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Bayes Theorem

The conditional probability of X given Y is

Pr(X |Y ) =
Pr(X , Y )

Pr(Y )
=

Pr(Y |X ) Pr(X )

Pr(Y )

where Pr(X , Y ) is the joint probability of X and Y , Pr(X ) is the
probability of X , and Pr(Y ) is the probability of Y .
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Conditional Probability by Example

Joint distribution of smoking and lung cancer in a hypothetical
population of 1,000,000:

Smoking
Yes No

Lung Cancer
Yes 42,500 7,500 50,000
No 207,500 742,500 950,000

250,000 750,000

Question: What is the relative frequency of lung cancer among
smokers?

Answer: 42,500
250,000 = 0.17
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Conditional Probability by Example

I As explained below, this relative frequency is also the
conditional probability of lung cancer given smoking.

I The frequentist definition of probability of an event is the
limiting value of its relative frequency in a large number of
trials.

I Suppose we sample with replacement individuals from the
250,000 smokers and compute the relative frequency of
lung cancer incidence.

I It can be shown that as the sample size goes to infinity, this
relative frequency will approach 42,500

250,000 = 0.17.
I This conditional probability is usually written as

42,500/1,000,000
250,000/1,000,000 = 0.17.

I The ratio in the numerator is joint probability of smoking
and lung cancer, and the ratio in the denominator is the
marginal probability of smoking.
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Meaning of Probability in Bayesian Inference

I In the frequency approach, probability is a limiting
frequency

I In Bayesian inference, probabilities are used to quantify
your beliefs or knowledge about possible values of
parameters

I What is the probability that h2 > 0.5?
I What is the probability that milk yield is controlled by more

than 100 loci?
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Essentials of Bayesian Inference

I Prior probabilities quantify beliefs about parameters before
the data are analyzed

I Parameters are related to the data through the model or
“likelihood”, which is the conditional probability density for
the data given the parameters

I The prior and the likelihood are combined using Bayes
theorem to obtain posterior probabilities, which are
conditional probabilities for the parameters given the data

I Inferences about parameters are based on the posteior
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Bayes Theorem in Bayesian Inference

I Let f (θ) denote the prior probability density for θ

I Let f (y |θ) denote the likelihood
I Then, the posterior probability of θ is:

f (θ|y) =
f (y |θ)f (θ)

f (y)

∝ f (y |θ)f (θ)
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Computing posteriors

I Often no closed form for f (θ|y)

I Further, even if computing f (θ|y) is feasible, obtaining
f (θi |y) would require integrating over many dimensions

I Thus, in many situations, inferences are made using the
empirical posterior constructed by drawing samples from
f (θ|y)

I Gibbs sampler is widely used for drawing samples from
posteriors
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Gibbs sampler

I Want to draw samples from f (x1, x2, . . . , xn)

I Even though it may be possible to compute
f (x1, x2, . . . , xn), it is difficult to draw samples directly from
f (x1, x2, . . . , xn)

I Gibbs:
I Get valid a starting point x0

I Draw sample x t as:

x t
1 from f (x1|x t−1

2 , x t−1
3 , . . . , x t−1

n )

x t
2 from f (x2|x t

1, x t−1
3 , . . . , x t−1

n )

x t
3 from f (x3|x t

1, x t
2, . . . , x t−1

n )
...

...
x t

n from f (xn|x t
1, x t

2, . . . , x t
n−1)

I The sequence x1, x2, . . . , xn is a Markov chain with
stationary distribution f (x1, x2, . . . , xn)
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Inference from Markov chain

Can show that samples obtained from the Markov chain can be
used to draw inferences from f (x1, x2, . . . , xn) provided the
chain is:

I Irreducible: can move from any state i to any other state j
I Positive recurrent: return time to any state has finite

expectation
I Markov Chains, J. R. Norris (1997)
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Example
Let f (x) be a bivariate normal density with means

µ′ =
[
1 2

]
and covariance matrix

V =

[
1 0.5

0.5 2.0

]
Suppose we do not know how to draw samples from f (x), but
know how to draw samples from f (xi |xj), which is univariate
normal with mean:

µi.j = µi +
vij

vjj
(xj − µj)

and variance

vi.j = vii −
v2

ij

vjj
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Gibbs sampler

I Gibbs:
I Start with x0 =

[
0
0

]
I Draw sample x t as:

x t
1 from f (x1|x t−1

2 )
x t

2 from f (x2|x t
1)

I Use the sequence x1, x2, . . . , xn to compute any property
of f (x), for example

Pr(x1 > µ1 and x2 > µ2)
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MCMC Estimates of Pr(x1 > µ1 and x2 > µ2)
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Metropolis-Hastings sampler

I Sometimes may not be able to draw samples directly from
f (xi |x i_)

I Convergence of the Gibbs sampler may be too slow
I Metropolis-Hastings (MH) for sampling from f (x):

I a candidate sample, y , is drawn from a proposal distribution
q(y |x t−1)

I

x t =

{
y with probability α

x t−1 with probability 1− α

I

α = min(1,
f (y)q(x t−1|y)

f (x t−1)q(y |x t−1)
)

I The samples from MH is a Markov chain with stationary
distribution f (x)
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Proposal distributions

Two main types:
I Approximations of the target density: f (x)

I Not easy to find approximation that is easy to sample from
I High acceptance rate is good!

I Random walk type: stay close to the previous sample
I Generally easy to construct proposal
I High acceptance rate may indicate that candidate is too

close to previous sample
I Intermediate acceptance rate is good
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MH Sampler to Estimate Pr(x1 > µ1 and x2 > µ2)

MH Sampler:

I Start with x0 =

[
0
0

]
I Draw sample x t as:

y1 = x t−1
1 + u1

y2 = x t−1
2 + u2

where ui is Uniform(−v1/2
ii , v1/2

ii ).
I Compute

α = min(1,
f (y)

f (x t−1)
)

and

x t =

{
y with probability α

x t−1 with probability 1− α
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MCMC Estimates of Pr(x1 > µ1 and x2 > µ2)
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Distribution of y1 Sampled Using MH
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Part II

Bayesian Inference: Application to Whole
Genome Analyses
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Model

Model:
yi = µ +

∑
j

Xijαj + ei

Priors:
I µ ∝ constant (not proper, but posterior is proper)
I (ei |σ2

e) ∼ (iid)N(0, σ2
e); σ2

e ∼ νeS2
eχ−2

νe

I Consider several different priors for αj
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Normal

I Prior: (αj |σ2
α) ∼ (iid)N(0, σ2

α); σ2
α is known

I What is σ2
α?

I Assume the QTL genotypes are a subset of those
available for the analysis

I Then, the genotypic value of i can be written as:

gi = µ + x ′
iα

I Note that α is common to all i
I Thus, the variance of gi comes from x ′

i being random

I So, σ2
α is not the genetic variance at a locus

I If locus j is randomly sampled from all the loci available for
analysis:

I Then, αj will be a random variable
I σ2

α = Var(αj)
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Relationship of σ2
α to genetic variance

Assume loci with effect on trait are in linkage equilibrium. Then,
the additive genetic variance is

VA =
k∑
j

2pjqjα
2
j ,

where pj = 1− qj is gene frequency at SNP locus j .
Letting Uj = 2pjqj and Vj = α2

j ,

VA =
k∑
j

UjVj

For a randomly sampled locus, covariance between Uj and Vj is

CUV =

∑
j UjVj

k
− (

∑
j Uj

k
)(

∑
j Vj

k
)
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Relationship of σ2
α to genetic variance

Rearranging the previous expression for CUV gives∑
j

UjVj = kCUV + (
∑

j

Uj)(

∑
j Vj

k
)

So,

VA = kCUV + (
∑

j

2pjqj)(

∑
j α

2
j

k
)

Letting σ2
α =

P
j α2

j
k gives

VA = kCUV + (
∑

j

2pjqj)σ
2
α

and,

σ2
α =

VA − kCUV∑
j 2pjqj
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Blocked Gibbs sampler

I Let θ′ = [µ,α′]

I Can show that (θ|y , σ2
e) ∼ N(θ̂, C−1σ2

e)

I

θ̂ = C−1W ′y ; W = [1, X ]

I

C =

[
1′1 1′X
X ′1 X ′X + I σ2

e
σ2

α

]

I Blocked Gibbs sampler
I García-Cortés and Sorensen (1996, GSE 28:121-126)
I Likelihood, Bayesian and MCMC Methods · · · (LBMMQG,

Sorensen and Gianola, 2002)
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Full conditionals for single-site Gibbs

I (µ|y ,α, σ2
e) ∼ N(

1′
(y−Xα)

n , σ2
e

n )

I (αj |y , µ,αj_, σ
2
e) ∼ N(α̂j ,

σ2
e

cj
)

I

α̂j =
x ′

j w
cj

I

w = y − 1µ−
∑
j′ 6=j

x j′αj′

I

cj = (x ′
j x j +

σ2
e

σ2
α

)

I (σ2
e|y , µ,α) ∼ [(y −Wθ)′(y −Wθ) + νeS2

e ]χ−2
(νe+n)
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Derive: full conditional for αj

From Bayes’ Theorem,

f (αj |y , µ,αj_, σ
2
e) =

f (αj , y , µ,αj_, σ
2
e)

f (y , µ,αj_, σ
2
e)

∝ f (y |αj , µ,αj_, σ
2
e)f (αj)f (µ,αj_, σ

2
e)

∝ (σ2
e)−n/2 exp{−

(w − x jαj)
′(w − x jαj)

2σ2
e

}(σ2
α)−1/2 exp{−
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Derive: full conditional for αj

The exponential terms in the joint density can be written as:

− 1
2σ2

e
{w ′w − 2x ′

jwαj + [x ′
jx j +

σ2
e

σ2
α

]α2
j }

Completing the square in this expression with respect to αj
gives

− 1
2σ2

e
{cj(αj − α̂j)

2 + w ′w − cj α̂j
2}

where

α̂j =
x ′

jw
cj

So,

f (αj |y , µ,αj_, σ
2
e) ∝ exp{−

(αj − α̂j)
2

2σ2
e

cj

}
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Full conditional for σ2
e

From Bayes’ theorem,

f (σ2
e|y , µ,α) =

f (σ2
e, y , µ,α)

f (y , µ,α)

∝ f (y |σ2
e, µ,α)f (σ2

e)f (µ,α)

where

f (y |σ2
e, µ,α) ∝ (σ2

e)−n/2 exp{−
(w − x jαj)

′(w − x jαj)

2σ2
e

}

and

f (σ2
e) =

(S2
eνe/2)νe/2

Γ(ν/2)
(σ2

e)−(2+νe)/2 exp(−νeS2
e

2σ2
e

)
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Full conditional for σ2
e

So,

f (σ2
e|y , µ,α) ∝ (σ2

e)−(2+n+νe)/2 exp(−SSE + νeS2
e

2σ2
e

)

where
SSE = (w − x jαj)

′(w − x jαj)

So,
f (σ2

e|y , µ,α) ∼ ν̃eS̃2
eχ−2

ν̃e

where

ν̃e = n + νe; S̃2
e =

SSE + νeS2
e

ν̃e
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Alternative view of Normal prior

Consider fixed linear model:

y = 1µ + Xα + e

This can be also written as

y =
[
1 X

] [
µ
α

]
+ e

Suppose we observe for each locus:

y∗
j = αj + εj
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Least Squares with Additional Data

Fixed linear model with the additional data:[
y
y∗

]
=

[
1 X
0 I

] [
µ
α

]
+

[
e
ε

]
OLS Equations:[

1′ 0′

X ′ I ′

][
In

1
σ2

e
0

0 Ik
1
σ2

ε

] [
1 X
0 I

] [
µ̂
α̂

]
=

[
1′ 0′

X ′ I ′

][
In

1
σ2

e
0

0 Ik
1
σ2

ε

] [
y
y∗

]

[
1′1 1′X
X ′1 X ′X + I σ2

e
σ2

ε

] [
µ̂
α̂

]
=

[
1′y

X ′y + y∗ σ2
e

σ2
ε

]
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Univariate-t

Prior:
(αj |σ2

j ) ∼ N(0, σ2
j )

σ2
j ∼ ναS2

να
χ−2

να

Can show that the unconditional distribution for αj is

αj ∼ (iid)t(0, S2
να

, να)

(Sorensen and Gianola, 2002, LBMMQG pages 28,60)

This is Bayes-A (Meuwissen et al., 2001; Genetics
157:1819-1829)
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Univariate-t

Generated by Wolfram|Alpha (www.wolframalpha.com)
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Full conditional for single-site Gibbs
Full conditionals are the same as in the "Normal" model for
µ, αj , and σ2

e. Let
ξ = [σ2

1, σ2
2, . . . , σ2

k ]

Full conditional conditional for σ2
j :

f (σ2
j |y , µ,α, ξj_, σ

2
e) ∝ f (y , µ,α, ξ, σ2

e)

∝ f (y |µ,α, ξ, σ2
e)f (αj |σ2

j )f (σ2
j )f (µ,αj_, ξj_σ

2
e)

∝ (σ2
j )−1/2 exp{−

α2
j

2σ2
j
}(σ2

j )−(2+να)/2 exp{ναS2
α

2σ2
j
}

∝ (σ2
j )−(2+να+1)/2 exp{

α2
j + ναS2

α

2σ2
j

}
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Full conditional for σ2
j

So,
(σ2

j |y , µ,α, ξ_, σ
2
e) ∼ ν̃αS̃2

αχ−2
να

where
ν̃α = να + 1

and

S̃2
α =

α2
j + ναS2

α

ν̃α
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Multivariate-t

Prior:
(αj |σ2

α) ∼ (iid)N(0, σ2
α)

σ2
α ∼ ναS2

να
χ−2

να

Can show that the unconditional distribution for α is

α ∼ multivariate-t(0, IS2
να

, να)

(Sorensen and Gianola, 2002, LBMMQG page 60)

We will see later that this is Bayes-C with π = 0.
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Full conditional for σ2
α

We will see later that

(σ2
α|y , µ,α, σ2

e) ∼ ν̃αS̃2
αχ−2

να

where
ν̃α = να + k

and

S̃2
α =

α′α + ναS2
α

ν̃α
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Spike and univariate-t

Prior:

(αj |π, σ2
j )

{
∼ N(0, σ2

j ) probability (1− π),

= 0 probability π

and
(σ2

j |να, S2
α) ∼ ναS2

αχ−2
να

Thus,

(αj |π)(iid)

{
∼ univariate-t(0, S2

α, να) probability (1− π),

= 0 probability π

This is Bayes-B (Meuwissen et al., 2001; Genetics
157:1819-1829)
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Notation for sampling from mixture

The indicator variable δj is defined as

δj = 1 ⇒ (αj |σ2
j ) ∼ N(0, σ2

j )

and
δj = 0 ⇒ (αj |σ2

j ) = 0
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Sampling strategy in MHG (2001)

I Sampling σ2
e and µ are as under the Normal prior.

I MHG proposed to use a Metropolis-Hastings sampler to
draw samples for σ2

j and αj jointly from their full-conditional
distribution.

I First, σ2
j is sampled from

f (σ2
j |y , µ,αj_, ξ_, σ

2
e)

using MH with prior as proposal.
I Then, αj is sampled from its full-conditional, which is

identical to that under the Normal prior
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MH acceptance probability when prior is used as
proposal

Suppose we want to sample θ from f (θ|y) using the MH with its
prior as proposal. Then, the MH acceptance probability
becomes:

α = min(1,
f (θcan|y)f (θt−1)

f (θt−1|y)f (θcan)

where f (θ) is the prior for θ. Using Bayes’ theorem, the target
density can be written as:

f (θ|y) ∝ f (y |θ)f (θ)

Then, the acceptance probability becomes

α = min(1,
f (y |θcan)f (θcan)f (θt−1)

f (y |θt−1)f (θt−1)f (θcan)
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Sampling σ2
j

Thus when the prior for σ2
j is used as the proposal, the MH

acceptance probability becomes

α = min(1,
f (y |σ2

can,θj_)

f (y |σ2
j ,θj_)

)

where σ2
can is used to denote the candidate value for σ2

j , and θj_
all the other parameters. It can be shown that, αj depends on y
only through rj = x ′

jw (page 30). Thus

f (y |σ2
j ,θj_) ∝ f (rj |σ2

j ,θj_)
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"Likelihood" for σ2
j

Recall that

w = y − 1µ−
∑
j ′ 6=j

x j ′αj ′ = x jαj + e

Then,
E(w |σ2

j ,θj_) = 0

When δ = 1:

Var(w |δj = 1, σ2
j ,θj_) = x jx ′

jσ
2
j + Iσ2

e

and δ = 0:
Var(w |δj = 0, σ2

j ,θj_) = Iσ2
e
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"Likelihood" for σ2
j

So,
E(rj |σ2

j ,θj_) = 0

and

Var(rj |δj = 1, σ2
j ,θj_) = (x ′

jx j)
2σ2

j + x ′
jx jσ

2
e = v1

Var(rj |δj = 0, σ2
j ,θj_) = x ′

jx jσ
2
e = v0

So,

f (rj |δj , σ
2
j ,θj_) ∝ (vδ)

−1/2 exp{−
r2
j

2vδ
}
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Alternative View of Prior in BayesB

I How much information is being added by the prior?
I BayesB is identical to ML with additional data!
I Can “see” how much additional data in BayesB prior.
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Maximum Likelihood with Additional Data

I Suppose at locus j , δj = 1, and we observe additional data:

uj ∼ N(0, Iqσ2
j )

I Assume that only unknown is σ2
j

I So, adjust phenotypes as:

w = y − 1µ−
∑
j ′ 6=j

x j ′αj ′

I Likelihood:
L(σ2

j ; w , uj) = L(σ2
j ; α̂j , uj)
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Likelihood with Additional Data

I

L(σ2
j ; α̂j , uj) ∝ f1(α̂j |σ2

j )× f2(uj |σ2
j )

I

f2(uj |σ2
j ) ∝ (σ2

j )−q/2 exp[
−u′

juj

2σ2
j

]

∝ (σ2
j )−[ν/2+1] exp[

−νS2

2σ2
j

]

I ν = q − 2, S2 =
u′

j u j
ν
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Alternative algorithm for spike and univariate-t

Rather than use the prior as the proposal for sampling σ2
j , we

I sample δj = 1 with probability 0.5
I when δ = 1, sample σ2

j from a scaled inverse chi-squared
distribution with

I scale parameter = σ
2(t−1)
j /2 and 4 degrees of freedom

when δ
(t−1)
j = 1 , and

I scale parameter = S2
α and 4 degrees of freedom when

δ
(t−1)
j = 0
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Multivariate-t mixture

Prior:

(αj |π, σ2
α)

{
∼ N(0, σ2

α) probability (1− π),

= 0 probability π

and
(σ2

α|να, S2
α) ∼ ναS2

αχ−2
να

Further,
π ∼ Uniform(0, 1)

I The αj variables with their corresponding δj = 1 will follow
a multivariate-t distribution.

I This is what we have called Bayes-Cπ
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Full conditionals for single-site Gibbs

Full-conditional distributions for µ, α, and σ2
e are as with the

Normal prior.
Full-conditional for δj :

Pr(δj |y , µ,α−j , δ−j , σ
2
α, σ2

e, π) =

Pr(δj |rj ,θj_)

Pr(δj |rj ,θj_) =
f (δj , rj |θj_)

f (rj |θj_)

=
f (rj |δj ,θj_) Pr(δj |π)

f (rj |δj = 0,θj_)π + f (rj |δj = 1,θj_)(1− π)
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Full conditional forσ2
α

This can be written as

f (σ2
α|y , µ,α, δ, σ2

e) ∝ f (y |σ2
α, µ,α, δ, σ2

e)f (σ2
α, µ,α, δ, σ2

e)

But, can see that

f (y |σ2
α, µ,α, δ, σ2

e) ∝ f (y |µ,α, δ, σ2
e)

So,
f (σ2

α|y , µ,α, δ, σ2
e) ∝ f (σ2

α, µ,α, δ, σ2
e)

Note that σ2
α appears only in f (α|σ2

α) and f (σ2
α):

f (α|σ2
α) ∝ (σ2

α)−k/2 exp{−α′α

2σ2
α

}

and

f (σ2
α) ∝ (σ2

α)−(να+2)/2 exp{ναS2
α

2σ2
α

}
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Full conditional for σ2
α

Combining these two densities gives:

f (σ2
α|y , µ,α, δ, σ2

e) ∝ (σ2
α)−(k+να+2)/2 exp{α′α + ναS2

α

2σ2
α

}

So,
(σ2

α|y , µ,α, δ, σ2
e) ∼ ν̃αS̃2

αχ−2
ν̃α

where
ν̃α = k + να

and

S̃2
α =

α′α + ναS2
α

ν̃α
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Hyper parameter: S2
α

If σ2 is distributed as a scaled, inverse chi-square random
variable with scale parameter S2 and degrees of freedom ν

E(σ2) =
νS2

ν − 2

Recall that under some assumptions

σ2
α =

Va∑
j 2pjqj

So, we take

S2
α =

(να − 2)Va

ναk(1− π)2pq
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Full conditional for π

Using Bayes’ theorem,

f (π|δ, µ,α, σ2
α, σ2

e, y) ∝ f (y |π, δ, µ,α, σ2
α, σ2

e)f (π, δ, µ,α, σ2
α, σ2

e)

But,
I Conditional on δ the likelihood is free of π

I Further, π only appears in probability of the vector of
bernoulli variables: δ

Thus,
f (π|δ, µ,α, σ2

α, σ2
e, y) = π(k−m)(1− π)m

where m = δ′δ, and k is the number of markers. Thus, π is
sampled from a beta distribution with a = k −m + 1 and
b = m + 1.
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BayesCπ with Unknown S2
α

I Prior for S2
α: Gamma(a,b)

f (S2
α|a, b) ∝ ba(S2

α)a−1 exp{−bS2
α}

I Using Bayes theorem,

f (S2
α|δ, µ,α, σ2

α, σ2
e, y) ∝ f (y |S2

α, σ2
α, . . .)f (S2

α, σ2 . . .)

I Given µ,α, and σ2
e, f (y |S2

α, σ2
α, . . .) does not depend on S2

α.
I In f (S2

α, σ2 . . .), S2
α is only in f (S2

α|a, b) and f (σ2
α|S2

α, να)
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BayesCπ with Unknown S2
α

So, f (S2
α|a, b) is Gamma(a*,b*), where

a∗ = a + να/2

and
b∗ = b +

να

2σ2
α
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Simulation I

I 2000 unlinked loci in LE
I 10 of these are QTL: π = 0.995
I h2 = 0.5
I Locus effects estimated from 250 individuals
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Results for Bayes-B

Correlations between true and predicted additive genotypic
values estimated from 32 replications

π S2 Correlation

0.995 0.2 0.91 (0.009)
0.8 0.2 0.86 (0.009)
0.0 0.2 0.80 (0.013)

0.995 2.0 0.90 (0.007)
0.8 2.0 0.77 (0.009)
0.0 2.0 0.35 (0.022)
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Simulation II

I 2000 unlinked loci with Q loci having effect on trait
I N is the size of training data set
I Heritability = 0.5
I Validation in an independent data set with 1000 individuals
I Bayes-B and Bayes-Cπ with π = 0.5
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Results

Results from 15 replications

Corr(g, ĝ)

N Q π π̂ Bayes-Cπ Bayes-B

2000 10 0.995 0.994 0.995 0.937
2000 200 0.90 0.899 0.866 0.834
2000 1900 0.05 0.202 0.613 0.571
4000 1900 0.05 0.096 0.763 0.722
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Simulation III

I Genotypes: 50k SNPs from 1086 Purebred Angus
animals, ISU

I Phenotypes:
I QTL simulated from 50 randomly sampled SNPs
I substitution effect sampled from N(0,σ2

α)
I σ2

α =
σ2

g
502p̄q

I h2 = 0.25
I QTL were included in the marker panel
I Marker effects were estimated for 50k SNPs
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Validation

I Genotypes: 50k SNPs from 984 crossbred animals, CMP
I Additive genetic merit (gi ) computed from the 50 QTL
I Additive genetic merit predicted (ĝi ) using estimated

effects for 50k SNP panel
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Results

Correlations between gi and ĝi estimated from 3 replications

Correlation

π Bayes-B Bayes-C

0.999 0.86 0.86
0.25 0.70 0.26

BayesCπ:
I π̂ = 0.999
I Correlation = 0.86
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