Deregression and weighting
information from various sources



ldeal Model (Equation) & data

g=1u+Ma+¢

g 1s (true) genetic merit (BV)

M 1s columns of covariates (genotypes)
a are substitution etfects

€ 1s lack-of-fit (hopetully small)



ldeal Model & data

g=1u+Ma+¢

g 1s genetic merit (BV)

var(g)=A? or G?

var(Ma) =G genomic relationships

2
o)
var(e)=10.? or cA?forc= %2

8

the fraction of var(g) unaccounted by markers



g=1u+Ma+¢
g 1s genetic merit (BV)
var(g) = TG§ where T from LD / LA

var(Ma) = Go,, genomic relationships

var(e¢) = Eo’

(= 0 1if markers competely explained merit)

2
: O
approximate E as cAc?, forc="¢/_,
§ O
8

Ma 1s random even if a 1s fixed



Towards a Practical Model

g+e=1u+Ma+(c+e)
g 1S (true) genetic merit (BV)
e 1s usual e

(g + €) is phenotype (no fixed effects)

_ 2 2 _
var(€ +e)=cAo, +1o, since cov(e,e') =0



Practical Model

y = Xb + Ma + (& +e)
Xb are usual fixed effects

. 2 2
var(€ +e)=cAo, + 10,

2
e

Not reasonable to assume var(e+e) =10
unless markers are fitting very well or

a polygenic eftect 1s fitted

But we do all the time ! And the results are fairly similar



Repeated records on the Individual
y.=Xb+Ma+(e+¥€,)
(1.e.y 1s means of varying k numbers of observations)

I+ (n—1) —hz}di

n
Var(g + Ek) = R = var(€) + var(e, )

var(e, ) = [

ignoring off-diagonals in E,

R'I:[ccz + var(e, )]_1

W 1—h*

L = (=1if c=0,n=1)
2 —
o o ltn=Dr_

n



Family Data

When means are from relatives,

rather than the same individuals,
genetic relationships can contribute

to the intraclass correlation



Half-sib offspring averages as data

y, =Xb+Ma+(e+Ep)

(1.e.y 1s means of observations on varying p offspring)

B _0.75(75 +0?
var(e,) =
i p _
W, _ 1-h
2 4 _h2
. ch® +

P



EBVs as data

g=Ma+¢
g+(@-g)=g=Ma+e+(@-g)
with var(g—g)= PEV >0

Similar to previous
g+e=Ma+e+e
where var(g+e) > var(g)



EBVs as data

g=Ma+¢
g+(g-g)=g=Ma+e+(g-g)
with var(g—g)= PEV >0
Generally var(g — g) = var(g) + var(g) — 2 cov(g, g)
But BLUP has special shrinkage properties
cov(g,g) = var(g) so that var(g — g) = var(g) — var(g)
o vard)

<1 so 0<var(g)<var(g)
var(g)




Other Relevant Properties of BLUP

cov(g,g — g) = var(g)— cov(g,g)
= var(g)— var(g)=0
So prediction errors are uncorrelated with

estimated merit
g




Other Relevant Properties of BLUP

But cov(g,8 — g) = cov(g,g) — var(g)
= var(g) — var(g) <0
Really good animals are underestimated

Really bad animals are overestimated

8

o>
I
oQ



Genomic Prediction

usual linear regression of y on (fixed) x

_cov(y, X)

ﬁy.x — ?

var(x)

(random) regression of EBV on markers
g on Ma involves cov(g, Ma) = cov(g,g) for small ¢

But cov(g,g)=var(g) will differ for every animal

. . )
according to 1ts accuracy r



Need to “inflate” observations

g=Ma+¢
g+(kg-g)=kg=Ma+c+(Kkg-g)
Want to choose k& so that
cov(g,kg-g)=0

cov(kg,g) to be constant



Finding k

Want cov(g,kg-g)=0
cov(g,kg - g) = kcov(g,g) - var(g) = kvar(g) - var(g)

1
so we want k = var(g) = —

var(g) N

Want cov(kg,g) to be constant (test above K)

var(g)

~—var (g)=var(g)
var(g)

cov(kg,g)=k var (g)=



Implications
Deregress by dividing EBV by their reliability
g
2

=d, a deregressed EBV is

really an "observation" with h* = r”

Observations have h> = cov(g,y)/ var(p)
the regression of genotype on phenotype

0 1 R 0 1 R
cov(g,%) =—var(g) and Var(%) = —var(g)
r r r r

4
2 2
SOHh ":r/:
r



More Implications

But deregressed observations have heterogeneous variance
var| e+(kg-g) |with k=r" so kr* =1
Var(8+k§—g)= var (&) + var(kg-g)

)+ k*var(g)+ var(g) — 2k var(g)

1—r°

var(e
Var( )+ k*r’var(g)+ var(g) — 2kr® var(g)
var(e

)+ (k—1)var(g) and k—1=

Therefore the weights representing diagonals of R™ are
w 1-h°

(762 - [c+(1—r2)/r2}h2




Removing Parent Average

During the deregression process, parent average effects

should be removed

Why?

Animals with own and/or progeny information are shrunk
towards the parent average

Imagine if many bulls had no own/progeny info

They should not contribute anything to training

Imagine if some parents were segregating a major effect

We dont want this effect shrunk in all the offspring

Deregression 1s no problem if deregressed information is derived

directly from animal models during evaluation



Removing Parent Average

Deregression and removal of parent average effects

can be approximately achieved using only the EBV and r’
values from trios of the training animal, its sire and dam,
by setting up mixed model equations for the parent average
and offspring, reconstructing the left-hand side to obtain
the published reliabilities, before reconstructing the implied

right-hand side to determine the deregressed observation

and its appropriate r° ignoring the parental contribution
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Strong signal for subcutaneous

fatdepth near MC4R gene on SSC1
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Effect not due to patented

polymorphism in MC4R gene

0 1000 2000 3000 4000 5000 6000

ssc1$Marker




Strong LD detected in the region

containing the MC4R gene on SSC1

Chromosome 1: 149,000,000-150,000,000

chromosome 1 [ I

Contigs
HsMm/Bt orths
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Strong signal for subcutaneous

fatdepth near MC4R gene on SSC1
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Chromosome 1: 27,059,047-27,536,386

chromosome 1 [ I
Export image
« Region overview l Region in detail help Markers »
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26.80 Mb 26.90 Mb 27.00 Mb 27.10 Mb 27.20 Mb 27.30 Mb 27.40 Mb 27.50(Mb 27.60 Mb 27.70 Mb
Contigs ;
HsMm/Bt orths T ! T D S USRS ———
Ll "HUMHOMG0000027523( "HUMHOMG00000347294 1
"HUMHOMG00000237264 1
26.80 Mb 26.90 Mb 27.00 Mb 27.10 Mb 27.20 Mb /27.30 Mb 27.40 M 27.50Mb 27.60 Mb 27.70 Mb
Ensembl Sus scrofa version 53—{Sscrofa8) Chromosome 1: 26,797,716 /27,797,715
[ I I I I 1 - - I I I ]
T
(=2} (=21 (=2} (=2} o (=2} (=2} o o o o o o ~—
(=] [==] (=] w w (=] (==} (=] (=0} (=0} (=] (=0} (=2} (=]
1 2 3 4 5 6 7 10 1 12 13 14 15 16
0 2 25 g 25 2 1 0
i 15 10 25 i 4 10
0 o 10 A 4 0 0 1 24 0 4
0 10 \ 4 25 0
2 22 A 0 0 0 0 1
4 0 4 1 g 1] 0 10
0 16 1 B 1 0 e
1 11 11 0 1]
0 27 ) 4 7 0 |
1 1 4 1 1
2] A b 2b .



Another informative locus
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Conclusion

« Genomic Selection information should
be part of a large scale bioinformatics
system to properly exploit the gene
discovery knowledge generated




Using real-life (lllumina)
genotypes




[Header ]
BSGT Version 3.3.4

Processing Date 3/28/2009 11:286 PM
Kit-0OvineSNPEBA_11336224_D.bpm

Content
Num SHNPs 54977
Total SNPs 54977

Num Samples 6@
Total Samples 68
[Data]

SNP Name
258506C53900065000002_1235 .1
25A506C53900140500001_312 .1
25A506C539001 76500001 _906 .1
258506C53900211600001_16041 .1
258506C53900218700001_1294 .1
25A506C53900283200001_442 .1
258506C53900371000001_1255 .1
258506C53900356000001_696.1
258506C53900414400081_1175.1
258506C539004357000A1_1655.1
25A506C53900464100081_519.1
258506C53900457100001_1521 .1
25A506C53900539000081 _471 .1
258506C53901012300081_913.1
258506C539015300500001_16054 .1

1

PR RPRRPRRPRRERRRERRRRERRR

C

O~ 4> A > OO0~ ~AF -0 -0

OO0 -4 0O 4> 0000000 -0

a

LU U UL UL U UL UL UL U U U U U

9239
9613
L9573
.9504
9061
9622
L9785
9024
.9593
4353
9461
.5954
9596
0424
0444

AP OO0 000000000000 O®

1

P OO0 00000000 O®

samplelD Allelel-Forward Al leleZ-Forward GCScore X Y

831
631
823
772
545
353
382
781
863
.02
.B85
. 784
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[Header ]
B3GT Version 3.3.4
Processing Date 1/12/2089 1:06 AM

Content BovineSNPSA_E .bpm
Num SNPs 54001
Total SNPs 54001

Num Samples 1319
Total Samples 1319

[Data]

SNP Name Sample ID Allelel - AB Allelez - AB X ¥ GC Score
BFGL-NG5-189695 157 B B a.8268 1.458 B0.7266
BFGL-NG5-189696 157 B B a.889 1.266 B.8765
BFGL-NGS5-189781 157 B B a.847 1.185 8.8113
BFGL-NG5-1897682 157 P B a.521 B.886 B.3152
BFGL-NGS-189785 157 B B a.e35 1.115 0.7264
BFGL-NGS-189787 157 & B 1.852 8.986 0.7798
BFGL-NGS5-189711 157 B B g.819 1.137 8.8765
BFGL-NGS5-189712 157 P B A.388 B.656 8.7617
BFGL-NG5-189714 157 P P 1.25¢ 6.868 0.9328
BFGL-NG5-189716 157 P B A.548 B.864 0.5482
BFGL-NGS5-189726 157 A A a.875 B.828 0.5589
BFGL-NG5-189722 157 B B a.816 B.937 0.86851

2> - 3 Gb files per 1,000 animals




WO -0 N WOMN

Name Chromosome Position GenTrain

2505A6C53900065000002_1235 .1

2505A6C539001 76500001 _906 .1
2505A6C53900211600001_1A41 .1
2505A6C53900215700001_1294 .1
25B5A6C539002835200001_442 .1
2505A6C53900371000001_1255 .1
Z25A5A6C53900356000001_696.1
2505A6C53900414400001_1175.1

15 5327353
23 27423869
7 89002990

16 44955568
2 157820235

1 203289635

11 37632867
66297712

1111668644

Roughly 1m bp per cM

Recode SNP names to your own index identifier

DO 00000003

ILMN Strand

[A/G]
[A/G]
[T/C]
[A/C]
[A/G]
[A/C]
[T/C]
[A/G]
[T/C]

TOP
TOP
BOT
TOP
TOP
TOP
BOT
TOP
BOT




208710151168973
20871015116975
20871015116977
20a71015116979
20871015116951
208710151168933
20a718151168935
20871015116937
20a71015116939
20871015116991
20871015116993
20871615116995

Quiality control checks

- minor allele frequency

- Hardy-Weinberg equilibrium

- parentage agreement with pedigree

Quiality control files
- by locus
- by sample




208710818116973 AA ABE BE BE AE AB BE AE AA
20a716818116975 AA BE BB BE BE AA BE AE AB
20871818116977 AA BE BE BE BE AA BE AA AA
208710818116979 AA AE BE BE BE AA BE AE AA
L R S LN S T ARl Convert every pair of alleles to a covariate
20a710818116953 AA BE BE BE BE AA BE AE AB
20871818116935 AA BE BE BE ABE AA BE BE AA
208710818116957 AA BE BE BE BE AA BE AE AA
20a710818116959 AA BE BE BE BE AA BE AE AB
200710818116991 AA BE BB BE AE AA BE AE AB
20871818116993 AA BE BE BE BE AA BE BE AA
20871618116995

Consistent allele calling e.g. AA= -10, AB=0, B+10
1Gb storage for 10,000 animals

WGBBE6939-DNAABZ _A990152 16 16 6 B -16 16 B B
WGBBE6939-DNAABS_A99A761 -160 16 16 16 16 -16 168 -16 @
WGBBE6939-DNAABY_A99050Z -16 A 16 16 A -16 16 -18 -1
WGBBRE6939-DNAABS_A990027 -10 16 16 6 16 -16 16 68 -1
WGBBE6939-DNAABG_A990A35 -160 @ 16 6 16 -16 16 -168 6
WGBBE6939-DNAABT _A990770 -160 16 16 16 6 -16 16 6 16
WGBBE6939-DNAABS _A990502Z -10 A 16 16 16 16 16 A B
WGBBE6939-DNAABS_A990515 -16 16 16 16 16 6 16 -18 -16
WGBRE6939-DNAALA_A99A564 -1 16 1A 16 A -16 18 -18 -16
WGBBE6939-DNAALL_ABBBGE4 -16 16 16 16 -168 -16 16 6 16
WGBBb6939-DNABO1_ABB1214 -16 16 16 16 -168 -16 16 8 16




Linkage Disequilibrium




Overall intent — BV on QTL

Variation due to
other genes
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Overall intent — BV on QTL

Variation due to
other genes
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Practice — BV on SNP
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Practice — BV on SNP
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LD

Linkage Disequilibrium (LD) on bovine chromosome 1

1.0

LD indicates the ability of observed SNP to act as surrogates
(of other SNP)

0.8

Hope this reflects the LD between SNP and QTL

0.6

04

0.2

0.0

1,000 mixed breeds half-sib groups cM
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Another informative locus
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Linkage Disequilibrium (LD)

m q




Hardy-VWeinberg Equilibrium

After a few generations, suppose freq(M)=0.2

Marker genotypes

A
- I

MM Mm mm
0.04 0.32 0.64

QTL /
genotypes




Hardy-VWeinberg Equilibrium

After a few generations, suppose freq(M)=0.2

Marker genotypes

A
- I

MM Mm mm
0.04 0.32 0.64

[ QQ
And suppose M was “close enough” to Q that a

QTL crossover between them never occurred

genotypes { Qd then freq(Q)=0.2

L qag




Hardy-VWeinberg Equilibrium

After a few generations, suppose freq(M)=0.2=freq(Q)

Marker genotypes

A
- I

MM Mm mm
0.04 0.32 0.64

[ QQ 0.04

QTL 0.32
genotypes< Qa O

. 9qq 0.64




Hardy-Weinberg Equilibrium (& LD)

After a few generations, suppose freq(M)=0.2=freq(Q)

Marker genotypes

A
- I

MM Mm mm
0.04 0.32 0.64

( QQ 0.04 0.04

QTL 0.32
genotypes< Qa 0.

. 9qq 0.64 0.64

Then LD is perfect & M is a direct indicator of the presence of Q




Linkage Equilibrium (LE)

M Q

q

crossover




Hardy-VWeinberg Equilibrium

After more generations with no change in gene frequencies

Marker genotypes

A
- I

MM Mm mm
0.04 0.32 0.64

[ QQ 0.04

QTL 0.32
genotypes< Qa O

. 9qq 0.64




Hardy-Weinberg Equilibrium (& LE)

After more generations with no change in gene frequencies

Marker genotypes

A
- I

MM Mm mm
0.04 0.32 0.64

( QQ 0.04 .0016 .0128 .0256

gen%fpres< Qq 0.32 .0128 .1024 .2048

. 99 0.64 .0256 .2048 .4096

Then LE is perfect & M tells nothing about the presence of Q




Linkage Equilibrium (LE)

¢ But individual chromosome segments
can only be one of four




Linkage Equilibrium (LE)

¢ SO provided an animal is
heterozygous for the marker and
heterozygous for the QTL allele then
WE can Use the marker provided we
KNOW! the phase or marker-Qiit
naplotype

M Q

m q

M indicates Q m indicates Q




Forces modifying LE/LD

¢ Continuously operating factors

— Drift/inbreeding
¢ Especially small populations

— Recurrent migration

¢ Continuieus mixing off populations with
NaplotypeS at different irEqUERNCIES

= Selection
¢ Natlrallor artificial selection

¢ Can create LD EetWEER CHEOMIOSOMES
(BUIMERERMECE)




Forces Modifying LE/LD (cont)

¢ Sporadic factors

— Mutation — wWhen occurring in a SPECIfic
naplotype

— Admixture/migration/crossing

— Population bottlenecks/foUnder EMECES




Simulated LD

¢ Although much is known about the
Impact off these continuous and
sporadic effects on LD, it Is hard to
simulate LD that behaves in an
ldenticall manner tor that We obServe
In real life data
—GENOmMIC SElection

—Haplotyperconstrtiction




Low Density Panels
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Genomic seleCtion Meuwissen et al. 2001
| Genetlc Evaluation usmg hlgh denS|ty SNPs
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enomlc se ec Ion Meuwissen et al. 2001
Genetic Evaluation using high-density SNPs
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[OWA STATE
UNIVERSITY

Implementation of GS

Original principle of Genomic Selection (GS)

High-density (HD) SNP genotypes used for both

« Estimation of marker effects (training)
* Prediction of GS-EBV for selection candidates

Not feasible for many species

Need Low- (<380) vs. High-density panel for routine implementation

?? $50 vs. $250 per animal ??

‘Standard’ approach to developing Low-density panels:
« Select the ‘best’ SNPs from the HD-panel

Trait and population specific

Proposed approach: use well-spaced Low-density SNP genotypes on
selection candidates to ‘fill in’ missing HD SNP genotypes



Outline

Introduction — What is ELD-GS?
Methods
Published results
Unpublished results
Criteria for loss of accuracy

Factors affecting loss of accuracy of ELD-GS
Precision of PDMs

Simulations — Results

Conclusions & outlook

65



Concept of Low-Density Ry
- - IOWA STATE
Genomic Selection UNIVERSITY

+HHHHHH ternal

Progeny r'?litimu
0t 1T Twes] T ]

Dam d hatornal

Sum estimates of effects

HD-GS = EBV, = (g™, + g’ ) of maternal and paternal
L SNP alleles

LD-GS > EBVi=__ (Qroi+ R0+ 9.+ pPg" )
<~ 0

Probability that i received dam’s maternal allele at SNP k



L1858 2008 Y
Methods [OWA STATE

UNIVERSITY
Lo wes|

HHHHH HHHHHHHHHHHH pat al
Y R maternal

Progen

S S R N R 21 N

Steps of proposed low-density genomic selection method:

1. Estimate marker allele effects of HD-SNPs — Bayes-B

2. Infer HD-SNP haplotypes of training individuals
Requires parental HD-SNP genotypes

3. Trace HD-SNP alleles of selection candidates
based on their LowD-SNP genotypes

Probability of descent of marker alleles

4. Predict GS-EBV of selection candidates
Weighted sum of effects of parental HD-SNP alleles

67



I[. Estimation of HD-SNP effects

General statistical model:
y=1u Zxkﬂk5k €
k

x, = # “1” alleles carried at SNP &

b, = substitution effect of SNP &
d, = indicator variable for SNP & to be in (=1)
or out (=0) of the model

BayesB is used here, but other methods
modeling disequilibrium and co-segregation,

dominance or epistasis can be used also. o8



[I. Infer HD-SNP haplotypes

In the training generation, haplotypes must be
inferred for males and females

Parent i

e |

m
Xik»Xik = maternal and paternal allele states

of individual / at SNP k

69



ITI. Track HD-SNP alleles

Parent i

__ Progeny

|
e bbb bbb

| __m
:p ik Probability of Descent of
',/ Marker alleles (PDMs)
|pik

\4
e aaaaassss s Bl Ll T S o e i n s anssassassnassannsl

[ R A N R A

Genotyped for evenly-
spaced LD-SNPs

70



Estimation of PDMs

MCMC sampling:
Joint probabilities of sampled allele origins for
adjacent ELD-SNP pairs were estimated

Information from all ELD-SNPs is utilized

Haplotype phases of HD-genotyped ancestors
assumed known

71



IV. Prediction of GEBVs

ELD-SNP genotyped offspring:

loci

GEBV,, =Y (5 +5/ )b,
k
Generation after training: x," = p," * x,"

. . omo_ Mmook om
Later generations: X, =P "X,

HD genotyped parents:

loci

GEBV,,=Y X
k

loci

= ;(x,’f + )I;k
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Tested by Simulation

Population

Generation -1060 Random Mating
(N.=500)
Random Mating

(N,=100)

Generation -60

Generation -10 Population Growth

(N=100 to N=1000)

50 males x 500 females
(N=1000)

genotyping starts

Generation 1-3

Pedigree recording

Generation 4 Training data

(N=1000)
Generation 4-7

1858 = 2005 [

IOWA STATE
UNIVERSITY

Genome
10 chromosomes of 1 M
20,000 SNPs ; 500 QTL
1,000 SNPs selected
after 1060 gener.
HD SNP spacing ~ 1 cM

LD SNPs at 10 or 20 cM
Trait h2= 0.5

Bayes-B (Meuwissen et al. ‘01)

GS-EBV using Hi%hD SNPs

10 males x 100 females —___ GS-EBV using LowD SNPs
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1858 = 2008 /9

IOWA STATE
UNIVERSITY

25-/I
200 QTL

Generaton @2 @3 O4

204

% loss in accuracy

ELD-10 ELD-10+
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[OWA STATE

UNIVERSITY

Genomic Selection can be g;?\'

implemented with low-density SNP o0l i
genotyping of selection candidates “ gl

» Loss in accuracy limited: < 3.5% after 1 generation " S 7

<8 % after 2 generations
with 300 equally spaced SNPs (10 cm)
 Loss in accuracy ~ independent of # QTL and # traits
» Lower rate of fixation of panel SNPs with selection = slower accuracy decline

* Cost effectiveness needs to be analyzed
* Depends on costs of Low- vs.  High-density genotyping
$40 €«??7> $180
» Optimal implementation needs to be further analyzed

Which individuals to genotype — HD / LD
79



Outline

Unpublished results
Criteria for loss of accuracy

Factors affecting loss of accuracy of ELD-GS

Precision of PDMs

Simulations — Results

Conclusions & outlook
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Objectives of recent work

Analyze factors affecting loss of accuracy with
ELD-GS

Type and extent of LD
Precision of PDMs

Analyze loss of accuracy under more realistic
assumptions

LD based on a real pedigree

Funding from Aviagen 81




Criteria for loss of accuracy

Accuracy of GEBV , and GEBV,

loci

GEBV,,=Y X
k

loci

= ; (x) + /)b, GEBV,,, = Iz (&7 + 37 )b,
k

Uncertainty in tracking HD-SNP alleles
Assumption: Only precision of PDMs affects loss
of accuracy 2> f, — |

Correlation between GEBV,; and GEBV
(lower bound) 82



Factors affecting accuracy from ELD-GS

Precision of PDMs
HD-genotyping of parents (see previous)
ELD-SNP spacing

Family structure
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Simulations — Genome structure

8 chromosomes of 75 cM

8000 HD-SNPs (spacing 0.075 cM)
MAF > 0.05

800 QTL

Mutation rate 0.005 (important when historic LD simulated)
—> # segregating QTL similar to no-LD case

ELD-spacing: 5, 8, 10, 12, 20 cM
MAF > 0.40
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Stmulations — Population

With historic LD

Generation -1060 Random mating
(N=500 )

Generation - 60 Random mating
(N=100)

Generation -10 Population growth

until N=1000
Generation 0 90 sires + 500 dams

4 pedigree generations start
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Effect of HD genotyping of parents

4 scenarios Dam Sire
X X
X v
v x
v v

Assumption for HD-genotyped individuals:
HD-SNP haplotypes are known

N

> x",x"” becomesx”,
(uncertainty from previous generations removed)

=» Phases of ELD-SNPs assumed known also s



HD genotypes in dams and sires
3 SNPs, 10cM spacing, 1dam/sire, 100sires, on MSE(x/", %) & MSE(x”,x7)

Gen1 Dam Sire Dam Sire Dam Sire Dam Sire

[VARVARRLVARRV/

Gen2 Sire Sire
Gen3 Sire
Gen4 Offspring

= w/ HD genotypes
® = w/o HD genotypes



No HD genotypes on parents
3 SNPs, 10cM spacing, 1dam/sire, 100sires, on MSE(x",%") & MSE(x?”,x")

Gen1 Dam Sire Dam Sire Dam Sire Dam Sire

0.04

Gen2

0.11

Gen3

Gen4 Offspring

= w/ HD genotypes
® = w/o HD genotyPes



HD genotypes 1n dams

3 SNPs, 10cM spacing, 1dam/sire, 100sires, on MSE(x",%") & MSE(x?”,x")

1

Gen1 Dam Sire Dam Sire Dam Sire Dam Sire

\/ oo\ /

Gen2
0.04 \ 0.08 0.04
Gen3 Dam
o.ox
Gen4 Offspring

= w/ HD genotypes
® = w/o HD genotypes



HD genotypes 1n sires
3 SNPs, 10cM spacing, 1dam/sire, 100sires, on MSE(x;",x!") & MSE(x”,x”)

l

Gen1 Dam Sire Dam Sire Dam Sire Dam Sire

VAV

Sire Sire

0.08 / 0.04

Sire

’Am

Gen4 Offspring

Gen2

Gen3

= w/ HD genotypes
® = w/o HD genotyPes



Accuracy and % - loss of accuracy
Historic LD — 8 chromosomes & 8 ¢cM spacing (20 reps)

HD-SNPs Generation
Method Dam Sire 2 3 4
HD-GS - - 74.6 67.7 63.7
% loss from HD-GS
BLUP - - 34.8 61.7 71.9
ELD-GS x x 3.4 8.8 12.5
x v 3.4 6.6 6.9
v * 3.4 5.6 7.8
v v 3.4 3.6 3.8
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Accuracy of GEBVs

Historic LD — 8 chromosomes & 8cM spacing (20 reps)

0.8
> 0.6
o
-
Q
Q
< 0.4 H
» GEBVs > BLUP
oo [ ¢ Difference between GS methods
» Loss similar to lower bound from b-hat=1
O | I I
1 2 3
Generation
HDGS ———
BLUP sersssses
ELDGS, LD-Spacing 8cM, Mom-HD 0, Dad-HD 0
ELDGS, LD-Spacing 8¢cM, Mom-HD 0, Dad-HD 1 --------
ELDGS, LD-Spacing 8cM, Mom-HD 1, Dad-HD Q e
ELDGS, LD-Spacing 8cM, Mom-HD ‘I, Dad-HD 1
ELDGSB1, LD-Spacing 8cM, Mom-HD 0, Dad-HD 0
ELDGSB1, LD-Spacing 8¢cM, Mom-HD 0, Dad-HD 1 --------
ELDGSB1, LD-Spacing 8cM, Mom-HD 1, Dad-HD Q s
ELDGSB1, LD-Spacing 8cM, Mom-HD 1, Dad-HD 1



Impact of ELD-SNP spacing/density

Effects of greater density:

Number of ELD-SNPs
Adjacent SNPs help infer phases and origins

Recombination between adjacent ELD-SNPs ¥
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No crossover:

Probability of receiving the HD grand-maternal allele

O, = grand — maternal

LD-SNPs S5cM —t——1 1 ! I
l O, = grand — maternal
0.999

O = grand — maternal

10cM —i !

|

0.998

O, = grand — maternal
|
|

| |
O, = grand — maternal

20cM

1

11 |
L | O;" = grand — maternal

0.996 0.990

!

0.991
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Crossovers

Probability of receiving the HD grand-maternal allele

O, = grand — maternal

No crossover 10cM —| I i }
i O, = grand — maternal
0.998

O, = grand — maternal

1 crossover 10cM —} | : :
= recombination ! O} = grand — paternal
at LD-SNPs 0.50

O, = grand — maternal

2 Crossovers 10cM st} I
= no recombination | ! O} = grand — maternal
at LD-SNPs 0.996 ~0.002
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ELD-SNP spacing:

% — Loss of accuracy

Both parents HD-genotyped

ELD-SNP Generation

Spacing (cM) o reps 2 3 4
5 48 1.5 2.1 2.8
8 48 2.4 3.7 3.0
10 48 4.9 4.3 4.9
12 48 4.1 4.1 6.6
20 48 8.5 8.1 9.1

Clear trend of loss of accuracy
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Effect of Family structure

Number of maternal and paternal sibs

If a parent is HD-genotyped
= ELD-SNP phases of parent assumed known

=>» # parental sibs has no effect on precision of PDMs
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Family structure

% — Loss of accuracy (8 cM)

No. dam/sire

- No. paternal sibs
same No. maternal sibs

Only females HD-genotyped

Generation
No. dams/sire No. reps
2 3 4
48 2.4 4.4 5.0
48 2.8 5.6 6.6
43 2.5 5.6 5.5
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Family structure

% — Loss of accuracy (8 cM)

No. full sibs

Parents not HD-genotyped

- No. maternal and paternal sibs

Generation
No. full sibs | No. reps
2 3 4
2 48 2.4 5.6 8.9
4 48 3.2 6.7 | 12.5
6 13 6.5 9.2 | 12.2

So far there is no trend. Again need more replicates!
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Simulation with real pedigree

« 8 chromosomes

« 200 QTL/chromosome

« Heritability 0.5 for female phenotypes, 0.8 for male phenotypes
* No historic LD, only LD from the pedigree

100



Stmulations — Population

With Historic LD

Generation -1050 Random mating
(N=500 )

Generation - 50 Random mating
(N=100)

Real pedigree 1500 males + 1500 females

(13 generations)

4 pedigree generations start

101



Linkage disequilibrium
Historic LD — Real pedigree

0 1 2 3 4 5 6 7
Map distance (cM)




Accuracy of GEBVs

Historic LD — real pedigree (8 chromosomes & 8cM)

Accuracy

0.8

0.6

0.4

0.2 H

r-r\
ks ——
St e ———
e
LT
-
‘e,
e
.
e
.

» Mutation rate was high with 0.005
* 95% of QTL are segregating with MAF 0.27
* 90% of QTL have MAF > 0.05

| I
1 2
Generation

=
[e)
il
T

ELDGS, LD-Spacing 8cM,
ELDGS, LD-Spacing 8¢cM, Mom-H
ELDGS, LD-Spacing 8cM, Mom-H
ELDGS, LD-Spacing 8cM, Mom-H
ELDGSB1, LD-Spacing 8cM, Mom-H
ELDGSB1, LD-Spacing 8cM, Mom-H
ELDGSB1, LD-Spacing 8cM, Mom-H
ELDGSB1, LD-Spacing 8cM, Mom-H

0000000

Dad-HD 1
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IOWA STATE
UNIVERSITY

Genomic Selection can be g';?\%S'
implemented with low-density SNP o0l i

genotyping of selection candidates 55l

 Loss in accuracy limited: < 3.5% after 1 generation | 5. ;

<8 % after 2 generations
with 300 equally spaced SNPs (10 cm)
 Loss in accuracy ~ independent of # QTL and # traits
» Lower rate of fixation of panel SNPs with selection = slower accuracy decline

* Cost effectiveness needs to be analyzed
* Depends on costs of Low- vs.  High-density genotyping
$40 €«??7> $180
» Optimal implementation needs to be further analyzed
*  Which individuals to genotype — HD / LD




Pooling Genomic
and Pedigree Predictions



One-step assumptions

U pedigree A ?
var o

G

genotyped B |

Uu

What is covariance between genotyped and ungenotyped?
Is A an appropriate scaled var-covariance matrix given G on relatives?



var

U pedigree

U genotyped

Misztal et al, 2009 JDS 92:4648

First attempt

All A12

A, G

0 0
At 0 G-A,




Problematic

* It doesn’t seem right that knowledge of
genotyped animals cannot contribute to any
modification of the relationships among non
genotyped individuals

* For example, if parents are genotyped and shown
to be more or less inbred and/or related than
expected, progeny relationships should be
suitably modified to reflect this information

— This would happen, for example, if the tabular method
to construct A was being used



var

Second Attempt

U pedigree H

U genotyped

A11 + Ale-zlz (G B Azz )A-212A21 Ale-zlzG
GA LA, G

Legarra et al, 2009 JDS 92:4656



Second Attempt

Which has a straightforward inverse

0 0
0 G'-A, | ¢

But did not work very well in practice



Third Attempt

0 0
0 A(G'-A,) |7¢

Which worked better for an arbitrary (ad-hoc) A from trial and error
and is somewhat computationally attractive (for small order G)

Note that G can be regressed towards A to improve stability

Legarra et al. jds.2009-2730



Implications of Second Attempt

If var| u =[ A, +ALAL(G-A)ANA,, |07

pedigree :|

Then we could improve the evaluation of pedigree animals by updating
their var-covariance matrix according to genotyped offspring without
any of their own performance information

In place of the inverse-NRM Al_lla_z we would use
8
A, +A,ALG-ADALA, | o7
11 12722 22 22721 g

How do these two alternatives compare (when G#A,,)?



Simple Example

e Suppose we have two non-inbred unrelated
parents that produce two full-sib offspring

e The full A-matrix is 1 0 5 5 |
0 1 5 5
55 1 5
5 5 5 1|
* And the parental A-matrix that is relevant if

the offspring have no records of their own is
the leading 2x2 submatrix
(an identity matrix of order 2)



Genomic matrix for offspring

* The genomic matrix might differ from the

pedigree-based relationship matrix by
demonstrating the

— full-sibs have an additive relationship > 0.5
— full-sibs have an additive relationship < 0.5
— One or more of the fullsibs is inbred a,<1

e How do these modifications alter the additive

variance-covariance matrix among the two
parents?



Consider the exact solution

e Suppose the genotyping is for two loci, A & B,
that completely determine the trait
— Fullsib1 is A;A, BB,

— Fullsib2 is A,A, B,B,
locus A 1s { 2 0 }, locus B is {
0 2

|
1 b

— How would this modify our assessment of the sire
and dam?

[ER Y

1.5 05
05 15

giving pooled G = {



Locus A in the parents

* Atlocus A, both parents must be heterozygous
since they have offspring homozygous for the
alternate forms

locus A the parents are { 1 1 }



Locus B in the parents

Offspring
Frequencies

Sire HW freq 0.25 0.25
B,B, 0.25 1/16 1/8 1/16
B,B, 0.5 1/8 1/4 1/8

B,B, 0.25 1/16 1/8 1/16



Locus B in the parents

Probability each parent combination produces B,B,

Offspring
Frequencies

Sire HW freq 0.25 0.25
B, B, 0.25 1/16 (0) 1/8 (0.5) 1/16 (1)
B,B, 0.5 1/8 (0.5) 1/4 (0.5) 1/8 (0.5)

B,B, 0.25 1/16 (1) 1/8 (0.5) 1/16 (0)



Locus B in the parents

Probability each parent combination produces BB,

Offspring B,B, B,B,
Frequencies

Sire HW freq 0.25 0.25

B, B, 0.25 1/16 (0) 1/8 (0.5) 1/16 (1)
B,B, 0.5 1/8 (0.5) 1/4 (0.5) 1/8 (0.5)
B,B, 0.25 1/16 (1) 1/8 (0.5) 1/16 (0)

Probability each parent combination produces two full sibs that are B,B,

0 1/8 (0.5)2  1/16 (1) A2
1/8(0.5)~2 1/4(0.5)~2 1/8(0.5) ~2
1/16 (1) 2 1/8 (0.5) A2 0



Locus B in the parents

Sire HW freq 0.25 0.25 .

BB, 0.25 0 1 2

B,B, 0.5 1 2 1 ™ 32nds
B,B, 0.25 2 1 0 N

Probability each parent combination produces two full sibs that are B,B,

0 1/8 (0.5)2  1/16 (1) A2
1/8(0.5)~2 1/4(0.5)~2 1/8(0.5) ~2
1/16 (1) 2 1/8 (0.5) A2 0



Locus B in the parents

—m

Sire HW freq 0.25 0.25 .

B,B, 0.25 0 1 2

B,B, 0.5 1 2 1 ™ 32nds
B,B, 0.25 2 1 0 N

We need to calculate the parents genomic matrix for locus B
by deriving the genomic matrix B for each of the above 9 parental
combinations (or 7 cells with probabilities>0) and weight each
genomic matrix by its probability (NB symmetry)
1/32B,B,xB,B,  2/32B,B,xB,B,
1/32B,B,xB,B,  2/32B,B,xB,B, 1/32B,B,xB,B,
2/32 B,B,xB,B,  1/32 B,B,xB,B,



Possible B-locus
Parental Genomic Matrices

1/32 B,B,xB,B,  2/32 B,B,xB,B,

It

1/32B,8,xB,B,  2/32B,B,xB,B, 1/32B,B,xB,B,

) [

2/32B,B,xB,B,  1/32 B,B,xB,B,

Binnin



Possible B-locus
Parental Genomic Matrices

1/32 B,B,xB,B,  2/32 B,B,xB,B,

Eghs 1) [

10 1 1 0 2

32
1/32B,8,xB,B,  2/32B,B,xB,B, 1/32B,B,xB,B,

| s 2] ] [ [y

2/32B,B,xB,B,  1/32 B,B,xB,B,

Binnin



Parental Genomic Matrix
Pooled across the A & B loci

Locus A Locus B Pooled

L] as 0 }_{ 5o

2 08 1.3




Summary

Pedigree A Legarraetal A Exact A

O -
)

I.1 0.1 1.3 0.8
0.1 1.1 08 1.3

Clearly, the Legarra et al approach is not giving the exact answer



