frac{1}{r^4} \operatorname{var}(\hat{g})$$

so $\|h^2\| = \frac{r^4}{r^2} = r^2$

More Implications

But deregressed observations have heterogeneous variance

$$\operatorname{var}\left[\varepsilon + (k\hat{g} \cdot g)\right]$$
 with $k = r^{-2}$ so $kr^2 = 1$
 $\operatorname{var}(\varepsilon + k\hat{g} \cdot g) = \operatorname{var}(\varepsilon) + \operatorname{var}(k\hat{g} \cdot g)$
 $= \operatorname{var}(\varepsilon) + k^2 \operatorname{var}(\hat{g}) + \operatorname{var}(g) - 2k \operatorname{var}(\hat{g})$
 $= \operatorname{var}(\varepsilon) + k^2 r^2 \operatorname{var}(g) + \operatorname{var}(g) - 2kr^2 \operatorname{var}(g)$
 $= \operatorname{var}(\varepsilon) + (k-1)\operatorname{var}(g)$ and $k - 1 = \frac{1 - r^2}{r^2}$

Therefore the weights representing diagonals of \mathbf{R}^{-1} are

$$\frac{w}{\sigma_{e}^{2}} = \frac{1 - h^{2}}{\left[c + (1 - r^{2})/r^{2}\right]h^{2}}$$

Removing Parent Average

During the deregression process, parent average effects should be removed

Why?

Animals with own and/or progeny information are shrunk towards the parent average Imagine if many bulls had no own/progeny info They should not contribute anything to training Imagine if some parents were segregating a major effect We dont want this effect shrunk in all the offspring *Deregression* is no problem if deregressed information is derived

directly from animal models during evaluation

Removing Parent Average

Deregression and removal of parent average effects can be approximately achieved using only the EBV and r^2 values from trios of the training animal, its sire and dam, by setting up mixed model equations for the parent average and offspring, reconstructing the left-hand side to obtain the published reliabilities, before reconstructing the implied right-hand side to determine the deregressed observation and its appropriate r^2 ignoring the parental contribution

Genomic Selection Value in QTL detection and links to bioinformatics

Dorian Garrick dorian@iastate.edu

000

Q- Google

Ċ

+ III http://www.animalgenome.org/cgi-bin/gbrowse/cattle/#search

💭 🎹 Genetics Sel...n Evolution ESPN Sports Wolfram/Alpha Country-Wide WCGALP2010 SNPLOTZ GeneSeek - ...ta download Flint Rodent Data ISU ABG Seminars Animal Bree...n p/garrick

Cattle Genome Track - QTL, Coding regions, transcripts, SNPs, etc.

Showing 10 Mbp from Chr.15, positions 4,511,269 to 14,511,268

Instructions

Searching: Search using a sequence name, gene name, locus, or other landmark. The wildcard character * is allowed. Navigation: Click one of the rulers to center on a location, or click and drag to select a region. Use the Scroll/Zoom buttons to change magnification and position.

[Bookmark this] [Upload your own data] [Hide banner] [Share these tracks] [Link to Image] [High-res Image] [Help] [Reset]

Search

Chr.1, Chr.2, Chr.3, Chr.4, Chr.5, Chr.6, Chr.7, Chr.8, Chr.9, Chr.10, Chr.11, Chr.12, Chr.13, Chr.14, Chr.15, Chr.16, Chr.17, Chr.18, Chr.19, Chr.20, Chr.21, Chr.22, Chr.23, Chr.24, Chr.25, Chr.26, Chr.27, Chr.28, Chr.29, Chr.28, Chr.29, Chr.X

Add your own tracks

Tracks
 Display Settings

9

Update Image

Strong signal for subcutaneous fatdepth near *MC4R* gene on SSC1

Effect not due to patented polymorphism in MC4R gene

Strong LD detected in the region containing the *MC4R* gene on SSC1

Chromosome 1: 149,000,000-150,000,000

One Informative Locus

Strong signal for subcutaneous fatdepth near *MC4R* gene on SSC1

Chromosome 1: 27,059,047-27,536,386

Another informative locus

Conclusion

 Genomic Selection information should be part of a large scale bioinformatics system to properly exploit the gene discovery knowledge generated Using real-life (Illumina) genotypes

[Header]							
BSGT Version	3.3.4						
Processing Date	3/20/2009 11:20	PM					
Content	Kit-OvineSNP50_1	L1330224,	_D.bpm				
Num SNPs	54977						
Total SNPs	54977						
Num Samples	60						
Total Samples	60						
[Data]							
SNP Name	SampleID	Allele1-	-Forward	Allele2-	-Forward	GCScore	ХΥ
250506CS39000650	00002_1238.1	1	С	С	0.9239	0.039	1.031
250506CS39001405	500001_312.1	1	С	С	0.9613	0.003	0.631
250506CS39001768	300001_906.1	1	Т	Т	0.9573	0.869	0.023
250506CS39002116	500001_1041.1	1	G	G	0.9504	0.006	0.772
250506CS39002187	700001_1294.1	1	Т	С	0.9061	0.380	0.545
250506CS39002832	200001_442.1	1	A	С	0.9622	0.334	0.353
250506CS39003710	000001_1255.1	1	Т	С	0.9705	0.226	0.302
250506CS39003868	000001_696.1	1	Т	С	0.9024	0.776	0.781
250506CS39004144	¥00001_1178.1	1	С	С	0.9593	0.011	0.863
250506CS39004357	700001_1658.1	1	A	A	0.4358	0.797	0.002
250506CS39004641	L00001_519 . 1	1	Т	Т	0.9461	0.939	0.008
250506CS39004871	L00001_1521.1	1	A	G	0.8954	0.803	0.784
250506CS39005398	000001_471.1	1	Т	Т	0.9596	0.553	0.016
250506CS39010123	300001_913.1	1	Т	С	0.8424	1.091	0.993
250506CS39013005	500001_1084.1	1	С	С	0.8444	0.047	1.303

[Header] BSGT Version Processing Date Content Num SNPs Total SNPs Num Samples	3.3.4 1/12/20 BovineS 54001 54001 1319	09 1:06 / NP50_B.bp	4M om						
Iotal Samples	1319								
SND Name	Sample	ID	1مامالل	٨B	2مامال <u>ا</u>	٨B	v	v	CC Score
BECL_NCS_109695	167	B	R	- HD 0 020	1 450	- но 0 7266	0	1	oc Jeore
BECL MCS 100606	157	B	B	0.020 0.000	1 206	0.7200 0.9765			
DECI NCS 400704	107	D	D	0.007	4 405	0.0705			
DFGL-NG5-109701	157	ь.	D	0.047	1.105	0.0113			
BFGL-NGS-109702	157	A	В	0.521	0.886	0.3152			
BFGL-NGS-109705	157	В	В	0.035	1.115	0.7284			
BFGL-NGS-109707	157	A	В	1.052	0.906	0.7790			
BFGL-NGS-109711	157	В	В	0.019	1.137	0.8765			
BFGL-NGS-109712	157	A	В	0.308	0.656	0.7617			
BFGL-NGS-109714	157	A	A	1.254	0.060	0.9328			
BFGL-NGS-109716	157	A	В	0.540	0.804	0.8402			
BFGL-NGS-109720	157	A	A	0.875	0.028	0.8809			
BFGL-NGS-109722	157	В	В	0.016	0.937	0.8081			

 $2\frac{1}{2}$ - 3 Gb files per 1,000 animals

Index	Name	Chromosor	me Po:	sition GenTrain	SNP	ILMN S	trand	
1	250506CS3900065000002_	1238.1	15	5327353	0.8867	[A/G]	TOP	BOT
2	250506CS3900140500001_	312.1	23	27428869	0.9323	[A/G]	TOP	BOT
3	250506CS3900176800001_	906.1	7	89002990	0.9266	[T/C]	BOT	BOT
4	250506CS3900211600001_	1041.1	16	44955568	0.9173	[A/C]	TOP	BOT
5	250506CS3900218700001_	1294.1	2	157820235	0.8692	[A/G]	TOP	BOT
6	250506CS3900283200001_	442.1	1	203289635	0.9335	[A/C]	TOP	BOT
7	250506CS3900371000001_	1255.1	11	37632867	0.9464	[T/C]	BOT	BOT
8	250506CS3900386000001_	696.1	1 6	68297712	0.8658	[A/G]	TOP	TOP
9	250506CS3900414400001_	1178.1	1	111100644	0.9294	[T/C]	BOT	TOP

Roughly 1m bp per cM

Recode SNP names to your own index identifier
Quality control checks

- minor allele frequency
- Hardy-Weinberg equilibrium
- parentage agreement with pedigree

Quality control files

- by locus
- by sample

200710181109	73 AA	AB	BB	BB	AB	AB	BB	AB	AA
200710181109	75 AA	BB	BB	BB	BB	AA	BB	AB	AB
200710181109	77 AA	BB	BB	BB	BB	AA	BB	AA	AA
200710181109	79 AA	AB	BB	BB	BB	AA	BB	AB	AA
200710181109	81 AA	BB	BB	BB	BB	AA	BB	AA	BB
200710181109	83 AA	BB	BB	BB	BB	AA	BB	AB	AB
200710181109	85 AA	BB	BB	BB	AB	AA	BB	BΒ	AA
200710181109	87 AA	BB	BB	BB	BB	AA	BB	AB	AA
200710181109	89 AA	BB	BB	BB	BB	AA	BB	AB	AB
200710181109	91 AA	BB	BB	BB	AB	AA	BB	AB	AB
200710181109	93 AA	BB	BB	BB	BB	AA	BΒ	BΒ	AA
200710181109	95 AA	BB	BB	BB	AB	AA	BB	AB	AA

Convert every pair of alleles to a covariate

Consistent allele calling e.g. AA= -10, AB=0, B+10 1Gb storage for 10,000 animals

WG0056939-DNAA02_A990182 -10 10 10 0 0 -10 10 0 0 WG0056939-DNAA03_A990761 -10 10 10 10 10 -10 10 -10 0 WG0056939-DNAA04_A990802 -10 0 10 10 0 -10 10 -10 -1 WG0056939-DNAA05_A990027 -10 10 10 0 10 -10 10 0 -1 WG0056939-DNAA06_A990038 -10 0 10 0 10 -10 10 0 0 WG0056939-DNAA07_A990770 -10 10 10 10 0 -10 10 0 10 WG0056939-DNAA08_A990502 -10 0 10 10 10 10 0 0 WG0056939-DNAA08_A990515 -10 10 10 10 10 0 10 -10 -10 WG0056939-DNAA09_A990515 -10 10 10 10 0 10 -10 -10 WG0056939-DNAA10_A990564 -10 10 10 10 0 -10 10 0 10 WG0056939-DNAA11_A000684 -10 10 10 10 -10 -10 10 0 10 WG0056939-DNAA01_A001214 -10 10 10 10 -10 -10 10 0 10

Linkage Disequilibrium

Overall intent – BV on QTL

Overall intent – BV on QTL

Variation due to other genes

 A_1A_1

True Breeding Value

Practice – BV on SNP

 A_1A_1

 B_1B_1

Linkage Disequilibrium (LD) on bovine chromosome 1

1,000 mixed breeds half-sib groups

9

One Informative Locus

Another informative locus

Linkage Disequilibrium (LD)

After a few generations, suppose freq(M)=0.2

Marker genotypes

After a few generations, suppose freq(M)=0.2

Marker genotypes

After a few generations, suppose freq(M)=0.2=freq(Q)

Marker genotypes

Hardy-Weinberg Equilibrium (& LD)

After a few generations, suppose freq(M)=0.2=freq(Q)

Then LD is perfect & M is a direct indicator of the presence of Q

Linkage Equilibrium (LE)

After more generations with no change in gene frequencies

Marker genotypes

Hardy-Weinberg Equilibrium (& LE)

After more generations with no change in gene frequencies

Marker genotypes MM Mm mm 0.04 0.32 0.64 .0016 .0128 0.04 .0256 00 Linkage QTL Qq 0.32 .0128 .1024 .2048 Equilibrium genotypes .2048 .0256 .4096 0.64 qq

Then LE is perfect & M tells nothing about the presence of Q

Linkage Equilibrium (LE)

 But individual chromosome segments can only be one of four

Linkage Equilibrium (LE)

 So provided an animal is heterozygous for the marker and heterozygous for the QTL allele then we can use the marker provided we know the phase or marker-QTL haplotype

Forces modifying LE/LD

Continuously operating factors - Drift/inbreeding Especially small populations Recurrent migration Continuous mixing of populations with haplotypes at different frequencies - Selection Natural or artificial selection Can create LD between chromosomes (Bulmer effect)

Forces Modifying LE/LD (cont)

Sporadic factors

- Mutation when occurring in a specific haplotype
- Admixture/migration/crossing
- Population bottlenecks/founder effects

Simulated LD

 Although much is known about the impact of these continuous and sporadic effects on LD, it is hard to simulate LD that behaves in an identical manner to that we observe in real life data

- Genomic selection
- Haplotype construction

Low Density Panels

Faculty of Agriculture and Nutritional Science

C|A|U

Christian-Albrechts-University of Kiel Institute of Animal Breeding and Husbandry

Genomic Selection using Low-Density SNPs

David Habier Napapan Pyiasatian Jack Dekkers Rohan Fernando

Habier et al. 2009 Genetics 182: 343 - 353

Animal Breeding Genetics ated A

Introduction Implementation of GS

Original principle of Genomic Selection (GS)

High-density (HD) SNP genotypes used for both

- Estimation of marker effects (training)
- Prediction of GS-EBV for selection candidates

Not feasible for many species

Need Low- (<380) vs. High-density panel for routine implementation

- **??** \$50 vs. \$250 per animal **??**
- 'Standard' approach to developing Low-density panels:
 - Select the 'best' SNPs from the HD-panel
 - Trait and population specific

Proposed approach: use well-spaced Low-density SNP genotypes on selection candidates to 'fill in' missing HD SNP genotypes

Outline

- Introduction What is ELD-GS?
- Methods
- Published results
- Unpublished results
 - Criteria for loss of accuracy
 - Factors affecting loss of accuracy of ELD-GS
 - Precision of PDMs
 - Simulations Results
- Conclusions & outlook

Steps of proposed low-density genomic selection method:

- 1. Estimate marker allele effects of HD-SNPs Bayes-B
- 2. Infer HD-SNP haplotypes of training individuals
 - Requires parental HD-SNP genotypes
- 3. Trace HD-SNP alleles of selection candidates based on their LowD-SNP genotypes
 - Probability of descent of marker alleles
- 4. Predict GS-EBV of selection candidates
 - Weighted sum of effects of parental HD-SNP alleles

I. Estimation of HD-SNP effects

General statistical model:

$$\mathbf{y} = \mathbf{1}\boldsymbol{\mu} + \sum_{k} \mathbf{x}_{k} \boldsymbol{\beta}_{k} \boldsymbol{\delta}_{k} + \mathbf{e}$$

 $\mathbf{x}_k = \#$ "1" alleles carried at SNP k

b_k = substitution effect of SNP k
d_k = indicator variable for SNP k to be in (=1) or out (=0) of the model

BayesB is used here, but other methods modeling disequilibrium and co-segregation, dominance or epistasis can be used also.

of individual *i* at SNP *k*

Estimation of PDMs

- MCMC sampling:
 - Joint probabilities of sampled allele origins for adjacent ELD-SNP pairs were estimated
 - Information from all ELD-SNPs is utilized
 - Haplotype phases of HD-genotyped ancestors assumed known

IV. Prediction of GEBVs

• ELD-SNP genotyped offspring: $GEBV_{ELD} = \sum_{k}^{loci} \left(\hat{x}_{k}^{m} + \hat{x}_{k}^{p} \right) \hat{b}_{k}$

> Generation after training: $\hat{x}_k^m = p_k^m * x_k^m$ $\hat{x}_k^p = p_k^p * x_k^p$ Later generations: $\hat{x}_k^m = p_k^m * \hat{x}_k^m$ $\hat{x}_k^p = p_k^p * \hat{x}_k^p$

HD genotyped parents: $GEBV_{HD} = \sum_{k}^{loci} X \hat{b}_{k}$ $= \sum_{k}^{loci} \left(x_{k}^{m} + x_{k}^{p} \right) \hat{b}_{k}$

Tested by Simulation

Genome **Population Generation -1060 Random Mating** 10 chromosomes of 1 M $(N_{e} = 500)$ 20,000 SNPs ; 500 QTL **Generation -60 Random Mating** 1,000 SNPs selected $(N_{e}=100)$ after 1060 gener. **Generation -10 Population Growth** HD SNP spacing ~ 1 cM (N=100 to N=1000) LD SNPs at 10 or 20 cM Trait $h^2 = 0.5$ **Generation 1-3** 50 males x 500 females (N=1000) genotyping starts **Pedigree recording** and **Generation 4** Bayes-B (Meuwissen et al. '01) Training data (N=1000) → GS-EBV using HighD SNPs **Generation 4-7** 10 males x 100 females GS-EBV using LowD SNPs

Accuracy of GS-EBV based on High- and Low-Density SNP genotyping (20 Replicates) 500 QTL

Accuracy of GS-EBV based on High- and Low-Density SNP genotyping (20 Replicates) 500 QTL (~220 MAF>0.01)

Accuracy of GS-EBV based on High- and Low-Density SNP genotyping (20 Replicates) 500 QTL (~220 MAF>0.01)

Accuracy of GS-EBV based on High- and Low-Density SNP genotyping (20 Replicates) 500 QTL (~220 MAF>0.01)

Discussion & Conclusions

Genomic Selection can be implemented with low-density SNP genotyping of selection candidates

• Loss in accuracy limited: < 3.5% after 1 generation

< 8 % after 2 generations

with 300 equally spaced SNPs (10 cM)

- Loss in accuracy ~ independent of # QTL and # traits
- Lower rate of fixation of panel SNPs with selection \rightarrow slower accuracy decline
- Cost effectiveness needs to be analyzed
 - Depends on costs of Low- vs. High-density genotyping

\$40 *←*??*→* **\$180**

- Optimal implementation needs to be further analyzed
 - Which individuals to genotype HD / LD

Outline

- Introduction What is ELD-GS?
- Methods
- Published results
- Unpublished results
 - Criteria for loss of accuracy
 - Factors affecting loss of accuracy of ELD-GS
 - Precision of PDMs
 - Simulations Results
- Conclusions & outlook

Objectives of recent work

- Analyze factors affecting loss of accuracy with ELD-GS
 - Type and extent of LD
 - Precision of PDMs
- Analyze loss of accuracy under more realistic assumptions
 - LD based on a real pedigree

Criteria for loss of accuracy

• Accuracy of GEBV_{HD} and GEBV_{ELD} $GEBV_{HD} = \sum_{k}^{loci} X \hat{b}_{k}$

 $=\sum_{k=1}^{n}\left(x_{k}^{m}+x_{k}^{p}\right)\hat{b}_{k}$

$$GEBV_{ELD} = \sum_{k}^{loci} \left(\hat{x}_{k}^{m} + \hat{x}_{k}^{p} \right) \hat{b}_{k}$$

Uncertainty in tracking HD-SNP alleles
 Assumption: Only precision of PDMs affects loss of accuracy $\rightarrow \hat{b} = 1$

 Correlation between GEBV_{HD} and GEBV_{ELD} (lower bound)

Factors affecting accuracy from ELD-GS

Precision of PDMs

HD-genotyping of parents (see previous)

ELD-SNP spacing

Family structure

Simulations – Genome structure

8 chromosomes of 75 cM
 8000 HD-SNPs (Spacing 0.075 cM)
 MAF > 0.05
 800 QTL

Mutation rate 0.005 (important when historic LD simulated)

• \rightarrow # segregating QTL similar to no-LD case

```
ELD-spacing: 5, 8, 10, 12, 20 cM
MAF > 0.40
```

Simulations – Population

With historic LD

Generation -1060

Generation - 60

Generation -10

Generation 0

Random mating (N=500) Random mating (N=100) Population growth until N=1000 50 sires + 500 dams

4 pedigree generations start

Effect of HD genotyping of parents

4 scenarios	Dam	Sire
	×	×
	×	\checkmark
	\checkmark	×
	\checkmark	\checkmark

Assumption for HD-genotyped individuals:

- HD-SNP haplotypes are known
 - $\rightarrow \hat{x}^m, \hat{x}^p$ becomes x^m, x^p

(uncertainty from previous generations removed)

➔ Phases of ELD-SNPs assumed known also 86

HD genotypes in dams and sires

No HD genotypes on parents

HD genotypes in dams

HD genotypes in sires

Accuracy and % - loss of accuracy Historic LD – 8 chromosomes & 8 cM spacing (20 reps)

	HD-SNPs		G	Generation		
Method	Dam	Sire	2	3	4	
HD-GS	-	-	74.6	67.7	63.7	
			% loss from HD-GS			
BLUP	-	-	34.8	61.7	71.9	
ELD-GS	×	×	3.4	8.8	12.5	
	×	\checkmark	3.4	6.6	6.9	
	\checkmark	×	3.4	5.6	7.8	
	\checkmark	\checkmark	3.4	3.6	3.8	

Accuracy of GEBVs Historic LD – 8 chromosomes & 8cM spacing (20 reps)

Impact of ELD-SNP spacing/density

Effects of greater density:

Number of ELD-SNPs

Adjacent SNPs help infer phases and origins

Recombination between adjacent ELD-SNPs

No crossover:

Probability of receiving the HD grand-maternal allele

Crossovers

Probability of receiving the HD grand-maternal allele

ELD-SNP spacing:

% – Loss of accuracy

Both parents HD-genotyped

ELD-SNP	No. reps	Generation			
Spacing (cM)		2	3	4	
5	48	1.5	2.1	2.8	
8	48	2.4	3.7	3.0	
10	48	4.9	4.3	4.9	
12	48	4.1	4.1	6.6	
20	48	8.5	8.1	9.1	

Clear trend of loss of accuracy

Effect of Family structure

Number of maternal and paternal sibs

If a parent is HD-genotyped
 ELD-SNP phases of parent assumed known

parental sibs has no effect on precision of PDMs

Family structure

% – Loss of accuracy (8 cM)

No. dam/sire ↑ → No. paternal sibs ↑ same No. maternal sibs

Only females HD-genotyped

No. dams/sire	No. reps	Generation			
		2	3	4	
1	48	2.4	4.4	5.0	
2	48	2.8	5.6	6.6	
3	43	2.5	5.6	5.5	

Family structure

% – Loss of accuracy (8 cM)

No. full sibs $\uparrow \rightarrow$ No. maternal and paternal sibs \uparrow

Parents not HD-genotyped

No. full sibs	No. reps	Generation		
		2	3	4
2	48	2.4	5.6	8.9
4	48	3.2	6.7	12.5
6	13	6.5	9.2	12.2

So far there is no trend. Again need more replicates!

Simulation with real pedigree

- 8 chromosomes
- 200 QTL/chromosome
- Heritability 0.5 for female phenotypes, 0.8 for male phenotypes
- No historic LD, only LD from the pedigree

Simulations – Population With Historic LD

Generation -1050

Random mating (N=500)

Generation - 50

Random mating (N=100)

Real pedigree (13 generations) 1500 males + 1500 females

4 pedigree generations start

Linkage disequilibrium Historic LD – Real pedigree

Accuracy of GEBVs Historic LD – real pedigree (8 chromosomes & 8cM)

Discussion & Conclusions

Genomic Selection can be implemented with low-density SNP genotyping of selection candidates

Loss in accuracy limited: < 3.5% after 1 generation

< 8 % after 2 generations

with 300 equally spaced SNPs (10 cM)

- Loss in accuracy ~ independent of # QTL and # traits
- Lower rate of fixation of panel SNPs with selection \rightarrow slower accuracy decline
- Cost effectiveness needs to be analyzed
 - Depends on costs of Low- vs. High-density genotyping

\$40 *←*??*→* **\$180**

- Optimal implementation needs to be further analyzed
 - Which individuals to genotype HD / LD

Pooling Genomic and Pedigree Predictions

One-step assumptions

What is covariance between genotyped and ungenotyped? Is **A** an appropriate scaled var-covariance matrix given **G** on relatives?

Misztal et al, 2009 JDS 92:4648

Problematic

- It doesn't seem right that knowledge of genotyped animals cannot contribute to any modification of the relationships among non genotyped individuals
- For example, if parents are genotyped and shown to be more or less inbred and/or related than expected, progeny relationships should be suitably modified to reflect this information
 - This would happen, for example, if the tabular method to construct A was being used
Second Attempt

Second Attempt

Which has a straightforward inverse

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix} \boldsymbol{\sigma}_{g}^{2}$$

But did not work very well in practice

Third Attempt

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \lambda \left(\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \right) \end{bmatrix} \sigma_g^2$$

Which worked better for an arbitrary (ad-hoc) λ from trial and error and is somewhat computationally attractive (for small order G)

Note that **G** can be regressed towards **A** to improve stability

Legarra et al. jds.2009-2730

Implications of Second Attempt

If
$$\operatorname{var}\left[u_{pedigree}\right] = \left[A_{11} + A_{12}A_{22}^{-1}(\mathbf{G} - A_{22})A_{22}^{-1}A_{21}\right]\sigma_g^2$$

Then we could improve the evaluation of pedigree animals by updating their var-covariance matrix according to genotyped offspring without any of their own performance information

In place of the inverse-NRM $\mathbf{A}_{11}^{-1} \sigma_g^{-2}$ we would use $\begin{bmatrix} \mathbf{A}_{11} + \mathbf{A}_{12} \mathbf{A}_{22}^{-1} (\mathbf{G} - \mathbf{A}_{22}) \mathbf{A}_{22}^{-1} \mathbf{A}_{21} \end{bmatrix}^{-1} \sigma_g^{-2}$

How do these two alternatives compare (when $G \neq A_{22}$)?

Simple Example

- Suppose we have two non-inbred unrelated parents that produce two full-sib offspring
- The full A-matrix is

 And the parental A-matrix that is relevant if the offspring have no records of their own is the leading 2x2 submatrix (an identity matrix of order 2)

Genomic matrix for offspring

- The genomic matrix might differ from the pedigree-based relationship matrix by demonstrating the
 - full-sibs have an additive relationship > 0.5
 - full-sibs have an additive relationship < 0.5</p>
 - One or more of the fullsibs is inbred a_{ii}<1
- How do these modifications alter the additive variance-covariance matrix among the two parents?

Consider the exact solution

- Suppose the genotyping is for two loci, A & B, that completely determine the trait
 - Fullsib1 is $A_1A_1 B_1B_2$
 - Fullsib2 is $A_2A_2 B_1B_2$ locus A is $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, locus B is $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$,

locus A is
$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
, locus B is $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
giving pooled $\mathbf{G} = \begin{bmatrix} 1.5 & 0.5 \\ 0.5 & 1.5 \end{bmatrix}$

– How would this modify our assessment of the sire and dam?

 At locus A, both parents must be heterozygous since they have offspring homozygous for the alternate forms

locus A the parents are
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

Offspring Frequencies	Dam	B ₁ B ₁	B ₁ B ₂	B ₂ B ₂
Sire	HW freq	0.25	0.5	0.25
B_1B_1	0.25	1/16	1/8	1/16
B_1B_2	0.5	1/8	1/4	1/8
B_2B_2	0.25	1/16	1/8	1/16

Probability each parent combination produces B_1B_2

Offspring Frequencies	Dam	B ₁ B ₁	B ₁ B ₂	B ₂ B ₂
Sire	HW freq	0.25	0.5	0.25
B_1B_1	0.25	1/16 <mark>(0)</mark>	1/8 <mark>(0.5)</mark>	1/16 <mark>(1)</mark>
B_1B_2	0.5	1/8 <mark>(0.5)</mark>	1/4 <mark>(0.5)</mark>	1/8 <mark>(0.5)</mark>
B_2B_2	0.25	1/16 <mark>(1)</mark>	1/8 <mark>(0.5)</mark>	1/16 <mark>(0)</mark>

Probability each parent combination produces B₁B₂

Offspring Frequencies	Dam	B ₁ B ₁	B ₁ B ₂	B ₂ B ₂
Sire	HW freq	0.25	0.5	0.25
B_1B_1	0.25	1/16 <mark>(0)</mark>	1/8 <mark>(0.5)</mark>	1/16 <mark>(1)</mark>
B_1B_2	0.5	1/8 <mark>(0.5)</mark>	1/4 <mark>(0.5)</mark>	1/8 <mark>(0.5)</mark>
B_2B_2	0.25	1/16 <mark>(1)</mark>	1/8 <mark>(0.5)</mark>	1/16 <mark>(0)</mark>

Probability each parent combination produces two full sibs that are B_1B_2

0	1/8 <mark>(0.5)^2</mark>	1/16 <mark>(1) ^2</mark>
1/8 <mark>(0.5) ^2</mark>	1/4 <mark>(0.5) ^2</mark>	1/8 <mark>(0.5) ^2</mark>
1/16 <mark>(1) ^2</mark>	1/8 <mark>(0.5) ^2</mark>	0

	Dam	B ₁ B ₁	B ₁ B ₂	B ₂ B ₂
Sire	HW freq	0.25	0.5	0.25
B_1B_1	0.25	0	1	2
B_1B_2	0.5	1	2	1
B_2B_2	0.25	2	1	0

Probability each parent combination produces two full sibs that are B_1B_2

0	1/8 (0.5)^2	1/16 <mark>(1) ^2</mark>
1/8 <mark>(0.5) ^2</mark>	1/4 <mark>(0.5) ^2</mark>	1/8 <mark>(0.5) ^2</mark>
1/16 <mark>(1) ^2</mark>	1/8 <mark>(0.5) ^2</mark>	0

	Dam	B ₁ B ₁	B ₁ B ₂	B ₂ B ₂
Sire	HW freq	0.25	0.5	0.25
B_1B_1	0.25	0	1	2
B_1B_2	0.5	1	2	1
B_2B_2	0.25	2	1	0

We need to calculate the parents genomic matrix for locus B by deriving the genomic matrix B for each of the above 9 parental combinations (or 7 cells with probabilities>0) and weight each genomic matrix by its probability (NB symmetry)

	$1/32 B_1 B_1 \times B_1 B_2$	$2/32 B_1 B_1 \times B_2 B_2$
1/32 B ₁ B ₂ ×B ₁ B ₁	2/32 B ₁ B ₂ ×B ₁ B ₂	1/32 B ₁ B ₂ ×B ₂ B ₂
2/32 B ₂ B ₂ ×B ₁ B ₁	1/32 B ₂ B ₂ ×B ₁ B ₂	

Possible B-locus Parental Genomic Matrices

Possible B-locus Parental Genomic Matrices

	1/32 B ₁ B ₁ ×B ₁ B ₂	2/32 B ₁ B ₁ ×B ₂ B ₂
	$\left[\begin{array}{rrr} 2 & 1 \\ 1 & 1 \end{array}\right]$	$\left[\begin{array}{rrr} 2 & 0 \\ 0 & 2 \end{array}\right]$
1/32 B ₁ B ₂ ×B ₁ B ₁	2/32 B ₁ B ₂ ×B ₁ B ₂	1/32 B ₁ B ₂ ×B ₂ B ₂
$\left[\begin{array}{rrrr}1&1\\1&2\end{array}\right]$	$\left[\begin{array}{rrr}1&1\\1&1\end{array}\right]$	$\left[\begin{array}{rrr}1&1\\1&2\end{array}\right]$
2/32 B ₂ B ₂ ×B ₁ B ₁	$1/32 B_2 B_2 \times B_1 B_2$	
$\left[\begin{array}{rrr} 2 & 0 \\ 0 & 2 \end{array}\right]$	$\left[\begin{array}{rrr} 2 & 1 \\ 1 & 1 \end{array}\right]$	

Parental Genomic Matrix Pooled across the A & B loci

Summary

Clearly, the Legarra et al approach is not giving the exact answer