Application of evolutionary algorithms to solve complex problems in quantitative genetics and bioinformatics

6. Problem Representation

Making complexity out of simplicity.

Brian Kinghorn

University of New England
Armidale, Australia

Problem Representation

Example 1: No problem representation filter needed

- In simple cases, a simple vector of real or integer parameter values can be used directly in the objective function.
- Eg. our first optimization example:

Find $\left\{x_{1}, x_{2}\right\}$ that maximizes $y=-\left(30-x_{1}\right)^{2}-\left(4-x_{2}\right)^{2}$
$\left\{x_{l}, x_{2}\right\}$ is a simple vector of real numbers.

Example 2: Gene expression programming

"Genotype"
"Phenotype"

$$
\frac{a * b}{c}+\sqrt{d-e}
$$

Information systems

Evolve - a - model ...

Evolve b's, operators and priors to minimise $\sum(y-\bar{y})^{2}$

Example 3: A Mate Selection driver

First, Selection alone ...

Vector x : Number of matings (Selection only)

Source of animals Animal\# $x=$ Matings

Male candidates

6
8
...

$$
101
$$

$$
102
$$

$$
103
$$

Female candidates

A mate selection 'driver'

Parameters for mate selection

Example 4: Choosing p animals out of a group of size n

A vector of values 0 and 1 for unselected and selected??

Animal	1	2	3	4	5	6	7	8	9	10
Selected:	0	1	0	0	1	0	1	0	1	0

- Two drawbacks here:
- We need to constrain to p animals chosen.
- The response surface is not a good shape for efficient climbing, as there are no intermediate values.

Example 4: Choosing p animals out of a group of size n

- Rank on an ' arbitrary number that is evolved

Animal	1	2	3	4	5	6	7	8	9	10
Real number	6.91	7.43	3.23	1.88	8.97	3.76	6.92	4.46	8.44	2.12

Ranking gives:

Animal	5	9	2	7	1	8	6	3	10	4
Real number	8.97	8.44	7.43	6.92	6.91	4.46	3.76	3.23	2.12	1.88

- No constraint worries
- We can also evolve p.

Animal 1 just misses out: If animal 1 is in the best solution, then this solution will benefit (through progeny) from its high number for ranking on.

- [Note that this could be a good or a bad solution - that is for the objective function to decide. All we are dealing with here is a system to produce "legal" solutions.]

Example 5: Assigning animals into groups

This follows on simply:

Animal	5	9	2	7	1	8	6	3	10	4
Real number	8.97	8.44	7.43	6.92	6.91	4.46	3.76	3.23	2.12	1.88
Group	1	1	1	2	2	3	3	3	4	4

- "Genotype":
$\{6.91,7.43,3.23,1.88,8.97,3.76,6.92,4.46,8.44,2.12\}$
"Phenotype":
$(5,9,2),(7,1),(8,6,3),(10,4)$

What if this is best solution except that " 5 " and " 4 " should be swapped? A big valley to go through.

Example 5: Assigning animals into groups

- What if this is best solution except that " 5 " and " 4 " should be swapped? A big valley to go through.

Animal	5	9	2	7	1	8	6	3	10	4
Real number	8.97	8.44	7.43	6.92	6.91	4.46	3.76	3.23	2.12	1.88
Group	1	1	1	2	2	3	3	3	4	4

- Make smaller valleys: Order groups on an index related to objective function.
- Eg. If groups are farms, order on pasture quality, milk yield, mean EBV, or some index of such things.

Example 5: Assigning animals into groups

- Make the vector circular ...

Transform using eg:

$$
X=X \bmod 10
$$

- Now animals 4 and 5 can swap quite easily.

Example 5: Assigning animals into groups

"No man's land" example:
$9.05 \rightarrow 9$ with prob=0.95
$9.05 \rightarrow 0$ with prob=0.05

Example 5: Assigning animals into groups

```
xMax = 100000000 ! Enough to make integer weightings effectively continuous
xTop = 105000000 ! Gap to jump to go back to beginning
xBot = -5000000 ! Gap to jump to go back to beginning
```

if (trial(j) > xTop) trial (j) = trial(j) - xTop
if (trial (j) > xMax) trial (j) = xMax
if (trial (j) < xBot) trial (j) = trial (j) + xTop
if $(\operatorname{trial}(\mathrm{j})<0 \quad$) $\operatorname{trial}(\mathrm{j})=0$

Example 5: Assigning animals into groups

```
xMax = 100000000 ! Enough to make integer weightings effectively continuous
xTop = 105000000 ! Gap to jump to go back to beginning
xBot = -5000000 ! Gap to jump to go back to beginning
```

if (trial (j) > xTop) trial (j) = trial(j) - xTop
if (trial (j) > xMax) then
If ((trial (j)-xMax) /(xTop-xMax) > Rnd) then
trial $(j)=0$
else
trial $(j)=x M a x$
endif
endif
if (trial (j) < xBot) trial $(j)=\operatorname{trial}(j)+x T o p$
if (trial $(\mathrm{j})<0$) then
If(trial(j)/xBot > Rnd) then
trial(j) $=x M a x$
else
trial $(j)=0$
endif
endif

