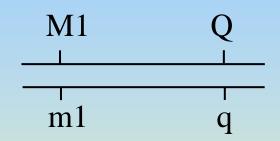
Interval mapping of QTL

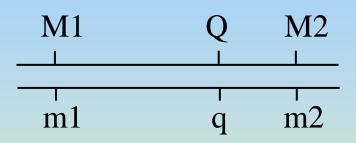
• Single markers do not allow to distinguish between distance and size of QTL-effect

• Marker brackets do so, and they also provide more power

Single vs multiple markers



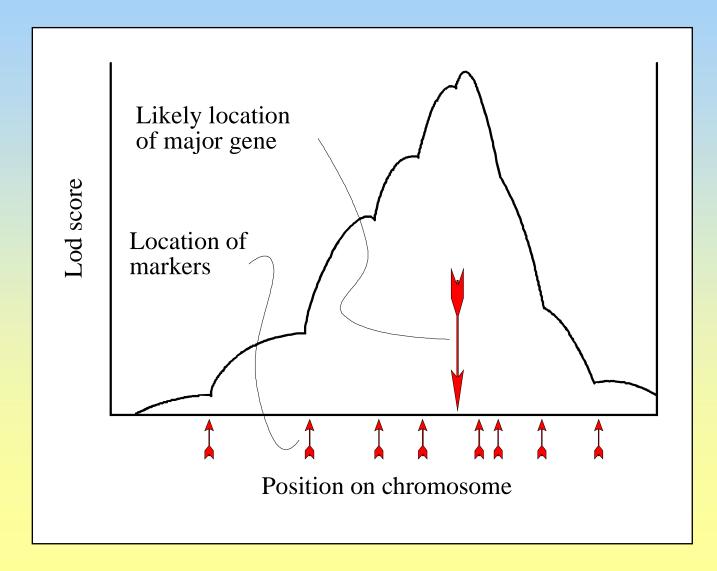
Single markers: not possible to distinguish between QTL effect and QTL position



Two (or more) markers: a lot less confounding between QTL effect and QTL position

Proper mapping of a QTL requires the use of multiple marker genotypes

QTL detection with markers



Gamete probabilities with two markers

Pare	ntal gei	notype	M1 m1		Recombination	M1 - Q = r1 M2 - Q = r2 M1 - M2 = r12
	Possible gametes			Recombination?	Gamete probability	
	M1	Q	M2	No	(1-r1)(1-r2) /2	
	M1	q	M2	Double: M1-q, q-M2	r1.r2 /2	
	M1	Q	m2	yes: Q-m2	(1-r1)r2 /2	
	M1	q	m2	yes: M1-q	r1(1-r2) /2	\rightarrow Sum = 1
	m1	Q	M2	yes: m1-Q	r1(1-r2) /2	
	m1	q	M2	yes: q-M2	(1-r1)r2 /2	
	m1	Q	m2	double: m1-Q, Q-m2	r1.r2 /2	
	m1	q	m2	no	(1-r1)(1-r2) /2	

Difference between marker genotypes

Marker alleles obtained from sire	QTL allele obtained from sire	Frequency	Expected mean of progeny
M1M2	Q	(1-r1)(1-r2)/2	$\mu + \alpha$
M1M2	q	r1.r2/2	μ
M1m2	Q	(1-r1)r2/2	$\mu + \alpha$
M1m2	q	r1(1-r2)/2	μ
m1M2	Q	r1(1-r2)/2	$\mu + \alpha$
m1M2	q	(1-r1)r2	μ
m1m2	Q	r1.r2/2	$\mu + \alpha$
m1m2	q	(1-r1)(1-r2)/2	μ

Marker genotype means

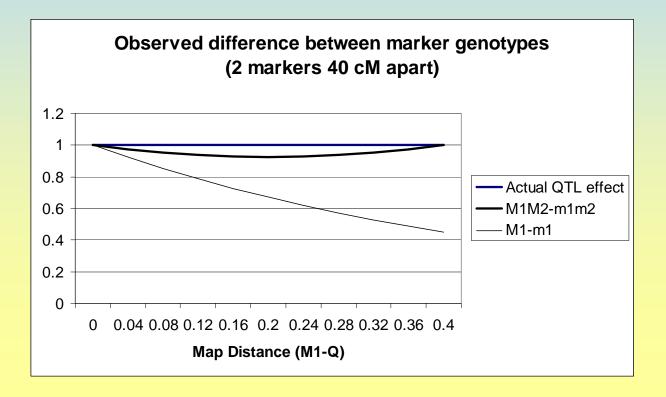
M1M2	$\frac{\frac{1}{2}(1-r1)(1-r2)(\mu+\alpha) + \frac{1}{2}r1.r2.\mu}{\frac{1}{2}(1-r12)} =$	$\mu + (1 - \frac{r \ln 2}{1 - r \ln 2}) \alpha$
M1m2	$\frac{\frac{1}{2}(1-r1).r2.(\mu+\alpha) + \frac{1}{2}r1(1-r2)\mu}{\frac{1}{2}r12} =$	$\mu + \frac{r2 - r1r2}{r12} \alpha$
m1M2	$\frac{\frac{1}{2}r1(1-r2)(\mu+\alpha) + \frac{1}{2}(1-r1).r2.\mu}{\frac{1}{2}r12} =$	$\mu + \frac{r1 - r1r2}{r12} \alpha$
m1m2	$\frac{\frac{1}{2}r1.r2(\mu+\alpha) + \frac{1}{2}(1-r1)(1-r2)\mu}{\frac{1}{2}(1-r12)} =$	$\mu + \frac{r1r2}{1-r12} \alpha$

These means can be used to estimate μ and α for a given map position of QTL

This leads to a QTL mapping method (later).

Marker genotype differences

$$M_{1} - m_{1} = (1 - 2r_{1})\alpha$$
$$M_{1}M_{2} - m_{1}m_{2} = \left[\mu + \left(1 - \frac{r_{1}r_{2}}{1 - r_{12}}\right)\alpha\right] - \left[\mu + \frac{r_{1}r_{2}}{1 - r_{12}}\alpha\right] = \left(1 - \frac{2r_{1}r_{2}}{1 - r_{12}}\right)\alpha$$



Principle of QTL mapping

To test if there is a QTL at a specific location:

For each progeny, use markers to get the probability of each QTL genotype

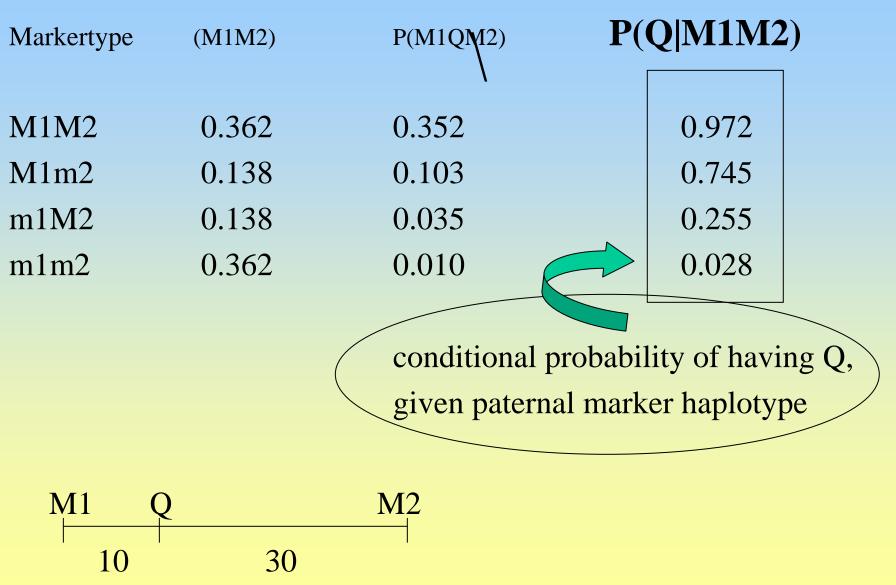
. . .

Then regress progeny phenotype on these probabilities to see if there is an association.

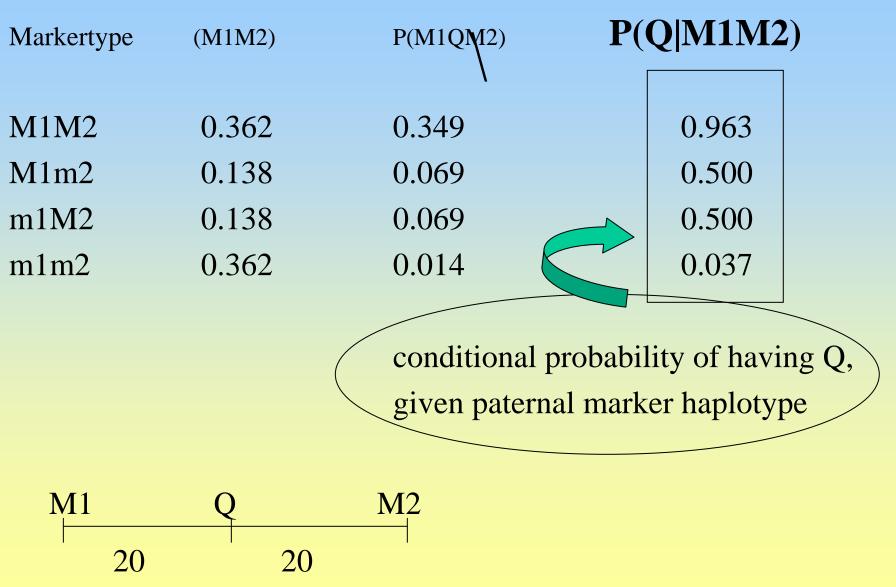
Difference between marker genotypes

Marker alleles obtained from sire	QTL allele obtained from sire	Frequency	Expected mean of progeny
M1M2	Q	(1-r1)(1-r2)/2	$\mu + \alpha$
M1M2	q	r1.r2/2	μ
M1m2	Q	(1-r1)r2/2	$\mu + \alpha$
M1m2	q	r1(1-r2)/2	μ
m1M2	Q	r1(1-r2)/2	$\mu + \alpha$
m1M2	q	(1-r1)r2	μ
m1m2	Q	r1.r2/2	$\mu + \alpha$
m1m2	q	(1-r1)(1-r2)/2	μ

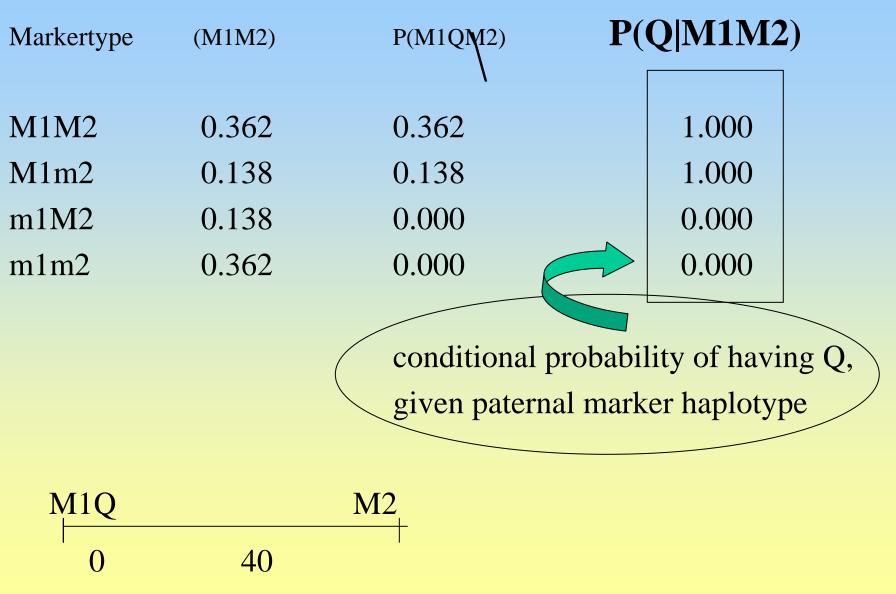
Probability of marker haplotypes



Probability of marker haplotypes



Probability of marker haplotypes



Fitting the Goodness of Fit of a certain position to the data: M1-Q = 0.1

mean	p(Q)	y-hat	У
1.0000	0.9718	50.4321	50.9813
1.0000	0.9718	50.4321	49.9813
1.0000	0.7451	50.3446	50.7500
1.0000	0.7451	50.3446	49.7500
1.0000	0.2549	50.1554	50.7500
1.0000	0.2549	50.1554	49.7500
1.0000	0.0282	50.0679	50.5187
1.0000	0.0282	50.0679	49.5187
dM1-Q	SST	SSE	LR

2.0455

0.6331

0.1 2.2139

Fitting the Goodness of Fit of a certain position to the data: M1-Q = 0

mean	p(Q)	y-hat	У
1.0000	1.0000	50.3656	50.9813
1.0000	1.0000	50.3656	49.9813
1.0000	1.0000	50.3656	50.7500
1.0000	1.0000	50.3656	49.7500
1.0000	0	50.1344	50.7500
1.0000	0	50.1344	49.7500
1.0000	0	50.1344	50.5187
1.0000	0	50.1344	49.5187
dM1-Q	SST	SSE	LR
0	2.2139	2.1070	0.3961

Interval mapping

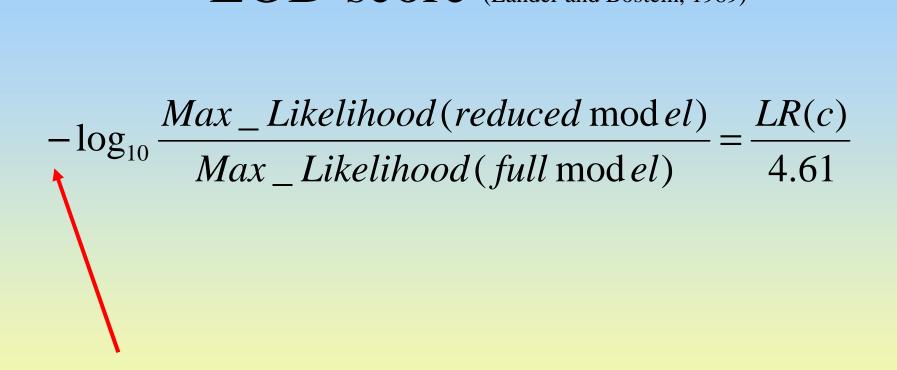
Compare the likelihoods at different locations for the QTL

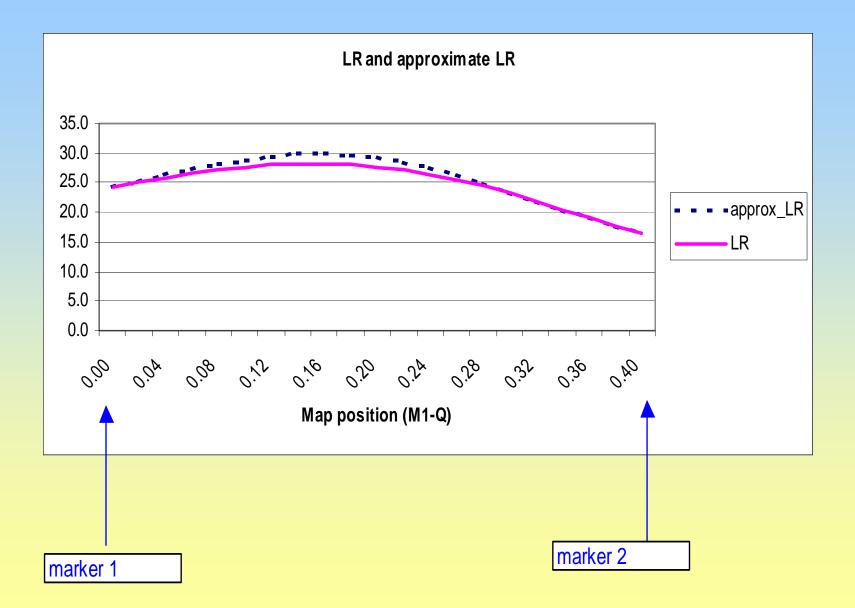
$$LR = -2\ln \frac{Max _ Likelihood(reduced \mod el)}{Max _ Likelihood(full \mod el)}$$

Full model : $y = mu + Q_r + e$

Reduced model y = mu + e

LOD score (Lander and Bostein, 1989)





Interval mapping using regression

Regression model

 $y = \mu + \alpha . x + e$

where y = the observed phenotype x = probability (Q|marker genotype)

giving SSE = $\Sigma(y - \mu_0 - \hat{a}.x)^2$

reduced model $y = \mu_0 + e$

giving SST = $\Sigma(y - \mu_0)^2$

Fitting the Goodness of Fit of a certain position to the data: M1-Q = 0.1

1.0000	0.9718	50.4321	50.9813
1.0000	0.9718	50.4321	49.9813
1.0000	0.7451	50.3446	50.7500
1.0000	0.7451	50.3446	49.7500
1.0000	0.2549	50.1554	50.7500
1.0000	0.2549	50.1554	49.7500
1.0000	0.0282	50.0679	50.5187
1.0000	0.0282	50.0679	49.5187
dM1-Q	SST	SSE	LR

0.1 2.2139

2.0455 0.6331

Approximate LR test statistic

$LR = n \ln(SST/SSE)$

if other fixed effects than QTL:

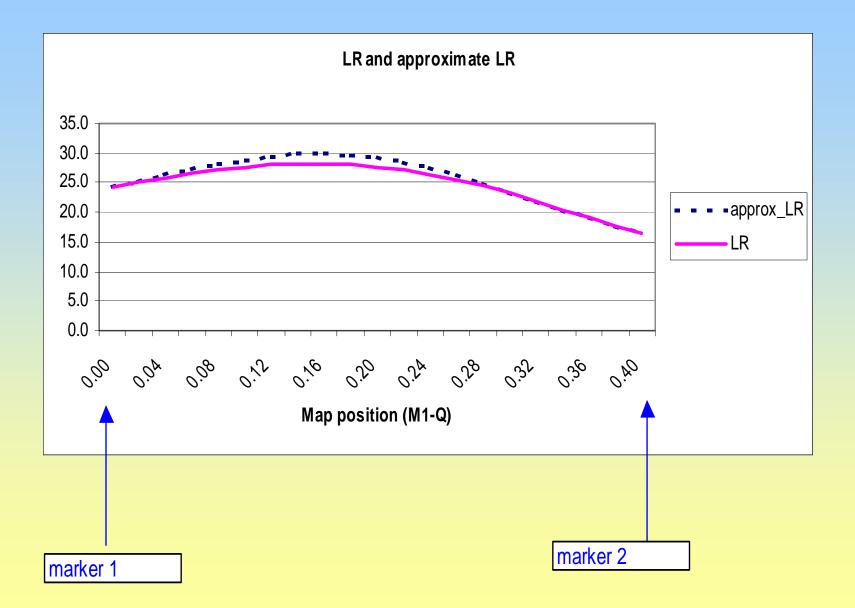
 $LR = n \ln(SSE_{reduced} / SSE_{full})$

Fitting the Goodness of Fit of a certain position to the data: M1-Q = 0.1

1.0000	0.9718	50.4321	50.9813
1.0000	0.9718	50.4321	49.9813
1.0000	0.7451	50.3446	50.7500
1.0000	0.7451	50.3446	49.7500
1.0000	0.2549	50.1554	50.7500
1.0000	0.2549	50.1554	49.7500
1.0000	0.0282	50.0679	50.5187
1.0000	0.0282	50.0679	49.5187

dM1-Q	SST	SSE	Ļ	$\overline{\ }$
0.1	2.2139	2.0455	0.57	

approx LR = $8^{In}(SST/SSE) = 0.63$



Methods for QTL analysis

- Regression
- Maximum Likelihood
- Other methods GRM-method
 - MCMC

- Hypothesis testing
 - permutation tests
 - bootstrapping

Regression on marker genotypes Regression on single markers $y = \mu + b.MG_1 + e$ number of marker classes 2,3,..... Quick and simple, use F-statistic

 $\mathbf{y} = \boldsymbol{\mu} + \mathbf{b}_1 \cdot \mathbf{M}\mathbf{G}_1 + \mathbf{b}_2 \cdot \mathbf{M}\mathbf{G}_2 + \dots + \mathbf{b}_n \mathbf{M}\mathbf{G}_n$

Regression on multiple markers

Not most powerful

multiple regression (stepwise)does not estimate exact locationmore power than single trait marker

Regression on QTL probability

 $y = \mu + \alpha.x + e$ as beforewherey is the observed phenotypex P(Q|Markers,recomb)

used in interval mapping, i.e. stepwise through interval

Haley-Knott regression $y = \mu + \alpha x_1 + \beta x_2 + e$

useful in F2/BC design

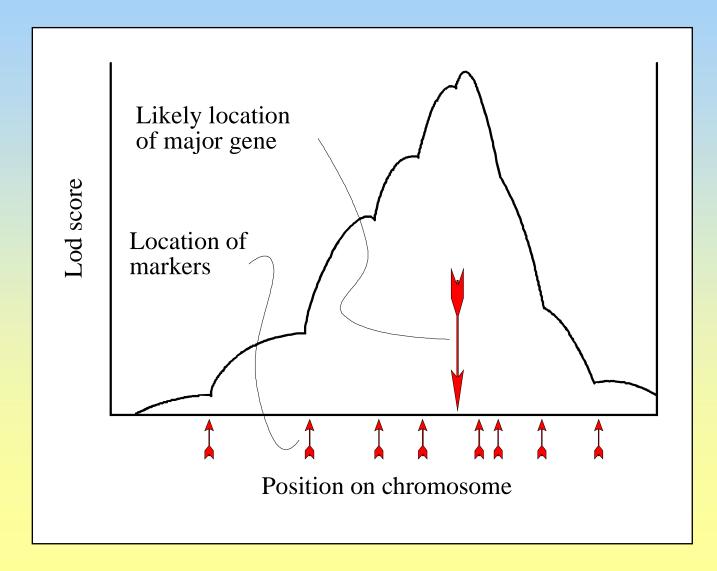
where

y is the observed phenotype $x_1 = P(QQ|M_i) - P(qq|M_i)$ $x_2 = P(Qq|M_i)$ Test statistics with regression analysis

Approximate $LR = n \ln(SSE_{reduced} / SSE_{full})$

F-test = MSQ/MSE approx.LR = $n \log_{e}[1+(df_{1}/df_{2})F]$

QTL detection with markers



Regression on flanking markers

Whittaker et al. (1996)

$$\mathbf{y} = \boldsymbol{\mu} + \boldsymbol{\beta}_1 \cdot \mathbf{x}_L + \boldsymbol{\beta}_2 \cdot \mathbf{x}_R + \mathbf{e}$$

 $= \mu + \alpha \lambda \mathbf{x}_{L} + \alpha \rho \mathbf{x}_{R} + e$

Now
$$\lambda = P(Q|X_L = M1M1, X_R = m2m2)$$

 $\rho = P(Q|X_L = m1m1, X_R = M2M2).$
 $\alpha = \text{ effect of } Q.$
 $x_L \text{ and } x_R \text{ refer to left and right marker,}$
and have values -1, 0 and 1

do not need to evaluate each position of interval

Regression on flanking markers

Whittaker et al. (1996)

$$y = \mu + \alpha \lambda x_L + \alpha \rho x_R + e$$

From the regression coefficients: $\beta_1 = \alpha \lambda$, and $\beta_2 = \alpha \rho$, it was shown (Whittaker et al., 1996) that location and QTL effect can be estimated:

$$r_{1} = 0.5 \left[1 - \sqrt{1 - \frac{4\beta_{2}\theta(1 - \theta)}{\beta_{2} + \beta_{1}(1 - 2\theta)}} \right]$$

$$\alpha = \sqrt{\frac{[\beta_1 + (1 - 2\theta)\beta_2][[\beta_2 + (1 - 2\theta)\beta_1]}{1 - 2\theta}}$$

Maximum likelihood estimation

Prob. Dens. Function: $F(y_i) = P(y|\theta)$

$$f(y_i | \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{\frac{1}{2}(y-\mu)^2}{\sigma^2}} = L(\mu, \sigma | y_i)$$

The total likelihood of data set \mathbf{y} is calculated as the product of all likelihoods for each observation.

$$L(\mu, \sigma | \mathbf{y}) = \prod_i L(\mu, \sigma | y_i)$$

Likelihood for QTL model

L(\mu_1, \mu_2, \sigma|y_i) = P(\mu_1).
$$\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{\frac{1}{2}(y-\mu_1)^2}{\sigma^2}} + P(\mu_2). \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{\frac{1}{2}(y-\mu_2)^2}{\sigma^2}}$$

Sum over the possibilities for the different QTL genotypes

Solve for μ , μ , σ by EM algorithm

Example of Likelihood calculation

the QTL position M1-Q = 0.1

Phenotype	Marker haplotye	Prob(Q markers)	Expected phenotype		
	insproof o		(H1-model)	LogL0	LogL
50.98	M1M2	0.9718	50.43	-1.18884	-0.81727
49.98	M1M2	0.9718	50.43	-0.4575	-0.65658
50.75	M1m2	0.7451	50.34	-0.73859	-0.59655
49.75	M1m2	0.7451	50.34	-0.73859	-0.91164
50.75	m1M2	0.2549	50.16	-0.73859	-0.91152
49.75	m1M2	0.2549	50.16	-0.73859	-0.59663
50.52	m1m2	0.0282	50.07	-0.4575	-0.65648
49.52	m1m2	0.0282	50.07	-1.18884	-0.81739
			sum	-6.24705	-5.96407

No QTL-model: mean = 50.25,

SST = 2.21 > var = 0.316

QTL-model: mu = 50.06 $\alpha = 0.386 > means: 50.06$ and 50.44

SST = 2.05 > var = 0.292

LogL value of H0 model: -6.247
 under H1: -5.964

LR = -2*(L0 - L) = -2(-6.247 + 5.964) = 0.57

The approximate LR value from regression was appr.LR = $n \ln(\frac{SSE_{reduced}}{SSE_{full}}) = 8.\ln(2.21/2.05) = 0.63.$

Multiple family testing

- Sum over families:
 - Prob (hetereozygote sire) X
 - Prob(phase) X
 - - X

Comparison regression-ML

- ML takes into account that within a marker type there are really two normal distributions
- Most of the variation comes from between marker type differences as ML ~ Regress.
- Difference is largest with big QTL and with QTL further from markers
- Xu (1995) suggested a correction to avoid upward bias in estimate of variance

$$\sigma_{e_corrected}^2 = \sigma_e^2 - a^2 \sum_{i=1}^4 p_i (1 - p_i)$$

Comparison regression-ML

- ML is computationally and practically a bigger task
- ML needed for across family analysis!
- Regression more robust against non-normality
- ML uses more information (I.e. segregation analysis!) but regression model with genotype probability routine is similar

Other methods

• Regression on Q probability, last obtained with segregation analysis (genotype probability)

• MCMC

QTL as random effect
 – GRM = Gametic Relationship Matrix

QTL as random "GRM method"

Model:

Individual animal phenotype =

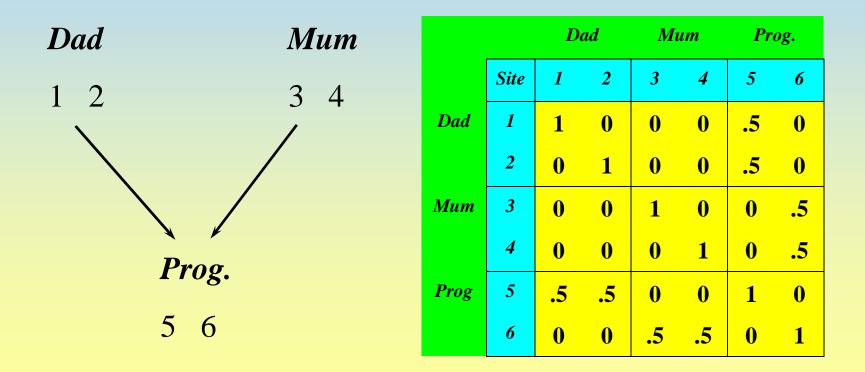
Fixed Environmental effects

- + Sum of average effects of 'polygenic' alleles
 - + Average effect of paternal QTL allele
 - + Average effect of maternal QTL allele
 - + Random Error

Estimate VC's

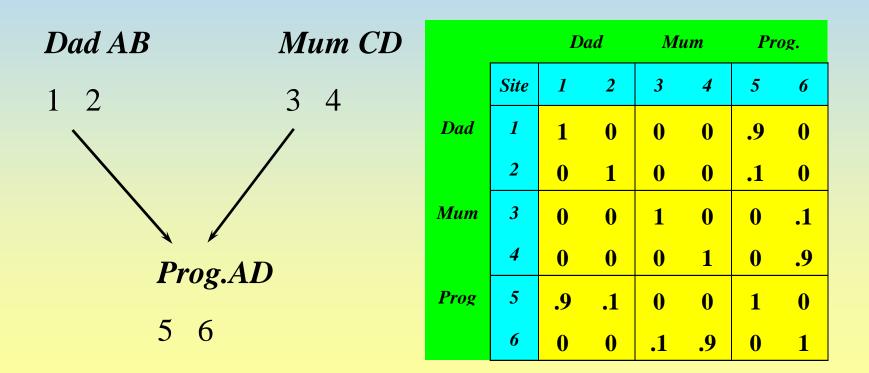
Gametic relationship matrix

With no markers:



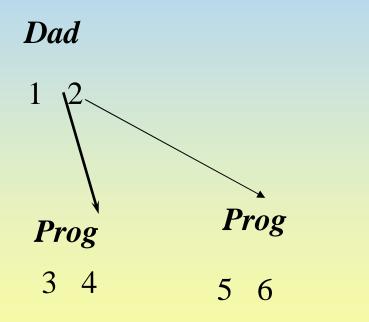
Gametic relationship matrix

With markers: r = 0.1



Gametic relationship matrix for MAS

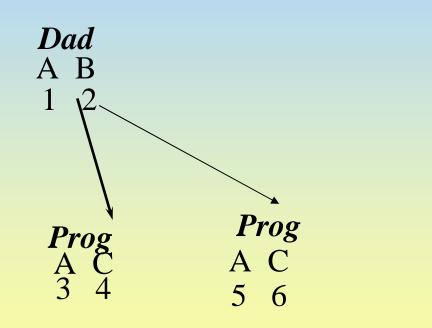
With no markers



		Dad		Prog1		Prog2	
	Site	1	2	3	4	5	6
Dad	1	1	0	.5	0	.5	0
	2	0	1	.5	0	.5	0
Prog1	3	.5	.5	1	0	.5	0
	4	0	0	0	1	0	0
Prog2	5	.5	.5	.5	0	1	0
	6	0	0	0	0	0	1

Gametic relationship matrix for MAS

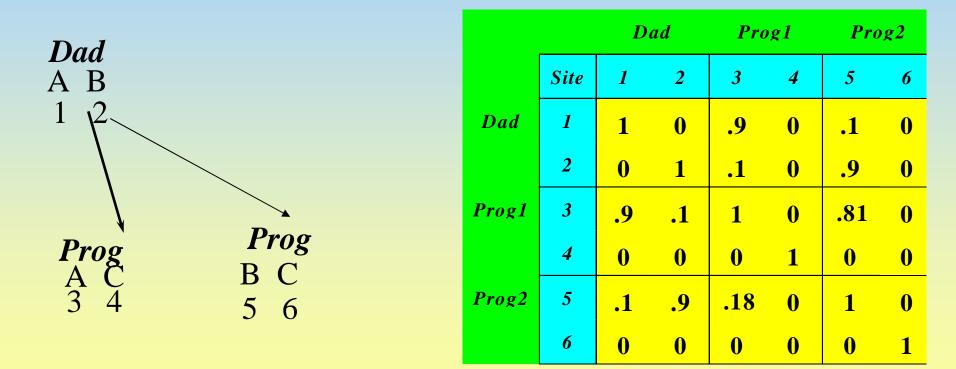
<u>With markers: r = 0.1</u>



		D	ad	Pro	g1	Pro	g2
	Site	1	2	3	4	5	6
Dad	1	1	0	.9	0	.9	0
	2	0	1	.1	0	.1	0
Prog1	3	.9	.1	1	0	.81	0
	4	0	0	0	1	0	0
Prog2	5	.9	.1	.81	0	1	0
	6	0	0	0	0	0	1

Gametic relationship matrix for MAS

With markers: r = 0.1



The GRM gives more accurate relationships at the QTL!

• True covariance (at the QTL) rather than the one based on average effects

• Relationships matrix = ΣA_{OTL} |markers

Hypothesis testing

- LR tests have chi-squared distribution
- 1-LOD-rule gives 95% CI

• These tests are not exact a we compare normal with a non-normal distribution or normally distributed errors

• alternative: empirical testing

Hypothesis Testing

Significance thresholds based on Permutation test (Churchill and Doerge, 199?)

Original data

Animal	Marker	Pheno-	
ID	Genotype	type	
1	Mmnn	9.8	
2	mmnn	10.4	
3	mmnn	9.3	
4	Mmnn	8.5	
5	MmNn	11.3	
6	MmNn	9.6	
7	MmNn	9.9	
8	mmnn	7.6	
9	MmNn	8.0	
10	mmNn	10.7	

95%

5%

Threshold

Randomly permuted data

Animal	Marker	Pheno-	
ID	Genotype	type	
1	MmNn	9.8	
2	mmNn	10.4	
3	Mmnn	9.3	
4	MmNn	8.5	
5	mmnn	11.3	
6	MmNn	9.6	
7	Mmnn	9.9	
8	mmnn	7.6	
9	MmNn	8.0	
10	mmnn	10.7	

Test statistic under Null Hypothesis Rep<mark>lic</mark>ate Distribution of test statistic

bootstrapping

• Analyze a set of data, with obs'ns taken from the original data *with replacement*

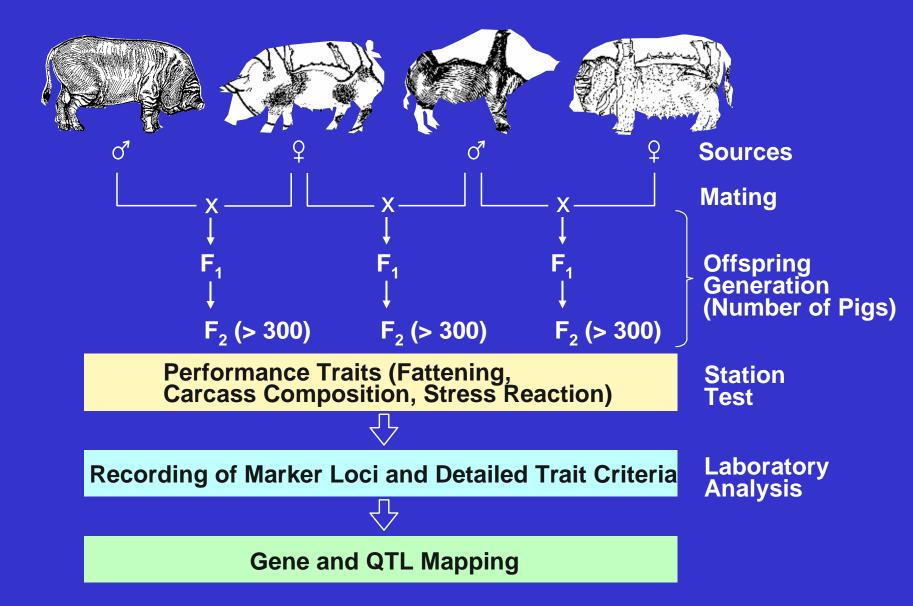
Account for multiple testing!!

 $\alpha = 1 - (1 - \gamma)^{1/n} \approx \gamma/n$

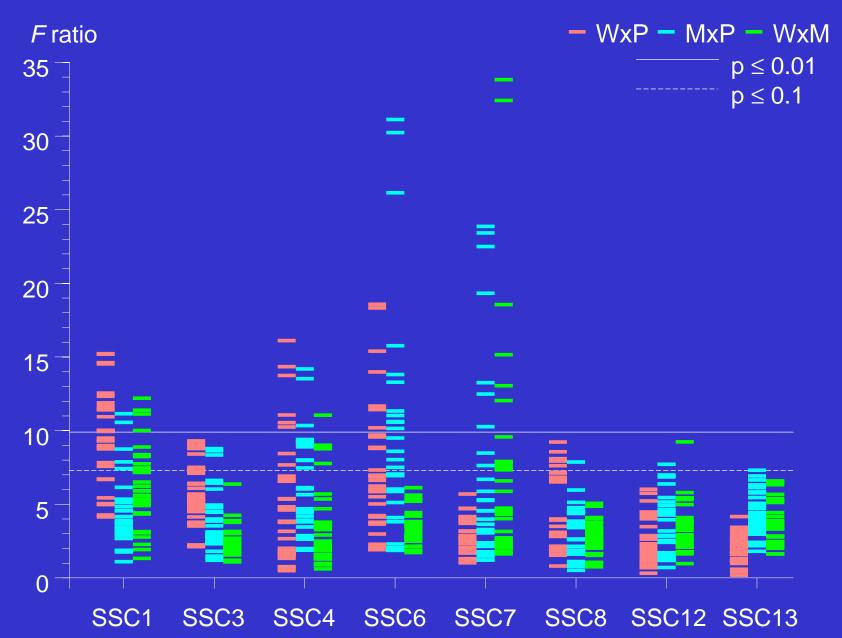
n = number of tests $\gamma = 1 - (1 - \alpha)^n$ = prob of at least one test positive

e.g. 200 tests: use significance level of 0.05/200 = 0.000025

Informative F₂ Families for QTL Mapping in Pig at Hohenheim University



Summary of F Ratio Maxima for Carcass Traits



Summary methods

- Can do a quick scan with single marker regression
- In promising regions can use interval mapping, either ML or multiple marker regression
- Need to account for additional QTL (see next)
- Use empirical test statistics (permutation tests)