Bayesian Methods in Genome Association Studies

Rohan L. Fernando

Iowa State University
February, 2010

Outline of Part I

Fundamentals

Bayesian Inference
Theory
Computing Posteriors

Outline of Part II

Bayesian Regression Models
Normal
Student- t
Mixture Models

Simulations

Part I

Bayesian Inference: Theory

Bayes Theorem

The conditional probability of X given Y is

$$
\operatorname{Pr}(X \mid Y)=\frac{\operatorname{Pr}(X, Y)}{\operatorname{Pr}(Y)}=\frac{\operatorname{Pr}(Y \mid X) \operatorname{Pr}(X)}{\operatorname{Pr}(Y)}
$$

where $\operatorname{Pr}(X, Y)$ is the joint probability of X and $Y, \operatorname{Pr}(X)$ is the probability of X, and $\operatorname{Pr}(Y)$ is the probability of Y.

Conditional Probability by Example

Joint distribution of smoking and lung cancer in a hypothetical population of 1,000,000:

Question: What is the relative frequency of lung cancer among smokers?

Answer: $\frac{42,500}{250,000}=0.17$

Conditional Probability by Example

Joint distribution of smoking and lung cancer in a hypothetical population of $1,000,000$:

Question: What is the relative frequency of lung cancer among smokers?

Answer: $\frac{42,500}{250,000}=0.17$

Conditional Probability by Example

Joint distribution of smoking and lung cancer in a hypothetical population of $1,000,000$:

Question: What is the relative frequency of lung cancer among smokers?

Answer: $\frac{42,500}{250,000}=0.17$

Conditional Probability by Example

- As explained below, this relative frequency is also the conditional probability of lung cancer given smoking.

```
    * The frequentist definition of probability of an event is the
    limiting value of its relative frequency in a large number of
    trials.
    - Suppose we sample with replacement individuals from the
    250,000 smokers and compute the relative frequency of
    lung cancer incidence.
    - It can be shown that as the sample size goes to infinity, this
    relative frequency will approach }\frac{42,500}{250,000}=0.17
* This conditional probability is usually written as
    42,500/1,000,000
> The ratio in the numerator is joint probability of smoking
    and lung cancer, and the ratio in the denominator is the
    marginal probability of smoking.
```


Conditional Probability by Example

- As explained below, this relative frequency is also the conditional probability of lung cancer given smoking.
- The frequentist definition of probability of an event is the limiting value of its relative frequency in a large number of trials.
- Suppose we sample with replacement individuals from the 250,000 smokers and compute the relative frequency of lung cancer incidence.
- It can be shown that as the sample size goes to infinity, this relative frequency will approach $\frac{42,500}{250,000}=0.17$.
- This conditional probability is usually written as $\frac{42,500 / 1,000,000}{250.000 / 1.000 .000}=0.17$.
- The ratio in the numerator is joint probability of smoking and lung cancer, and the ratio in the denominator is the marginal probability of smoking.

Conditional Probability by Example

- As explained below, this relative frequency is also the conditional probability of lung cancer given smoking.
- The frequentist definition of probability of an event is the limiting value of its relative frequency in a large number of trials.
- Suppose we sample with replacement individuals from the 250,000 smokers and compute the relative frequency of lung cancer incidence.
- It can be shown that as the sample size goes to infinity, this relative frequency will approach $\frac{42,500}{250,000}=0.17$.
- This conditional probability is usually written as $\frac{42,500 / 1,000,000}{250,000 / 1,000,000}=0.17$.
- The ratio in the numerator is joint probability of smoking and lung cancer, and the ratio in the denominator is the marginal probability of smoking.

Conditional Probability by Example

- As explained below, this relative frequency is also the conditional probability of lung cancer given smoking.
- The frequentist definition of probability of an event is the limiting value of its relative frequency in a large number of trials.
- Suppose we sample with replacement individuals from the 250,000 smokers and compute the relative frequency of lung cancer incidence.
- It can be shown that as the sample size goes to infinity, this relative frequency will approach $\frac{42,500}{250,000}=0.17$.

Conditional Probability by Example

- As explained below, this relative frequency is also the conditional probability of lung cancer given smoking.
- The frequentist definition of probability of an event is the limiting value of its relative frequency in a large number of trials.
- Suppose we sample with replacement individuals from the 250,000 smokers and compute the relative frequency of lung cancer incidence.
- It can be shown that as the sample size goes to infinity, this relative frequency will approach $\frac{42,500}{250,000}=0.17$.
- This conditional probability is usually written as
$\frac{42,500 / 1,000,000}{250,000 / 1,000,000}=0.17$.
- The ratio in the numerator is joint probability of smoking and lung cancer, and the ratio in the denominator is the marginal probability of smoking.

Conditional Probability by Example

- As explained below, this relative frequency is also the conditional probability of lung cancer given smoking.
- The frequentist definition of probability of an event is the limiting value of its relative frequency in a large number of trials.
- Suppose we sample with replacement individuals from the 250,000 smokers and compute the relative frequency of lung cancer incidence.
- It can be shown that as the sample size goes to infinity, this relative frequency will approach $\frac{42,500}{250,000}=0.17$.
- This conditional probability is usually written as

$$
\frac{42,500 / 1,000,000}{250,000 / 1,000,000}=0.17
$$

- The ratio in the numerator is joint probability of smoking and lung cancer, and the ratio in the denominator is the marginal probability of smoking.

Meaning of Probability in Bayesian Inference

- In the frequency approach, probability is a limiting frequency
- In Bayesian inference, probabilities are used to quantify your beliefs or knowledge about possible values of parameters
- What is the probability that $h^{2}>0.5$?
- What is the probability that milk yield is controlled by more than 100 loci?

Meaning of Probability in Bayesian Inference

- In the frequency approach, probability is a limiting frequency
- In Bayesian inference, probabilities are used to quantify your beliefs or knowledge about possible values of parameters

Meaning of Probability in Bayesian Inference

- In the frequency approach, probability is a limiting frequency
- In Bayesian inference, probabilities are used to quantify your beliefs or knowledge about possible values of parameters
- What is the probability that $h^{2}>0.5$?
- What is the probability that milk yield is controlled by more than 100 loci?

Meaning of Probability in Bayesian Inference

- In the frequency approach, probability is a limiting frequency
- In Bayesian inference, probabilities are used to quantify your beliefs or knowledge about possible values of parameters
- What is the probability that $h^{2}>0.5$?
- What is the probability that milk yield is controlled by more than 100 loci?

Essentials of Bayesian Inference

- Prior probabilities quantify beliefs about parameters before the data are analyzed
- Parameters are related to the data through the model or "likelihood", which is the conditional probability density for the data given the parameters
- The prior and the likelihood are combined using Bayes theorem to obtain posterior probabilities, which are conditional probabilities for the parameters given the clata
- Inferences about parameters are based on the posteior

Essentials of Bayesian Inference

- Prior probabilities quantify beliefs about parameters before the data are analyzed
- Parameters are related to the data through the model or "likelihood", which is the conditional probability density for the data given the parameters
The prior and the likelihood are combined using Bayes
theorem to obtain posterior probabilities, which are
conditional probabilities for the parameters given the data
- Inferences about parameters are based on the posteior

Essentials of Bayesian Inference

- Prior probabilities quantify beliefs about parameters before the data are analyzed
- Parameters are related to the data through the model or "likelihood", which is the conditional probability density for the data given the parameters
- The prior and the likelihood are combined using Bayes theorem to obtain posterior probabilities, which are conditional probabilities for the parameters given the data
- Inferences about parameters are based on the posteior

Essentials of Bayesian Inference

- Prior probabilities quantify beliefs about parameters before the data are analyzed
- Parameters are related to the data through the model or "likelihood", which is the conditional probability density for the data given the parameters
- The prior and the likelihood are combined using Bayes theorem to obtain posterior probabilities, which are conditional probabilities for the parameters given the data
- Inferences about parameters are based on the posteior

Bayes Theorem in Bayesian Inference

- Let $f(\boldsymbol{\theta})$ denote the prior probability density for $\boldsymbol{\theta}$
- Let $f(\boldsymbol{y} \mid \theta)$ denote the likelihood
- Then, the posterior probability of θ is:

$\propto f(\boldsymbol{y} \mid \theta) f(\theta)$

Bayes Theorem in Bayesian Inference

- Let $f(\boldsymbol{\theta})$ denote the prior probability density for $\boldsymbol{\theta}$
- Let $f(\boldsymbol{y} \mid \boldsymbol{\theta})$ denote the likelihood
- Then, the posterior probability of θ is:

Bayes Theorem in Bayesian Inference

- Let $f(\boldsymbol{\theta})$ denote the prior probability density for $\boldsymbol{\theta}$
- Let $f(\boldsymbol{y} \mid \boldsymbol{\theta})$ denote the likelihood
- Then, the posterior probability of θ is:

$$
\begin{aligned}
f(\boldsymbol{\theta} \mid \boldsymbol{y}) & =\frac{f(\boldsymbol{y} \mid \boldsymbol{\theta}) f(\boldsymbol{\theta})}{f(\boldsymbol{y})} \\
& \propto f(\boldsymbol{y} \mid \boldsymbol{\theta}) f(\boldsymbol{\theta})
\end{aligned}
$$

Computing posteriors

- Often no closed form for $f(\boldsymbol{\theta} \mid \boldsymbol{y})$
- Further, even if computing $f(\theta \mid \boldsymbol{y})$ is feasible, obtaining $f\left(\theta_{i} \mid \boldsymbol{y}\right)$ would require integrating over many dimensions
- Thus, in many situations, inferences are made using the empirical posterior constructed by drawing samples from $f(\boldsymbol{\theta} \mid \boldsymbol{y})$
- Gibbs sampler is widely used for drawing samples from posteriors

Computing posteriors

- Often no closed form for $f(\boldsymbol{\theta} \mid \boldsymbol{y})$
- Further, even if computing $f(\boldsymbol{\theta} \mid \boldsymbol{y})$ is feasible, obtaining $f\left(\theta_{i} \mid \boldsymbol{y}\right)$ would require integrating over many dimensions
- Thus, in many situations, inferences are made using the empirical posterior constructed by drawing samples from $f(\boldsymbol{\theta} \mid \boldsymbol{y})$
- Gibbs sampler is widely used for drawing samples from posteriors

Computing posteriors

- Often no closed form for $f(\boldsymbol{\theta} \mid \boldsymbol{y})$
- Further, even if computing $f(\boldsymbol{\theta} \mid \boldsymbol{y})$ is feasible, obtaining $f\left(\theta_{i} \mid \boldsymbol{y}\right)$ would require integrating over many dimensions
- Thus, in many situations, inferences are made using the empirical posterior constructed by drawing samples from $f(\boldsymbol{\theta} \mid \boldsymbol{y})$
- Gibbs sampler is widely used for drawing samples from posteriors

Computing posteriors

- Often no closed form for $f(\boldsymbol{\theta} \mid \boldsymbol{y})$
- Further, even if computing $f(\boldsymbol{\theta} \mid \boldsymbol{y})$ is feasible, obtaining $f\left(\theta_{i} \mid \boldsymbol{y}\right)$ would require integrating over many dimensions
- Thus, in many situations, inferences are made using the empirical posterior constructed by drawing samples from $f(\boldsymbol{\theta} \mid \boldsymbol{y})$
- Gibbs sampler is widely used for drawing samples from posteriors

Gibbs sampler

- Want to draw samples from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Even though it may be possible to compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, it is difficult to draw samples directly from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Gibbs:
- Get valid a starting point \boldsymbol{x}^{0}
- Draw sample \boldsymbol{x}^{t} as:

- The sequence $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{n}$ is a Markov chain with stationary distribution $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Gibbs sampler

- Want to draw samples from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Even though it may be possible to compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, it is difficult to draw samples directly from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Gibbs:
- Get valid a starting point \boldsymbol{x}^{0}
- Draw sample \boldsymbol{x}^{t} as:

- The sequence $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{n}$ is a Markov chain with stationary distribution $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Gibbs sampler

- Want to draw samples from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Even though it may be possible to compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, it is difficult to draw samples directly from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Gibbs:
- Get valid a starting point x^{0}
- Draw sample \boldsymbol{x}^{t} as:

- The sequence $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{n}$ is a Markov chain with stationary distribution $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Gibbs sampler

- Want to draw samples from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Even though it may be possible to compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, it is difficult to draw samples directly from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Gibbs:
- Get valid a starting point \boldsymbol{x}^{0}
- Draw sample x^{t} as:
from
from
from
from

$f\left(x_{n} \mid x_{1}^{t}, x_{2}^{t}, \ldots, x_{n-1}^{t}\right)$
- The sequence $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{n}$ is a Markov chain with stationary distribution $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Gibbs sampler

- Want to draw samples from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Even though it may be possible to compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, it is difficult to draw samples directly from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Gibbs:
- Get valid a starting point \boldsymbol{x}^{0}
- Draw sample \boldsymbol{x}^{t} as:
x_{1}^{t} from $f\left(x_{1} \mid x_{2}^{t-1}, x_{3}^{t-1}, \ldots, x_{n}^{t-1}\right)$
from

Gibbs sampler

- Want to draw samples from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Even though it may be possible to compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, it is difficult to draw samples directly from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Gibbs:
- Get valid a starting point \boldsymbol{x}^{0}
- Draw sample \boldsymbol{x}^{t} as:

```
\mp@subsup{x}{1}{t}}\mathrm{ from f(x, }|\mp@subsup{x}{2}{t-1},\mp@subsup{x}{3}{t-1},\ldots,\mp@subsup{x}{n}{t-1}
x2t from f(\mp@subsup{x}{2}{}|\mp@subsup{x}{1}{t},\mp@subsup{x}{3}{t-1},\ldots,\mp@subsup{x}{n}{t-1})
```

from

- The sequence $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{n}$ is a Markov chain with stationary distribution $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Gibbs sampler

- Want to draw samples from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Even though it may be possible to compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, it is difficult to draw samples directly from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Gibbs:
- Get valid a starting point \boldsymbol{x}^{0}
- Draw sample \boldsymbol{x}^{t} as:

$$
\begin{array}{ccc}
x_{1}^{t} & \text { from } & f\left(x_{1} \mid x_{2}^{t-1}, x_{3}^{t-1}, \ldots, x_{n}^{t-1}\right) \\
x_{2}^{t} & \text { from } & f\left(x_{2} \mid x_{1}^{t}, x_{3}^{t-1}, \ldots, x_{n}^{t-1}\right) \\
x_{3}^{t} & \text { from } & f\left(x_{3} \mid x_{1}^{t}, x_{2}^{t}, \ldots, x_{n}^{t-1}\right)
\end{array}
$$

from

- The sequence $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{n}$ is a Markov chain with stationary distribution $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Gibbs sampler

- Want to draw samples from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Even though it may be possible to compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, it is difficult to draw samples directly from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Gibbs:
- Get valid a starting point \boldsymbol{x}^{0}
- Draw sample \boldsymbol{x}^{t} as:

- The sequence $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{n}$ is a Markov chain with stationary distribution $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Gibbs sampler

- Want to draw samples from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Even though it may be possible to compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, it is difficult to draw samples directly from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Gibbs:
- Get valid a starting point \boldsymbol{x}^{0}
- Draw sample \boldsymbol{x}^{t} as:

x_{1}^{t}	from	$f\left(x_{1} \mid x_{2}^{t-1}, x_{3}^{t-1}, \ldots, x_{n}^{t-1}\right)$
x_{2}^{t}	from	$f\left(x_{2} \mid x_{1}^{t}, x_{3}^{t-1}, \ldots, x_{n}^{t-1}\right)$
x_{3}^{t}	from	$f\left(x_{3} \mid x_{1}^{t}, x_{2}^{t}, \ldots, x_{n}^{t-1}\right)$
\vdots		\vdots
x_{n}^{t}	from	$f\left(x_{n} \mid x_{1}^{t}, x_{2}^{t}, \ldots, x_{n-1}^{t}\right)$

- The sequence $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{n}$ is a Markov chain with stationary distribution $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Gibbs sampler

- Want to draw samples from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Even though it may be possible to compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, it is difficult to draw samples directly from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Gibbs:
- Get valid a starting point \boldsymbol{x}^{0}
- Draw sample \boldsymbol{x}^{t} as:

x_{1}^{t}	from	$f\left(x_{1} \mid x_{2}^{t-1}, x_{3}^{t-1}, \ldots, x_{n}^{t-1}\right)$
x_{2}^{t}	from	$f\left(x_{2} \mid x_{1}^{t}, x_{3}^{t-1}, \ldots, x_{n}^{t-1}\right)$
x_{3}^{t}	from	$f\left(x_{3} \mid x_{1}^{t}, x_{2}^{t}, \ldots, x_{n}^{t-1}\right)$
\vdots		\vdots
x_{n}^{t}	from	$f\left(x_{n} \mid x_{1}^{t}, x_{2}^{t}, \ldots, x_{n-1}^{t}\right)$

- The sequence $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{n}$ is a Markov chain with stationary distribution $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Inference from Markov chain

Can show that samples obtained from the Markov chain can be used to draw inferences from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ provided the chain is:

- Irreducible: can move from any state i to any other state j
- Positive recurrent: return time to any state has finite expectation
- Markov Chains, J. R. Norris (1997)

Inference from Markov chain

Can show that samples obtained from the Markov chain can be used to draw inferences from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ provided the chain is:

- Irreducible: can move from any state i to any other state j
- Positive recurrent: return time to any state has finite expectation
- Markov Chains, J. R. Norris (1997)

Inference from Markov chain

Can show that samples obtained from the Markov chain can be used to draw inferences from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ provided the chain is:

- Irreducible: can move from any state i to any other state j
- Positive recurrent: return time to any state has finite expectation
- Markov Chains, J. R. Norris (1997)

Inference from Markov chain

Can show that samples obtained from the Markov chain can be used to draw inferences from $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ provided the chain is:

- Irreducible: can move from any state i to any other state j
- Positive recurrent: return time to any state has finite expectation
- Markov Chains, J. R. Norris (1997)

Example

Let $f(\boldsymbol{x})$ be a bivariate normal density with means

$$
\mu^{\prime}=\left[\begin{array}{ll}
1 & 2
\end{array}\right]
$$

and covariance matrix

$$
\boldsymbol{V}=\left[\begin{array}{cc}
1 & 0.5 \\
0.5 & 2.0
\end{array}\right]
$$

Suppose we do not know how to draw samples from $f(\boldsymbol{x})$, but know how to draw samples from $f\left(x_{i} \mid x_{j}\right)$, which is univariate normal with mean:

$$
\mu_{i . j}=\mu_{i}+\frac{v_{i j}}{v_{j j}}\left(x_{j}-\mu_{j}\right)
$$

and variance

$$
v_{i . j}=v_{i j}-\frac{v_{i j}^{2}}{v_{j j}}
$$

Gibbs sampler

- Gibbs:

- Use the sequence $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{n}$ to compute any property of $f(\boldsymbol{x})$, for example

$$
\operatorname{Pr}\left(x_{1}>\mu_{1} \text { and } x_{2}>\mu_{2}\right)
$$

Gibbs sampler

- Gibbs:
- Start with $\boldsymbol{x}^{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- Draw sample \boldsymbol{x}^{t} as:
- Use the sequence $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{n}$ to compute any property of $f(\boldsymbol{x})$, for example

$$
\operatorname{Pr}\left(x_{1}>\mu_{1} \text { and } x_{2}>\mu_{2}\right)
$$

Gibbs sampler

- Gibbs:
- Start with $\boldsymbol{x}^{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- Draw sample \boldsymbol{x}^{t} as:
x_{1}^{t} from $f\left(x_{1} \mid x_{2}^{t-1}\right)$
- Use the sequence $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{n}$ to compute any property of $f(\boldsymbol{x})$, for example

$$
\operatorname{Pr}\left(x_{1}>\mu_{1} \text { and } x_{2}>\mu_{2}\right)
$$

Gibbs sampler

- Gibbs:
- Start with $\boldsymbol{x}^{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- Draw sample \boldsymbol{x}^{t} as:

$$
\begin{array}{ccc}
x_{1}^{t} & \text { from } & f\left(x_{1} \mid x_{2}^{t-1}\right) \\
x_{2}^{t} & \text { from } & f\left(x_{2} \mid x_{1}^{t}\right)
\end{array}
$$

- Use the sequence $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{n}$ to compute any property of $f(\boldsymbol{x})$, for example

$$
\operatorname{Pr}\left(x_{1}>\mu_{1} \text { and } x_{2}>\mu_{2}\right)
$$

Gibbs sampler

- Gibbs:
- Start with $\boldsymbol{x}^{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- Draw sample \boldsymbol{x}^{t} as:

$$
\begin{array}{ccc}
x_{1}^{t} & \text { from } & f\left(x_{1} \mid x_{2}^{t-1}\right) \\
x_{2}^{t} & \text { from } & f\left(x_{2} \mid x_{1}^{t}\right)
\end{array}
$$

- Use the sequence $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{n}$ to compute any property of $f(\boldsymbol{x})$, for example

$$
\operatorname{Pr}\left(x_{1}>\mu_{1} \text { and } x_{2}>\mu_{2}\right)
$$

MCMC Estimates of $\operatorname{Pr}\left(x_{1}>\mu_{1}\right.$ and $\left.x_{2}>\mu_{2}\right)$

Metropolis-Hastings sampler

- Sometimes may not be able to draw samples directly from $f\left(x_{i} \mid \boldsymbol{x}_{i_{-}}\right)$
- Convergence of the Gibbs sampler may be too slow
- Metropolis-Hastings (MH) for sampling from $f(x)$:
- a candidate sample, y, is drawn from a proposal dist ribution $q\left(y \mid x^{t-1}\right)$

with probability α
with probability $1-\alpha$
- The samples from MH is a Markov chain with stationary distribution $f(x)$

Metropolis-Hastings sampler

- Sometimes may not be able to draw samples directly from $f\left(x_{i} \mid \boldsymbol{x}_{i_{-}}\right)$
- Convergence of the Gibbs sampler may be too slow
- Metropolis-Hastings (MH) for sampling from $f(x)$:
- a candidate sample, y, is drawn from a proposal distribution

- The samples from MH is a Markov chain with stationary distribution $f(x)$

Metropolis-Hastings sampler

- Sometimes may not be able to draw samples directly from $f\left(x_{i} \mid \boldsymbol{x}_{i_{-}}\right)$
- Convergence of the Gibbs sampler may be too slow
- Metropolis-Hastings (MH) for sampling from $f(x)$:
- a candidate sample, y, is drawn from a proposal distribution
$q\left(y \mid x^{t-1}\right)$

- The samples from MH is a Markov chain with stationary distribution $f(x)$

Metropolis-Hastings sampler

- Sometimes may not be able to draw samples directly from $f\left(x_{i} \mid \boldsymbol{x}_{i_{-}}\right)$
- Convergence of the Gibbs sampler may be too slow
- Metropolis-Hastings (MH) for sampling from $f(x)$:
- a candidate sample, y, is drawn from a proposal distribution $q\left(y \mid x^{t-1}\right)$

- The samples from MH is a Markov chain with stationary distribution $f(x)$

Metropolis-Hastings sampler

- Sometimes may not be able to draw samples directly from $f\left(x_{i} \mid \boldsymbol{x}_{i_{-}}\right)$
- Convergence of the Gibbs sampler may be too slow
- Metropolis-Hastings (MH) for sampling from $f(x)$:
- a candidate sample, y, is drawn from a proposal distribution $q\left(y \mid x^{t-1}\right)$

$$
x^{t}= \begin{cases}y & \text { with probability } \alpha \\ x^{t-1} & \text { with probability } 1-\alpha\end{cases}
$$

- The samples from MH is a Markov chain with stationary distribution $f(x)$

Metropolis-Hastings sampler

- Sometimes may not be able to draw samples directly from $f\left(x_{i} \mid \boldsymbol{x}_{i_{-}}\right)$
- Convergence of the Gibbs sampler may be too slow
- Metropolis-Hastings (MH) for sampling from $f(x)$:
- a candidate sample, y, is drawn from a proposal distribution $q\left(y \mid x^{t-1}\right)$
-

$$
x^{t}= \begin{cases}y & \text { with probability } \alpha \\ x^{t-1} & \text { with probability } 1-\alpha\end{cases}
$$

$$
\alpha=\min \left(1, \frac{f(y) q\left(x^{t-1} \mid y\right)}{f\left(x^{t-1}\right) q\left(y \mid x^{t-1}\right)}\right)
$$

- The samples from MH is a Markov chain with stationary distribution $f(x)$

Metropolis-Hastings sampler

- Sometimes may not be able to draw samples directly from $f\left(x_{i} \mid \boldsymbol{x}_{i_{-}}\right)$
- Convergence of the Gibbs sampler may be too slow
- Metropolis-Hastings (MH) for sampling from $f(x)$:
- a candidate sample, y, is drawn from a proposal distribution $q\left(y \mid x^{t-1}\right)$
-

$$
\begin{gathered}
x^{t}= \begin{cases}y & \text { with probability } \alpha \\
x^{t-1} & \text { with probability } 1-\alpha\end{cases} \\
\alpha=\min \left(1, \frac{f(y) q\left(x^{t-1} \mid y\right)}{f\left(x^{t-1}\right) q\left(y \mid x^{t-1}\right)}\right)
\end{gathered}
$$

- The samples from MH is a Markov chain with stationary distribution $f(x)$

Proposal distributions

Two main types:

- Approximations of the target density: $f(x)$
- Not easy to find approximation that is easy to sample from
- High acceptance rate is good!
- Random walk type: stay close to the previous sample
- Generally easy to construct proposal
- High acceptance rate may indicate that candidate is too close to previous sample
- Intermediate acceptance rate is good

Proposal distributions

Two main types:

- Approximations of the target density: $f(x)$
- Not easy to find approximation that is easy to sample from
- High acceptance rate is good!
- Random walk type: stay close to the previous sample
- Generally easy to construct proposal
- High acceptance rate may indicate that candidate is too close to previous sample
- Intermediate acceptance rate is good

Proposal distributions

Two main types:

- Approximations of the target density: $f(x)$
- Not easy to find approximation that is easy to sample from
- High acceptance rate is good!
- Random walk type: stay close to the previous sample
- Generally easy to construct proposal
- High acceptance rate may indicate that candidate is too close to previous sample
- Intermediate acceptance rate is good

Proposal distributions

Two main types:

- Approximations of the target density: $f(x)$
- Not easy to find approximation that is easy to sample from
- High acceptance rate is good!
> - Random walk type: stay close to the previous sample
> - Generally easy to construct proposal
> - High acceptance rate may indicate that candidate is too close to previous sample
> - Intermediate acceptance rate is good

Proposal distributions

Two main types:

- Approximations of the target density: $f(x)$
- Not easy to find approximation that is easy to sample from
- High acceptance rate is good!
- Random walk type: stay close to the previous sample
- Generally easy to construct proposal
- High acceptance rate may indicate that candidate is too close to previous sample
- Intermediate acceptance rate is good

Proposal distributions

Two main types:

- Approximations of the target density: $f(x)$
- Not easy to find approximation that is easy to sample from
- High acceptance rate is good!
- Random walk type: stay close to the previous sample
- Generally easy to construct proposal

Proposal distributions

Two main types:

- Approximations of the target density: $f(x)$
- Not easy to find approximation that is easy to sample from
- High acceptance rate is good!
- Random walk type: stay close to the previous sample
- Generally easy to construct proposal
- High acceptance rate may indicate that candidate is too close to previous sample
- Intermediate acceptance rate is good

Proposal distributions

Two main types:

- Approximations of the target density: $f(x)$
- Not easy to find approximation that is easy to sample from
- High acceptance rate is good!
- Random walk type: stay close to the previous sample
- Generally easy to construct proposal
- High acceptance rate may indicate that candidate is too close to previous sample
- Intermediate acceptance rate is good

MH Sampler to Estimate $\operatorname{Pr}\left(x_{1}>\mu_{1}\right.$ and $\left.x_{2}>\mu_{2}\right)$
MH Sampler:

- Start with $\boldsymbol{x}^{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- Draw sample \boldsymbol{x}^{t} as:

where u_{i} is Uniform $\left(-v_{i i}^{1 / 2}, v_{i i}^{1 / 2}\right)$.
- Compute

and
with probability α
with probability $1-\alpha$

MH Sampler to Estimate $\operatorname{Pr}\left(x_{1}>\mu_{1}\right.$ and $\left.x_{2}>\mu_{2}\right)$

MH Sampler:

- Start with $\boldsymbol{x}^{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- Draw sample \boldsymbol{x}^{t} as:

$$
\begin{aligned}
& y_{1}=x_{1}^{t-1}+u_{1} \\
& y_{2}=x_{2}^{t-1}+u_{2}
\end{aligned}
$$

where u_{i} is Uniform $\left(-v_{i i}^{1 / 2}, v_{i i}^{1 / 2}\right)$.

- Compute

and

MH Sampler to Estimate $\operatorname{Pr}\left(x_{1}>\mu_{1}\right.$ and $\left.x_{2}>\mu_{2}\right)$

MH Sampler:

- Start with $\boldsymbol{x}^{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- Draw sample \boldsymbol{x}^{t} as:

$$
\begin{aligned}
& y_{1}=x_{1}^{t-1}+u_{1} \\
& y_{2}=x_{2}^{t-1}+u_{2}
\end{aligned}
$$

where u_{i} is Uniform $\left(-v_{i i}^{1 / 2}, v_{i i}^{1 / 2}\right)$.

- Compute

$$
\alpha=\min \left(1, \frac{f(\boldsymbol{y})}{f\left(\boldsymbol{X}^{t-1}\right)}\right)
$$

and

$$
\boldsymbol{x}^{t}= \begin{cases}\boldsymbol{y} & \text { with probability } \alpha \\ \boldsymbol{x}^{t-1} & \text { with probability } 1-\alpha\end{cases}
$$

MCMC Estimates of $\operatorname{Pr}\left(x_{1}>\mu_{1}\right.$ and $\left.x_{2}>\mu_{2}\right)$

Distribution of y_{1} Sampled Using MH

Histogram of y1

Part II

Bayesian Inference: Application to Whole Genome Analyses

Model

Model:

$$
y_{i}=\mu+\sum_{j} x_{i j} \alpha_{j}+e_{i}
$$

Priors:
> - $\mu \propto$ constant (not proper, but posterior is proper)
> - $\left(e_{i} \mid \sigma_{e}^{2}\right) \sim($ iid $) \mathrm{N}\left(0, \sigma_{e}^{2}\right) ; \sigma_{e}^{2} \sim \nu_{e} S_{e}^{2} \chi_{\nu_{e}}^{-2}$
> - Consider several different priors for α_{j}

Model

Model:

$$
y_{i}=\mu+\sum_{j} x_{i j} \alpha_{j}+e_{i}
$$

Priors:

- $\mu \propto$ constant (not proper, but posterior is proper)
$\Rightarrow\left(e_{i} \mid \sigma_{e}^{2}\right) \sim(i i d) \mathrm{N}\left(0, \sigma_{e}^{2}\right) ; \sigma_{e}^{2} \sim \nu_{e} S_{e}^{2} \chi_{\nu_{e}}^{-2}$
- Consider several different priors for α_{j}

Model

Model:

$$
y_{i}=\mu+\sum_{j} X_{i j} \alpha_{j}+e_{i}
$$

Priors:

- $\mu \propto$ constant (not proper, but posterior is proper)
- $\left(e_{i} \mid \sigma_{e}^{2}\right) \sim(\mathrm{iid}) \mathrm{N}\left(0, \sigma_{e}^{2}\right) ; \sigma_{e}^{2} \sim \nu_{e} S_{e}^{2} \chi_{\nu_{e}}^{-2}$

Model

Model:

$$
y_{i}=\mu+\sum_{j} X_{i j} \alpha_{j}+e_{i}
$$

Priors:

- $\mu \propto$ constant (not proper, but posterior is proper)
- $\left(e_{i} \mid \sigma_{e}^{2}\right) \sim($ iid $) \mathrm{N}\left(0, \sigma_{e}^{2}\right) ; \sigma_{e}^{2} \sim \nu_{e} S_{e}^{2} \chi_{\nu_{e}}^{-2}$
- Consider several different priors for α_{j}

Normal

- Prior: $\left(\alpha_{j} \mid \sigma_{\alpha}^{2}\right) \sim($ iid $) \mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) ; \sigma_{\alpha}^{2}$ is known
- What is σ_{α}^{2} ?
- Assume the QTL genotypes are a subset of those available for the analysis
- Then, the genotypic value of i can be written as:

$$
g_{i}=\mu+\boldsymbol{x}_{i}^{\prime} \alpha
$$

- Note that α is common to all i
- Thus, the variance of g_{i} comes from x_{i}^{\prime} being random
- So, σ_{α}^{2} is not the genetic variance at a locus
- If locus j is randomly sampled from all the loci available for analysis:
- Then, α_{j} will be a random variable
- $\sigma_{\alpha}^{2}=\operatorname{Var}\left(\alpha_{j}\right)$

Normal

- Prior: $\left(\alpha_{j} \mid \sigma_{\alpha}^{2}\right) \sim($ iid $) \mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) ; \sigma_{\alpha}^{2}$ is known
- What is σ_{α}^{2} ?
- Assume the QTL genotypes are a subset of those available for the analysis
- Then, the genotypic value of i can be written as:

$$
g_{i}=\mu+\boldsymbol{x}_{i}^{\prime} \alpha
$$

- Note that α is common to all i
- Thus, the variance of g_{i} comes from x_{i}^{\prime} being random
- So, σ_{α}^{2} is not the genetic variance at a locus
- If locus j is randomly sampled from all the loci available for analysis:
- Then, α_{j} will be a random variable
- $\sigma_{\alpha}^{2}=\operatorname{Var}\left(\alpha_{j}\right)$

Normal

- Prior: $\left(\alpha_{j} \mid \sigma_{\alpha}^{2}\right) \sim($ iid $) \mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) ; \sigma_{\alpha}^{2}$ is known
- What is σ_{α}^{2} ?
- Assume the QTL genotypes are a subset of those available for the analysis
- Then, the genotypic value of i can be written as:
- Note that α is common to all i
- Thus, the variance of g_{i} comes from x_{i}^{\prime} being random
- So, σ_{α}^{2} is not the genetic variance at a locus
- If locus j is randomly sampled from all the loci available for analysis:
- Then, α_{j} will be a random variable
- $\sigma_{\alpha}^{2}=\operatorname{Var}\left(\alpha_{j}\right)$

Normal

- Prior: $\left(\alpha_{j} \mid \sigma_{\alpha}^{2}\right) \sim($ iid $) \mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) ; \sigma_{\alpha}^{2}$ is known
- What is σ_{α}^{2} ?
- Assume the QTL genotypes are a subset of those available for the analysis
- Then, the genotypic value of i can be written as:

$$
g_{i}=\mu+\boldsymbol{x}_{i}^{\prime} \boldsymbol{\alpha}
$$

- Note that α is common to all i
- Thus, the variance of g_{i} comes from $\boldsymbol{x}_{i}^{\prime}$ being random
- So σ_{α}^{2} is not the genetic variance at a locus
- If locus j is randomly sampled from all the loci available for analysis:
- Then, α_{j} will be a random variable
- $\sigma_{\alpha}^{2}=\operatorname{Var}\left(\alpha_{j}\right)$

Normal

- Prior: $\left(\alpha_{j} \mid \sigma_{\alpha}^{2}\right) \sim($ iid $) \mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) ; \sigma_{\alpha}^{2}$ is known
- What is σ_{α}^{2} ?
- Assume the QTL genotypes are a subset of those available for the analysis
- Then, the genotypic value of i can be written as:

$$
g_{i}=\mu+\boldsymbol{x}_{i}^{\prime} \boldsymbol{\alpha}
$$

- Note that α is common to all i
- Thus, the variance of g_{i} comes from $\boldsymbol{x}_{i}^{\prime}$ being random
- So, σ_{α}^{2} is not the genetic variance at a locus
- If locus j is randomly sampled from all the loci available for analysis:
- Then, α_{j} will be a random variable
- $\sigma_{\alpha}^{2}=\operatorname{Var}\left(\alpha_{j}\right)$

Normal

- Prior: $\left(\alpha_{j} \mid \sigma_{\alpha}^{2}\right) \sim$ (iid) $\mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) ; \sigma_{\alpha}^{2}$ is known
- What is σ_{α}^{2} ?
- Assume the QTL genotypes are a subset of those available for the analysis
- Then, the genotypic value of i can be written as:

$$
g_{i}=\mu+\boldsymbol{x}_{i}^{\prime} \alpha
$$

- Note that α is common to all i
- Thus, the variance of g_{i} comes from $\boldsymbol{x}_{i}^{\prime}$ being random
- So, σ_{α}^{2} is not the genetic variance at a locus
- If locus j is randomly sampled from all the loci available for analysis:
- Then, α_{j} will be a random variable
- $\sigma_{\alpha}^{2}=\operatorname{Var}\left(\alpha_{j}\right)$

Normal

- Prior: $\left(\alpha_{j} \mid \sigma_{\alpha}^{2}\right) \sim$ (iid) $\mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) ; \sigma_{\alpha}^{2}$ is known
- What is σ_{α}^{2} ?
- Assume the QTL genotypes are a subset of those available for the analysis
- Then, the genotypic value of i can be written as:

$$
g_{i}=\mu+\boldsymbol{x}_{i}^{\prime} \alpha
$$

- Note that α is common to all i
- Thus, the variance of g_{i} comes from $\boldsymbol{x}_{i}^{\prime}$ being random
- So, σ_{α}^{2} is not the genetic variance at a locus
- If locus j is randomly sampled from all the loci available for analysis:
- Then, α_{j} will be a random variable
- $\sigma_{\alpha}^{2}=\operatorname{Var}\left(\alpha_{j}\right)$

Normal

- Prior: $\left(\alpha_{j} \mid \sigma_{\alpha}^{2}\right) \sim$ (iid) $\mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) ; \sigma_{\alpha}^{2}$ is known
- What is σ_{α}^{2} ?
- Assume the QTL genotypes are a subset of those available for the analysis
- Then, the genotypic value of i can be written as:

$$
g_{i}=\mu+\boldsymbol{x}_{i}^{\prime} \alpha
$$

- Note that α is common to all i
- Thus, the variance of g_{i} comes from $\boldsymbol{x}_{i}^{\prime}$ being random
- So, σ_{α}^{2} is not the genetic variance at a locus
- If locus j is randomly sampled from all the loci available for analysis:
- Then, α_{j} will be a random variable

Normal

- Prior: $\left(\alpha_{j} \mid \sigma_{\alpha}^{2}\right) \sim$ (iid) $\mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) ; \sigma_{\alpha}^{2}$ is known
- What is σ_{α}^{2} ?
- Assume the QTL genotypes are a subset of those available for the analysis
- Then, the genotypic value of i can be written as:

$$
g_{i}=\mu+\boldsymbol{x}_{i}^{\prime} \alpha
$$

- Note that α is common to all i
- Thus, the variance of g_{i} comes from $\boldsymbol{x}_{i}^{\prime}$ being random
- So, σ_{α}^{2} is not the genetic variance at a locus
- If locus j is randomly sampled from all the loci available for analysis:
- Then, α_{j} will be a random variable

Normal

- Prior: $\left(\alpha_{j} \mid \sigma_{\alpha}^{2}\right) \sim$ (iid) $\mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) ; \sigma_{\alpha}^{2}$ is known
- What is σ_{α}^{2} ?
- Assume the QTL genotypes are a subset of those available for the analysis
- Then, the genotypic value of i can be written as:

$$
g_{i}=\mu+\boldsymbol{x}_{i}^{\prime} \alpha
$$

- Note that α is common to all i
- Thus, the variance of g_{i} comes from $\boldsymbol{x}_{i}^{\prime}$ being random
- So, σ_{α}^{2} is not the genetic variance at a locus
- If locus j is randomly sampled from all the loci available for analysis:
- Then, α_{j} will be a random variable
- $\sigma_{\alpha}^{2}=\operatorname{Var}\left(\alpha_{j}\right)$

Relationship of σ_{α}^{2} to genetic variance

Assume loci with effect on trait are in linkage equilibrium. Then, the additive genetic variance is

$$
V_{A}=\sum_{j}^{k} 2 p_{j} q_{j} \alpha_{j}^{2}
$$

where $p_{j}=1-q_{j}$ is gene frequency at SNP locus j.
Letting $U_{j}=2 p_{j} q_{j}$ and $V_{j}=\alpha_{j}^{2}$,

For a randomly sampled locus, covariance between U_{j} and V_{j} is

Relationship of σ_{α}^{2} to genetic variance

Assume loci with effect on trait are in linkage equilibrium. Then, the additive genetic variance is

$$
V_{A}=\sum_{j}^{k} 2 p_{j} q_{j} \alpha_{j}^{2}
$$

where $p_{j}=1-q_{j}$ is gene frequency at SNP locus j.
Letting $U_{j}=2 p_{j} q_{j}$ and $V_{j}=\alpha_{j}^{2}$,

$$
V_{A}=\sum_{j}^{k} U_{j} V_{j}
$$

For a randomly sampled locus, covariance between U_{j} and V_{j} is

Relationship of σ_{α}^{2} to genetic variance

Assume loci with effect on trait are in linkage equilibrium. Then, the additive genetic variance is

$$
V_{A}=\sum_{j}^{k} 2 p_{j} q_{j} \alpha_{j}^{2}
$$

where $p_{j}=1-q_{j}$ is gene frequency at SNP locus j.
Letting $U_{j}=2 p_{j} q_{j}$ and $V_{j}=\alpha_{j}^{2}$,

$$
V_{A}=\sum_{j}^{k} U_{j} V_{j}
$$

For a randomly sampled locus, covariance between U_{j} and V_{j} is

$$
C_{U V}=\frac{\sum_{j} U_{j} V_{j}}{k}-\left(\frac{\sum_{j} U_{j}}{k}\right)\left(\frac{\sum_{j} V_{j}}{k}\right)
$$

Relationship of σ_{α}^{2} to genetic variance

Rearranging the previous expression for $C_{U V}$ gives

$$
\sum_{j} U_{j} V_{j}=k C_{U V}+\left(\sum_{j} U_{j}\right)\left(\frac{\sum_{j} V_{j}}{k}\right)
$$

Relationship of σ_{α}^{2} to genetic variance

Rearranging the previous expression for $C_{U V}$ gives

$$
\sum_{j} U_{j} V_{j}=k C_{U V}+\left(\sum_{j} U_{j}\right)\left(\frac{\sum_{j} V_{j}}{k}\right)
$$

So,

$$
V_{A}=k C_{U V}+\left(\sum_{j} 2 p_{j} q_{j}\right)\left(\frac{\sum_{j} \alpha_{j}^{2}}{k}\right)
$$

Letting $\sigma_{\alpha}^{2}=\frac{\sum_{j} \alpha_{j}^{2}}{k}$ gives

Relationship of σ_{α}^{2} to genetic variance

Rearranging the previous expression for $C_{U V}$ gives

$$
\sum_{j} U_{j} V_{j}=k C_{U V}+\left(\sum_{j} U_{j}\right)\left(\frac{\sum_{j} V_{j}}{k}\right)
$$

So,

$$
V_{A}=k C_{U V}+\left(\sum_{j} 2 p_{j} q_{j}\right)\left(\frac{\sum_{j} \alpha_{j}^{2}}{k}\right)
$$

Letting $\sigma_{\alpha}^{2}=\frac{\sum_{j} \alpha_{j}^{2}}{k}$ gives

$$
V_{A}=k C_{U V}+\left(\sum_{j} 2 p_{j} q_{j}\right) \sigma_{\alpha}^{2}
$$

and,

$$
\sigma_{\alpha}^{2}=\frac{V_{A}-k C_{U V}}{\sum_{j} 2 p_{j} q_{j}}
$$

Blocked Gibbs sampler

- Let $\boldsymbol{\theta}^{\prime}=\left[\mu, \boldsymbol{\alpha}^{\prime}\right]$
- Can show that $\left(\boldsymbol{\theta} \mid \boldsymbol{y}, \sigma_{e}^{2}\right) \sim \mathbf{N}\left(\hat{\boldsymbol{\theta}}, \boldsymbol{C}^{-1} \sigma_{e}^{2}\right)$

$$
\begin{gathered}
\hat{\theta}=C^{-1} \boldsymbol{W}^{\prime} \boldsymbol{y} ; \quad W=[1, \boldsymbol{X}] \\
C=\left[\begin{array}{cc}
\boldsymbol{1}^{\prime} \mathbf{1} & \mathbf{1}^{\prime} \boldsymbol{X} \\
\boldsymbol{X}^{\prime} \mathbf{1} & \boldsymbol{X}^{\prime} \boldsymbol{X}+\boldsymbol{I} \frac{\sigma_{\theta}^{2}}{\sigma_{\alpha}^{2}}
\end{array}\right]
\end{gathered}
$$

- Blocked Gibbs sampler
- García-Cortés and Sorensen (1996, GSE 28:121-126)
- Likelihood, Bayesian and MCMC Methods ... (LBMMQG, Sorensen and Gianola, 2002)

Blocked Gibbs sampler

- Let $\boldsymbol{\theta}^{\prime}=\left[\mu, \boldsymbol{\alpha}^{\prime}\right]$
- Can show that $\left(\boldsymbol{\theta} \mid \boldsymbol{y}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\hat{\boldsymbol{\theta}}, \boldsymbol{C}^{-1} \sigma_{e}^{2}\right)$

$$
C=\left[\begin{array}{cc}
\mathbf{1}^{\prime} \mathbf{1} & 1^{\prime} \boldsymbol{X} \\
\boldsymbol{X}^{\prime} \mathbf{1} & X^{\prime} \boldsymbol{X}+\boldsymbol{I} \frac{\sigma_{\theta}^{2}}{\sigma_{\alpha}^{2}}
\end{array}\right]
$$

- Blocked Gibbs sampler
- García-Cortés and Sorensen (1996, GSE 28:121-126)
- Likelihood, Bayesian and MCMC Methods ... (LBMMQG, Sorensen and Gianola, 2002)

Blocked Gibbs sampler

- Let $\boldsymbol{\theta}^{\prime}=\left[\mu, \boldsymbol{\alpha}^{\prime}\right]$
- Can show that $\left(\boldsymbol{\theta} \mid \boldsymbol{y}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\hat{\boldsymbol{\theta}}, \boldsymbol{C}^{-1} \sigma_{e}^{2}\right)$

$$
\hat{\boldsymbol{\theta}}=\boldsymbol{C}^{-1} \boldsymbol{W}^{\prime} \boldsymbol{y} ; \quad \boldsymbol{W}=[\mathbf{1}, \boldsymbol{X}]
$$

- Blocked Gibbs sampler
- García-Cortés and Sorensen (1996, GSE 28:121-126)
- Likelihood, Bayesian and MCMC Methods ... (LBMMQG, Sorensen and Gianola, 2002)

Blocked Gibbs sampler

- Let $\boldsymbol{\theta}^{\prime}=\left[\mu, \boldsymbol{\alpha}^{\prime}\right]$
- Can show that $\left(\boldsymbol{\theta} \mid \boldsymbol{y}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\hat{\boldsymbol{\theta}}, \boldsymbol{C}^{-1} \sigma_{e}^{2}\right)$

$$
\hat{\boldsymbol{\theta}}=\boldsymbol{C}^{-1} \boldsymbol{W}^{\prime} \boldsymbol{y} ; \quad W=[\mathbf{1}, \boldsymbol{X}]
$$

$$
C=\left[\begin{array}{cc}
\mathbf{1}^{\prime} \mathbf{1} & \mathbf{1}^{\prime} \boldsymbol{X} \\
\boldsymbol{X}^{\prime} 1 & X^{\prime} X+\boldsymbol{I} \boldsymbol{l}_{\varepsilon}^{\sigma_{e}^{2}}
\end{array}\right]
$$

- Blocked Gibbs sampler
- García-Cortés and Sorensen (1996, GSE 28:121-126)
- Likelihood, Bayesian and MCMC Methods ... (LBMMQG Sorensen and Gianola, 2002)

Blocked Gibbs sampler

- Let $\boldsymbol{\theta}^{\prime}=\left[\mu, \boldsymbol{\alpha}^{\prime}\right]$
- Can show that $\left(\boldsymbol{\theta} \mid \boldsymbol{y}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\hat{\boldsymbol{\theta}}, \boldsymbol{C}^{-1} \sigma_{e}^{2}\right)$

$$
\hat{\theta}=C^{-1} W^{\prime} y ; \quad W=[\mathbf{1}, \boldsymbol{X}]
$$

$$
C=\left[\begin{array}{cc}
1^{\prime} \mathbf{1} & 1^{\prime} X \\
X^{\prime} 1 & X^{\prime} X+I \frac{\sigma_{e}^{2}}{\sigma_{\alpha}^{2}}
\end{array}\right]
$$

- Blocked Gibbs sampler
- García-Cortés and Sorensen (1996, GSE 28:121-126)
- Likelihood, Bayesian and MCMC Methods ... (LBMMQG, Sorensen and Gianola, 2002)

Full conditionals for single-site Gibbs

$$
-\left(\mu \mid \boldsymbol{y}, \boldsymbol{\alpha}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\frac{\mathbf{1}^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\alpha})}{n}, \frac{\sigma_{e}^{2}}{n}\right)
$$

- $\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right) \sim\left[(\boldsymbol{y}-\boldsymbol{W} \theta)^{\prime}(\boldsymbol{y}-\boldsymbol{W} \theta)+\nu_{e} S_{e}^{2}\right] \chi_{\left(\nu_{e}+n\right)}^{-2}$

Full conditionals for single-site Gibbs

$$
\begin{aligned}
& >\left(\mu \mid \boldsymbol{y}, \boldsymbol{\alpha}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\frac{\mathbf{1}^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\alpha})}{n}, \frac{\sigma_{e}^{2}}{n}\right) \\
& >\left(\alpha_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\hat{\alpha}_{j}, \frac{\sigma_{e}^{2}}{c_{j}}\right)
\end{aligned}
$$

- $\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right) \sim\left[(\boldsymbol{y}-\boldsymbol{W} \theta)^{\prime}(\boldsymbol{y}-\boldsymbol{W} \theta)+\nu_{e} S_{e}^{2}\right] \chi_{\left(\nu_{e}+n\right)}^{-2}$

Full conditionals for single-site Gibbs

$$
\begin{aligned}
& >\left(\mu \mid \boldsymbol{y}, \boldsymbol{\alpha}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\frac{\mathbf{1}^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\alpha})}{n}, \frac{\sigma_{e}^{2}}{n}\right) \\
& -\left(\alpha_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\hat{\alpha}_{j}, \frac{\sigma_{e}^{2}}{c_{j}}\right)
\end{aligned}
$$

$$
\hat{\alpha}_{j}=\frac{\boldsymbol{x}_{j}^{\prime} \boldsymbol{w}}{c_{j}}
$$

- $\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right) \sim\left[(\boldsymbol{y}-\boldsymbol{W} \theta)^{\prime}(\boldsymbol{y}-\boldsymbol{W} \theta)+\nu_{e} S_{e}^{2}\right] \chi_{\left(\nu_{e}+n\right)}^{-2}$

Full conditionals for single-site Gibbs

$$
\begin{aligned}
& >\left(\mu \mid \boldsymbol{y}, \boldsymbol{\alpha}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\frac{\mathbf{1}^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\alpha})}{n}, \frac{\sigma_{e}^{2}}{n}\right) \\
& -\left(\alpha_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\hat{\alpha}_{j}, \frac{\sigma_{e}^{2}}{c_{j}}\right)
\end{aligned}
$$

$$
\hat{\alpha}_{j}=\frac{\boldsymbol{x}_{j}^{\prime} \boldsymbol{w}}{c_{j}}
$$

$$
\boldsymbol{w}=\boldsymbol{y}-\mathbf{1} \mu-\sum_{j^{\prime} \neq j} \boldsymbol{x}_{j^{\prime}} \alpha_{j^{\prime}}
$$

- $\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right) \sim\left[(\boldsymbol{y}-\boldsymbol{W} \theta)^{\prime}(\boldsymbol{y}-\boldsymbol{W} \theta)+\nu_{e} S_{e}^{2}\right] \chi_{\left(\nu_{e}+n\right)}^{-2}$

Full conditionals for single-site Gibbs

$$
\begin{aligned}
& -\left(\mu \mid \boldsymbol{y}, \boldsymbol{\alpha}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\frac{\mathbf{1}^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\alpha})}{n}, \frac{\sigma_{e}^{2}}{n}\right) \\
& -\left(\alpha_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\hat{\alpha}_{j}, \frac{\sigma_{e}^{2}}{c_{j}}\right)
\end{aligned}
$$

$$
\hat{\alpha}_{j}=\frac{\boldsymbol{x}_{j}^{\prime} \boldsymbol{w}}{c_{j}}
$$

$$
\boldsymbol{w}=\boldsymbol{y}-\mathbf{1} \mu-\sum_{j^{\prime} \neq j} \boldsymbol{x}_{j^{\prime}} \alpha_{j^{\prime}}
$$

$$
c_{j}=\left(\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j}+\frac{\sigma_{e}^{2}}{\sigma_{\alpha}^{2}}\right)
$$

- $\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right) \sim\left[(\boldsymbol{y}-\boldsymbol{W} \theta)^{\prime}(\boldsymbol{y}-\boldsymbol{W} \theta)+\nu_{e} S_{e}^{2}\right] \chi_{\left(\nu_{e}+n\right)}^{-2}$

Full conditionals for single-site Gibbs

- $\left(\mu \mid \boldsymbol{y}, \boldsymbol{\alpha}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\frac{\mathbf{1}^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\alpha})}{n}, \frac{\sigma_{e}^{2}}{n}\right)$
- $\left(\alpha_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right) \sim \mathrm{N}\left(\hat{\alpha}_{j}, \frac{\sigma_{e}^{2}}{c_{j}}\right)$

$$
\hat{\alpha}_{j}=\frac{\boldsymbol{x}_{j}^{\prime} \boldsymbol{w}}{c_{j}}
$$

$$
\boldsymbol{w}=\boldsymbol{y}-\mathbf{1} \mu-\sum_{j^{\prime} \neq j} \boldsymbol{x}_{j^{\prime}} \alpha_{j^{\prime}}
$$

$$
c_{j}=\left(\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j}+\frac{\sigma_{e}^{2}}{\sigma_{\alpha}^{2}}\right)
$$

- $\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right) \sim\left[(\boldsymbol{y}-\boldsymbol{W} \boldsymbol{\theta})^{\prime}(\boldsymbol{y}-\boldsymbol{W} \boldsymbol{\theta})+\nu_{e} \boldsymbol{S}_{e}^{2}\right] \chi_{\left(\nu_{e}+n\right)}^{-2}$

Derive: full conditional for α_{j}

From Bayes' Theorem,

$$
f\left(\alpha_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)=\frac{f\left(\alpha_{j}, \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)}{f\left(\boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)}
$$

Derive: full conditional for α_{j}

From Bayes' Theorem,

$$
\begin{aligned}
& f\left(\alpha_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)=\frac{f\left(\alpha_{j}, \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)}{f\left(\boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)} \\
& \propto f\left(\boldsymbol{y} \mid \alpha_{j}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right) f\left(\alpha_{j}\right) f\left(\mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)
\end{aligned}
$$

Derive: full conditional for α_{j}

From Bayes' Theorem,

$$
\begin{gathered}
f\left(\alpha_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)=\frac{f\left(\alpha_{j}, \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)}{f\left(\boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)} \\
\propto f\left(\boldsymbol{y} \mid \alpha_{j}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right) f\left(\alpha_{j}\right) f\left(\mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right) \\
\propto\left(\sigma_{e}^{2}\right)^{-n / 2} \exp \left\{-\frac{\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)^{\prime}\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)}{2 \sigma_{e}^{2}}\right\}\left(\sigma_{\alpha}^{2}\right)^{-1 / 2} \exp \left\{-\frac{\alpha_{j}^{2}}{2 \sigma_{\alpha}^{2}}\right\}
\end{gathered}
$$

Derive: full conditional for α_{j}

From Bayes' Theorem,

$$
\begin{gathered}
f\left(\alpha_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)=\frac{f\left(\alpha_{j}, \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)}{f\left(\boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right)} \\
\propto f\left(\boldsymbol{y} \mid \alpha_{j}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right) f\left(\alpha_{j}\right) f\left(\mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right) \\
\propto\left(\sigma_{e}^{2}\right)^{-n / 2} \exp \left\{-\frac{\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)^{\prime}\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)}{2 \sigma_{e}^{2}}\right\}\left(\sigma_{\alpha}^{2}\right)^{-1 / 2} \exp \left\{-\frac{\alpha_{j}^{2}}{2 \sigma_{\alpha}^{2}}\right\}
\end{gathered}
$$

where

$$
\boldsymbol{w}=\boldsymbol{y}-\mathbf{1} \mu-\sum_{j \neq j^{\prime}} \boldsymbol{x}_{j^{\prime}} \alpha_{j^{\prime}}
$$

Derive: full conditional for α_{j}

The exponential terms in the joint density can be written as:

$$
-\frac{1}{2 \sigma_{e}^{2}}\left\{\boldsymbol{w}^{\prime} \boldsymbol{w}-2 \boldsymbol{x}_{j}^{\prime} \boldsymbol{w} \alpha_{j}+\left[\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j}+\frac{\sigma_{e}^{2}}{\sigma_{\alpha}^{2}}\right] \alpha_{j}^{2}\right\}
$$

Completing the square in this expression with respect to α_{j} gives

where

Derive: full conditional for α_{j}

The exponential terms in the joint density can be written as:

$$
-\frac{1}{2 \sigma_{e}^{2}}\left\{\boldsymbol{w}^{\prime} \boldsymbol{w}-2 \boldsymbol{x}_{j}^{\prime} \boldsymbol{w} \alpha_{j}+\left[\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j}+\frac{\sigma_{e}^{2}}{\sigma_{\alpha}^{2}}\right] \alpha_{j}^{2}\right\}
$$

Completing the square in this expression with respect to α_{j} gives

where

Derive: full conditional for α_{j}

The exponential terms in the joint density can be written as:

$$
-\frac{1}{2 \sigma_{e}^{2}}\left\{\boldsymbol{w}^{\prime} \boldsymbol{w}-2 \boldsymbol{x}_{j}^{\prime} \boldsymbol{w} \alpha_{j}+\left[\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j}+\frac{\sigma_{e}^{2}}{\sigma_{\alpha}^{2}}\right] \alpha_{j}^{2}\right\}
$$

Completing the square in this expression with respect to α_{j} gives

$$
-\frac{1}{2 \sigma_{e}^{2}}\left\{c_{j}\left(\alpha_{j}-\hat{\alpha}_{j}\right)^{2}+\boldsymbol{w}^{\prime} \boldsymbol{w}-c_{j} \hat{\alpha}_{j}^{2}\right\}
$$

where

$$
\hat{\alpha}_{j}=\frac{\boldsymbol{x}_{j}^{\prime} \boldsymbol{w}}{c_{j}}
$$

Derive: full conditional for α_{j}

The exponential terms in the joint density can be written as:

$$
-\frac{1}{2 \sigma_{e}^{2}}\left\{\boldsymbol{w}^{\prime} \boldsymbol{w}-2 \boldsymbol{x}_{j}^{\prime} \boldsymbol{w} \alpha_{j}+\left[\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j}+\frac{\sigma_{e}^{2}}{\sigma_{\alpha}^{2}}\right] \alpha_{j}^{2}\right\}
$$

Completing the square in this expression with respect to α_{j} gives

$$
-\frac{1}{2 \sigma_{e}^{2}}\left\{c_{j}\left(\alpha_{j}-\hat{\alpha}_{j}\right)^{2}+\boldsymbol{w}^{\prime} \boldsymbol{w}-c_{j} \hat{\alpha}_{j}^{2}\right\}
$$

where

$$
\hat{\alpha}_{j}=\frac{\boldsymbol{x}_{j}^{\prime} \boldsymbol{w}}{c_{j}}
$$

So,

$$
f\left(\alpha_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \sigma_{e}^{2}\right) \propto \exp \left\{-\frac{\left(\alpha_{j}-\hat{\alpha}_{j}\right)^{2}}{2 \frac{\sigma_{e}^{2}}{c_{j}}}\right\}
$$

Full conditional for σ_{e}^{2}

From Bayes' theorem,

$$
f\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right)=\frac{f\left(\sigma_{e}^{2}, \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right)}{f(\boldsymbol{y}, \mu, \boldsymbol{\alpha})}
$$

$$
\propto f\left(\boldsymbol{y} \mid \sigma_{e}^{2}, \mu, \boldsymbol{\alpha}\right) f\left(\sigma_{e}^{2}\right) f(\mu, \boldsymbol{\alpha})
$$

where

and

Full conditional for σ_{e}^{2}

From Bayes' theorem,

$$
\begin{aligned}
& f\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right)=\frac{f\left(\sigma_{e}^{2}, \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right)}{f(\boldsymbol{y}, \mu, \boldsymbol{\alpha})} \\
& \propto f\left(\boldsymbol{y} \mid \sigma_{e}^{2}, \mu, \boldsymbol{\alpha}\right) f\left(\sigma_{e}^{2}\right) f(\mu, \boldsymbol{\alpha})
\end{aligned}
$$

where

and

Full conditional for σ_{e}^{2}

From Bayes' theorem,

$$
\begin{aligned}
& f\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right)=\frac{f\left(\sigma_{e}^{2}, \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right)}{f(\boldsymbol{y}, \mu, \boldsymbol{\alpha})} \\
& \propto f\left(\boldsymbol{y} \mid \sigma_{e}^{2}, \mu, \boldsymbol{\alpha}\right) f\left(\sigma_{e}^{2}\right) f(\mu, \boldsymbol{\alpha})
\end{aligned}
$$

where

$$
f\left(\boldsymbol{y} \mid \sigma_{e}^{2}, \mu, \boldsymbol{\alpha}\right) \propto\left(\sigma_{e}^{2}\right)^{-n / 2} \exp \left\{-\frac{\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)^{\prime}\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)}{2 \sigma_{e}^{2}}\right\}
$$

and

Full conditional for σ_{e}^{2}

From Bayes' theorem,

$$
\begin{aligned}
& f\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right)=\frac{f\left(\sigma_{e}^{2}, \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right)}{f(\boldsymbol{y}, \mu, \boldsymbol{\alpha})} \\
& \propto f\left(\boldsymbol{y} \mid \sigma_{e}^{2}, \mu, \boldsymbol{\alpha}\right) f\left(\sigma_{e}^{2}\right) f(\mu, \boldsymbol{\alpha})
\end{aligned}
$$

where

$$
f\left(\boldsymbol{y} \mid \sigma_{e}^{2}, \mu, \boldsymbol{\alpha}\right) \propto\left(\sigma_{e}^{2}\right)^{-n / 2} \exp \left\{-\frac{\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)^{\prime}\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)}{2 \sigma_{e}^{2}}\right\}
$$

and

$$
f\left(\sigma_{e}^{2}\right)=\frac{\left(S_{e}^{2} \nu_{e} / 2\right)^{\nu_{e} / 2}}{\Gamma(\nu / 2)}\left(\sigma_{e}^{2}\right)^{-\left(2+\nu_{e}\right) / 2} \exp \left(-\frac{\nu_{e} S_{e}^{2}}{2 \sigma_{e}^{2}}\right)
$$

Full conditional for σ_{e}^{2}

So,

$$
f\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right) \propto\left(\sigma_{e}^{2}\right)^{-\left(2+n+\nu_{e}\right) / 2} \exp \left(-\frac{S S E+\nu_{e} S_{e}^{2}}{2 \sigma_{e}^{2}}\right)
$$

where

$$
S S E=\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)^{\prime}\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)
$$

where

Full conditional for σ_{e}^{2}

So,

$$
f\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right) \propto\left(\sigma_{e}^{2}\right)^{-\left(2+n+\nu_{e}\right) / 2} \exp \left(-\frac{S S E+\nu_{e} S_{e}^{2}}{2 \sigma_{e}^{2}}\right)
$$

where

$$
S S E=\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)^{\prime}\left(\boldsymbol{w}-\boldsymbol{x}_{j} \alpha_{j}\right)
$$

So,

$$
f\left(\sigma_{e}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}\right) \sim \tilde{\nu}_{e} \tilde{S}_{e}^{2} \chi_{\tilde{\nu}_{e}}^{-2}
$$

where

$$
\tilde{\nu}_{e}=n+\nu_{e} ; \quad \tilde{S}_{e}^{2}=\frac{S S E+\nu_{e} S_{e}^{2}}{\tilde{\nu}_{e}}
$$

Alternative view of Normal prior

Consider fixed linear model:

$$
\boldsymbol{y}=\mathbf{1} \mu+\boldsymbol{X} \boldsymbol{\alpha}+\boldsymbol{e}
$$

This can be also written as

Suppose we observe for each locus:

$$
y_{j}^{*}=\alpha_{j}+\epsilon_{j}
$$

Alternative view of Normal prior

Consider fixed linear model:

$$
\boldsymbol{y}=\mathbf{1} \mu+\boldsymbol{X} \boldsymbol{\alpha}+\boldsymbol{e}
$$

This can be also written as

$$
\boldsymbol{y}=\left[\begin{array}{ll}
\mathbf{1} & \boldsymbol{X}
\end{array}\right]\left[\begin{array}{l}
\mu \\
\boldsymbol{\alpha}
\end{array}\right]+\boldsymbol{e}
$$

Suppose we observe for each locus:
$y_{j}^{*}=\alpha_{j}+\epsilon_{j}$

Alternative view of Normal prior

Consider fixed linear model:

$$
\boldsymbol{y}=\mathbf{1} \mu+\boldsymbol{X} \alpha+\boldsymbol{e}
$$

This can be also written as

$$
\boldsymbol{y}=\left[\begin{array}{ll}
\mathbf{1} & \boldsymbol{X}
\end{array}\right]\left[\begin{array}{l}
\mu \\
\alpha
\end{array}\right]+\boldsymbol{e}
$$

Suppose we observe for each locus:

$$
y_{j}^{*}=\alpha_{j}+\epsilon_{j}
$$

Least Squares with Additional Data

Fixed linear model with the additional data:

$$
\left[\begin{array}{c}
\boldsymbol{y} \\
\boldsymbol{y}^{*}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1} & \boldsymbol{X} \\
\mathbf{0} & \boldsymbol{I}
\end{array}\right]\left[\begin{array}{c}
\mu \\
\boldsymbol{\alpha}
\end{array}\right]+\left[\begin{array}{l}
\boldsymbol{e} \\
\epsilon
\end{array}\right]
$$

OLS Equations:

Least Squares with Additional Data

Fixed linear model with the additional data:

$$
\left[\begin{array}{c}
\boldsymbol{y} \\
\boldsymbol{y}^{*}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1} & \boldsymbol{X} \\
\mathbf{0} & \boldsymbol{I}
\end{array}\right]\left[\begin{array}{c}
\mu \\
\alpha
\end{array}\right]+\left[\begin{array}{l}
\mathbf{e} \\
\epsilon
\end{array}\right]
$$

OLS Equations:

$$
\left[\begin{array}{ll}
\mathbf{1}^{\prime} & \boldsymbol{0}^{\prime} \\
\boldsymbol{X}^{\prime} & \boldsymbol{I}^{\prime}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{I}_{n} \frac{1}{\sigma_{e}^{2}} & \mathbf{0} \\
\boldsymbol{0} & \boldsymbol{I}_{k} \frac{1}{\sigma_{e}^{2}}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{1} & \boldsymbol{X} \\
\mathbf{0} & \boldsymbol{I}
\end{array}\right]\left[\begin{array}{c}
\hat{\mu} \\
\hat{\boldsymbol{\alpha}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1}^{\prime} & \mathbf{0}^{\prime} \\
\boldsymbol{X}^{\prime} & \boldsymbol{I}^{\prime}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{I}_{n} \frac{1}{\sigma_{\sigma}^{2}} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{I}_{k} \frac{1}{\sigma_{e}^{2}}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{y} \\
\boldsymbol{y}^{*}
\end{array}\right]
$$

Least Squares with Additional Data

Fixed linear model with the additional data:

$$
\left[\begin{array}{c}
\boldsymbol{y} \\
\boldsymbol{y}^{*}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1} & \boldsymbol{X} \\
\mathbf{0} & \boldsymbol{I}
\end{array}\right]\left[\begin{array}{c}
\mu \\
\alpha
\end{array}\right]+\left[\begin{array}{c}
\mathbf{e} \\
\epsilon
\end{array}\right]
$$

OLS Equations:

$$
\left[\begin{array}{ll}
\mathbf{1}^{\prime} & \mathbf{0}^{\prime} \\
\boldsymbol{X}^{\prime} & \boldsymbol{I}^{\prime}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{I}_{n} \frac{1}{\sigma_{e}^{2}} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{I}_{k} \frac{1}{\sigma_{\epsilon}^{2}}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{1} & \boldsymbol{X} \\
\mathbf{0} & \boldsymbol{I}
\end{array}\right]\left[\begin{array}{l}
\hat{\mu} \\
\hat{\boldsymbol{\alpha}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1}^{\prime} & \mathbf{0}^{\prime} \\
\boldsymbol{X}^{\prime} & \boldsymbol{I}^{\prime}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{I}_{n} \frac{1}{\sigma_{\sigma}^{2}} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{I}_{k} \frac{1}{\sigma_{e}^{2}}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{y} \\
\boldsymbol{y}^{*}
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
\mathbf{1}^{\prime} \mathbf{1} & \mathbf{1}^{\prime} \boldsymbol{X} \\
\boldsymbol{X}^{\prime} \mathbf{1} & \boldsymbol{X}^{\prime} \boldsymbol{X}+\boldsymbol{l}+\frac{\sigma_{e}^{2}}{\sigma_{\epsilon}^{2}}
\end{array}\right]\left[\begin{array}{c}
\hat{\mu} \\
\hat{\boldsymbol{\alpha}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{1}^{\prime} \boldsymbol{y} \\
\boldsymbol{X}^{\prime} \boldsymbol{y}+\boldsymbol{y}^{*} \frac{\sigma_{e}^{2}}{\sigma_{\epsilon}^{2}}
\end{array}\right]
$$

Univariate-t

Prior:

$$
\begin{gathered}
\left(\alpha_{j} \mid \sigma_{j}^{2}\right) \sim \mathrm{N}\left(0, \sigma_{j}^{2}\right) \\
\sigma_{j}^{2} \sim \nu_{\alpha} S_{\nu_{\alpha}}^{2} \chi_{\nu_{\alpha}}^{-2}
\end{gathered}
$$

Can show that the unconditional distribution for α_{j} is

$$
\alpha_{j} \sim(\text { iid }) t\left(0, S_{\nu_{\alpha}}^{2}, \nu_{\alpha}\right)
$$

(Sorensen and Gianola, 2002, LBMMQG pages 28,60)

This is Bayes-A (Meuwissen et al., 2001; Genetics 157:1819-1829)

Univariate- t

Prior:

$$
\begin{gathered}
\left(\alpha_{j} \mid \sigma_{j}^{2}\right) \sim \mathrm{N}\left(0, \sigma_{j}^{2}\right) \\
\sigma_{j}^{2} \sim \nu_{\alpha} S_{\nu_{\alpha}}^{2} \chi_{\nu_{\alpha}}^{-2}
\end{gathered}
$$

Can show that the unconditional distribution for α_{j} is

$$
\alpha_{j} \sim(\mathrm{iid}) t\left(0, S_{\nu_{\alpha}}^{2}, \nu_{\alpha}\right)
$$

(Sorensen and Gianola, 2002, LBMMQG pages 28,60)

This is Bayes-A (Meuwissen et al., 2001; Genetics 157:1819-1829)

Univariate-t

Prior:

$$
\begin{gathered}
\left(\alpha_{j} \mid \sigma_{j}^{2}\right) \sim \mathrm{N}\left(0, \sigma_{j}^{2}\right) \\
\sigma_{j}^{2} \sim \nu_{\alpha} S_{\nu_{\alpha}}^{2} \chi_{\nu_{\alpha}}^{-2}
\end{gathered}
$$

Can show that the unconditional distribution for α_{j} is

$$
\alpha_{j} \sim(\mathrm{iid}) t\left(0, S_{\nu_{\alpha}}^{2}, \nu_{\alpha}\right)
$$

(Sorensen and Gianola, 2002, LBMMQG pages 28,60)

This is Bayes-A (Meuwissen et al., 2001; Genetics 157:1819-1829)

Univariate-t

Plots of PDF for typical parameters:

Generated by Wolfram|Alpha (www.wolframalpha.com)

Full conditional for single-site Gibbs

Full conditionals are the same as in the "Normal" model for μ, α_{j}, and σ_{e}^{2}.

$$
\boldsymbol{\xi}=\left[\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{k}^{2}\right]
$$

Full conditional conditional for σ_{j}^{2} :

$$
f\left(\sigma_{j}^{2} \mid y, \mu, \alpha, \xi_{j}, \sigma_{e}^{2}\right) \propto f\left(y, \mu, \alpha, \xi, \sigma_{e}^{2}\right)
$$

$$
\propto f\left(\boldsymbol{y} \mid \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}, \sigma_{e}^{2}\right) f\left(\alpha_{j} \mid \sigma_{j}^{2}\right) f\left(\sigma_{j}^{2}\right) f\left(\mu, \boldsymbol{\alpha}_{j_{-}}, \boldsymbol{\xi}_{j_{-}} \sigma_{e}^{2}\right)
$$

Full conditional for single-site Gibbs

Full conditionals are the same as in the "Normal" model for μ, α_{j}, and σ_{e}^{2}. Let

$$
\boldsymbol{\xi}=\left[\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{k}^{2}\right]
$$

Full conditional conditional for σ_{j}^{2} :

$$
f\left(\sigma_{j}^{2} \mid y, \mu, \alpha, \xi_{j}, \sigma_{e}^{2}\right) \propto f\left(y, \mu, \alpha, \xi, \sigma_{e}^{2}\right)
$$

$$
\propto f\left(\boldsymbol{y} \mid \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}, \sigma_{e}^{2}\right) f\left(\alpha_{j} \mid \sigma_{j}^{2}\right) f\left(\sigma_{j}^{2}\right) f\left(\mu, \boldsymbol{\alpha}_{j_{-}}, \boldsymbol{\xi}_{j_{-}} \sigma_{e}^{2}\right)
$$

Full conditional for single-site Gibbs

Full conditionals are the same as in the "Normal" model for μ, α_{j}, and σ_{e}^{2}. Let

$$
\boldsymbol{\xi}=\left[\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{k}^{2}\right]
$$

Full conditional conditional for σ_{j}^{2} :

$$
f\left(\sigma_{j}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}_{j_{-}}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}, \sigma_{e}^{2}\right)
$$

$$
\propto f\left(\boldsymbol{y} \mid \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}, \sigma_{e}^{2}\right) f\left(\alpha_{j} \mid \sigma_{j}^{2}\right) f\left(\sigma_{j}^{2}\right) f\left(\mu, \boldsymbol{\alpha}_{j_{-}}, \boldsymbol{\xi}_{j_{-}} \sigma_{e}^{2}\right)
$$

Full conditional for single-site Gibbs

Full conditionals are the same as in the "Normal" model for μ, α_{j}, and σ_{e}^{2}. Let

$$
\boldsymbol{\xi}=\left[\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{k}^{2}\right]
$$

Full conditional conditional for σ_{j}^{2} :

$$
\begin{gathered}
f\left(\sigma_{j}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}_{j_{-}}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}, \sigma_{e}^{2}\right) \\
\propto f\left(\boldsymbol{y} \mid \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}, \sigma_{e}^{2}\right) f\left(\alpha_{j} \mid \sigma_{j}^{2}\right) f\left(\sigma_{j}^{2}\right) f\left(\mu, \boldsymbol{\alpha}_{j_{-}}, \boldsymbol{\xi}_{j_{-}} \sigma_{e}^{2}\right)
\end{gathered}
$$

Full conditional for single-site Gibbs

Full conditionals are the same as in the "Normal" model for μ, α_{j}, and σ_{e}^{2}. Let

$$
\boldsymbol{\xi}=\left[\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{k}^{2}\right]
$$

Full conditional conditional for σ_{j}^{2} :

$$
\begin{gathered}
f\left(\sigma_{j}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}_{j_{-}}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}, \sigma_{e}^{2}\right) \\
\propto f\left(\boldsymbol{y} \mid \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}, \sigma_{e}^{2}\right) f\left(\alpha_{j} \mid \sigma_{j}^{2}\right) f\left(\sigma_{j}^{2}\right) f\left(\mu, \boldsymbol{\alpha}_{j_{-}}, \boldsymbol{\xi}_{j_{-}} \sigma_{e}^{2}\right) \\
\propto\left(\sigma_{j}^{2}\right)^{-1 / 2} \exp \left\{-\frac{\alpha_{j}^{2}}{2 \sigma_{j}^{2}}\right\}\left(\sigma_{j}^{2}\right)^{-\left(2+\nu_{\alpha}\right) / 2} \exp \left\{\frac{\nu_{\alpha} S_{\alpha}^{2}}{2 \sigma_{j}^{2}}\right\}
\end{gathered}
$$

Full conditional for single-site Gibbs

Full conditionals are the same as in the "Normal" model for μ, α_{j}, and σ_{e}^{2}. Let

$$
\boldsymbol{\xi}=\left[\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{k}^{2}\right]
$$

Full conditional conditional for σ_{j}^{2} :

$$
\begin{gathered}
f\left(\sigma_{j}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}_{j_{-}}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}, \sigma_{e}^{2}\right) \\
\propto f\left(\boldsymbol{y} \mid \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}, \sigma_{e}^{2}\right) f\left(\alpha_{j} \mid \sigma_{j}^{2}\right) f\left(\sigma_{j}^{2}\right) f\left(\mu, \boldsymbol{\alpha}_{j_{-}}, \boldsymbol{\xi}_{j_{-}} \sigma_{e}^{2}\right) \\
\propto\left(\sigma_{j}^{2}\right)^{-1 / 2} \exp \left\{-\frac{\alpha_{j}^{2}}{2 \sigma_{j}^{2}}\right\}\left(\sigma_{j}^{2}\right)^{-\left(2+\nu_{\alpha}\right) / 2} \exp \left\{\frac{\nu_{\alpha} S_{\alpha}^{2}}{2 \sigma_{j}^{2}}\right\} \\
\propto\left(\sigma_{j}^{2}\right)^{-\left(2+\nu_{\alpha}+1\right) / 2} \exp \left\{\frac{\alpha_{j}^{2}+\nu_{\alpha} S_{\alpha}^{2}}{2 \sigma_{j}^{2}}\right\}
\end{gathered}
$$

Full conditional for σ_{j}^{2}

So,

$$
\left(\sigma_{j}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\xi}_{-}, \sigma_{e}^{2}\right) \sim \tilde{\nu}_{\alpha} \tilde{S}_{\alpha}^{2} \chi_{\nu_{\alpha}}^{-2}
$$

where

$$
\tilde{\nu}_{\alpha}=\nu_{\alpha}+1
$$

and

$$
\tilde{S}_{\alpha}^{2}=\frac{\alpha_{j}^{2}+\nu_{\alpha} S_{\alpha}^{2}}{\tilde{\nu}_{\alpha}}
$$

Multivariate- t

Prior:

$$
\begin{gathered}
\left(\alpha_{j} \mid \sigma_{\alpha}^{2}\right) \sim(\mathrm{iid}) \mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) \\
\sigma_{\alpha}^{2} \sim \nu_{\alpha} S_{\nu_{\alpha}}^{2} \chi_{\nu_{\alpha}}^{-2}
\end{gathered}
$$

Can show that the unconditional distribution for α is $\alpha \sim$ multivariate- $t\left(\mathbf{0}, I S_{\nu_{\alpha}}^{2}, \nu_{\alpha}\right)$
(Sorensen and Gianola, 2002, LBMMQG page 60)

We will see later that this is Bayes-C with $\pi=0$.

Multivariate- t

Prior:

$$
\begin{gathered}
\left(\alpha_{j} \mid \sigma_{\alpha}^{2}\right) \sim(\mathrm{iid}) \mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) \\
\sigma_{\alpha}^{2} \sim \nu_{\alpha} S_{\nu_{\alpha}}^{2} \chi_{\nu_{\alpha}}^{-2}
\end{gathered}
$$

Can show that the unconditional distribution for α is

$$
\boldsymbol{\alpha} \sim \text { multivariate- } t\left(\mathbf{0}, I S_{\nu_{\alpha}}^{2}, \nu_{\alpha}\right)
$$

(Sorensen and Gianola, 2002, LBMMQG page 60)

We will see later that this is Bayes-C with $\pi=0$.

Multivariate- t

Prior:

$$
\begin{gathered}
\left(\alpha_{j} \mid \sigma_{\alpha}^{2}\right) \sim(\mathrm{iid}) \mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) \\
\sigma_{\alpha}^{2} \sim \nu_{\alpha} S_{\nu_{\alpha}}^{2} \chi_{\nu_{\alpha}}^{-2}
\end{gathered}
$$

Can show that the unconditional distribution for α is

$$
\boldsymbol{\alpha} \sim \text { multivariate- } t\left(\mathbf{0}, I S_{\nu_{\alpha}}^{2}, \nu_{\alpha}\right)
$$

(Sorensen and Gianola, 2002, LBMMQG page 60)

We will see later that this is Bayes-C with $\pi=0$.

Full conditional for σ_{α}^{2}

We will see later that

$$
\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \sigma_{e}^{2}\right) \sim \tilde{\nu}_{\alpha} \tilde{S}_{\alpha}^{2} \chi_{\nu_{\alpha}}^{-2}
$$

where

$$
\tilde{\nu}_{\alpha}=\nu_{\alpha}+k
$$

and

$$
\tilde{S}_{\alpha}^{2}=\frac{\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}+\nu_{\alpha} S_{\alpha}^{2}}{\tilde{\nu}_{\alpha}}
$$

Spike and univariate- t

Prior:

$$
\left(\alpha_{j} \mid \pi, \sigma_{j}^{2}\right) \begin{cases}\sim \mathrm{N}\left(0, \sigma_{j}^{2}\right) & \text { probability }(1-\pi) \\ =0 & \text { probability } \pi\end{cases}
$$

and

$$
\left(\sigma_{j}^{2} \mid \nu_{\alpha}, S_{\alpha}^{2}\right) \sim \nu_{\alpha} S_{\alpha}^{2} \chi_{\nu_{\alpha}}^{-2}
$$

Thus,

This is Bayes-B (Meuwissen et al., 2001; Genetics 157:1819-1829)

Spike and univariate- t

Prior:

$$
\left(\alpha_{j} \mid \pi, \sigma_{j}^{2}\right) \begin{cases}\sim \mathrm{N}\left(0, \sigma_{j}^{2}\right) & \text { probability }(1-\pi) \\ =0 & \text { probability } \pi\end{cases}
$$

and

$$
\left(\sigma_{j}^{2} \mid \nu_{\alpha}, S_{\alpha}^{2}\right) \sim \nu_{\alpha} S_{\alpha}^{2} \chi_{\nu_{\alpha}}^{-2}
$$

Thus,

$$
\left(\alpha_{j} \mid \pi\right)(\text { iid }) \begin{cases}\sim \text { univariate }-t\left(0, S_{\alpha}^{2}, \nu_{\alpha}\right) & \text { probability }(1-\pi) \\ =0 & \text { probability } \pi\end{cases}
$$

This is Bayes-B (Meuwissen et al., 2001; Genetics 157:1819-1829)

Spike and univariate- t

Prior:

$$
\left(\alpha_{j} \mid \pi, \sigma_{j}^{2}\right) \begin{cases}\sim \mathrm{N}\left(0, \sigma_{j}^{2}\right) & \text { probability }(1-\pi) \\ =0 & \text { probability } \pi\end{cases}
$$

and

$$
\left(\sigma_{j}^{2} \mid \nu_{\alpha}, S_{\alpha}^{2}\right) \sim \nu_{\alpha} S_{\alpha}^{2} \chi_{\nu_{\alpha}}^{-2}
$$

Thus,

$$
\left(\alpha_{j} \mid \pi\right)(\text { iid }) \begin{cases}\sim \text { univariate- } t\left(0, S_{\alpha}^{2}, \nu_{\alpha}\right) & \text { probability }(1-\pi) \\ =0 & \text { probability } \pi\end{cases}
$$

This is Bayes-B (Meuwissen et al., 2001; Genetics 157:1819-1829)

Notation for sampling from mixture

The indicator variable δ_{j} is defined as

$$
\delta_{j}=1 \Rightarrow\left(\alpha_{j} \mid \sigma_{j}^{2}\right) \sim \mathrm{N}\left(0, \sigma_{j}^{2}\right)
$$

and

$$
\delta_{j}=0 \Rightarrow\left(\alpha_{j} \mid \sigma_{j}^{2}\right)=0
$$

Sampling strategy in MHG (2001)

- Sampling σ_{e}^{2} and μ are as under the Normal prior.
- MHG proposed to use a Metropolis-Hastings sampler to draw samples for σ_{j}^{2} and α_{j} jointly from their full-conditional distribution.
- First, σ_{j}^{2} is sampled from

$$
f\left(\sigma_{j}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \boldsymbol{\xi}_{-}, \sigma_{e}^{2}\right)
$$

using MH with prior as proposal.

- Then, α_{j} is sampled from its full-conditional, which is identical to that under the Normal prior

Sampling strategy in MHG (2001)

- Sampling σ_{e}^{2} and μ are as under the Normal prior.
- MHG proposed to use a Metropolis-Hastings sampler to draw samples for σ_{j}^{2} and α_{j} jointly from their full-conditional distribution.
- First, σ_{j}^{2} is sampled from

$$
f\left(\sigma_{j}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \boldsymbol{\xi}_{-}, \sigma_{e}^{2}\right)
$$

using MH with prior as proposal.

- Then, α_{j} is sampled from its full-conditional, which is identical to that under the Normal prior

Sampling strategy in MHG (2001)

- Sampling σ_{e}^{2} and μ are as under the Normal prior.
- MHG proposed to use a Metropolis-Hastings sampler to draw samples for σ_{j}^{2} and α_{j} jointly from their full-conditional distribution.
- First, σ_{j}^{2} is sampled from

$$
f\left(\sigma_{j}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \boldsymbol{\xi}_{-}, \sigma_{e}^{2}\right)
$$

using MH with prior as proposal.

- Then, α_{j} is sampled from its full-conditional, which is identical to that under the Normal prior

Sampling strategy in MHG (2001)

- Sampling σ_{e}^{2} and μ are as under the Normal prior.
- MHG proposed to use a Metropolis-Hastings sampler to draw samples for σ_{j}^{2} and α_{j} jointly from their full-conditional distribution.
- First, σ_{j}^{2} is sampled from

$$
f\left(\sigma_{j}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{j_{-}}, \boldsymbol{\xi}_{-}, \sigma_{e}^{2}\right)
$$

using MH with prior as proposal.

- Then, α_{j} is sampled from its full-conditional, which is identical to that under the Normal prior

MH acceptance probability when prior is used as proposal

Suppose we want to sample θ from $f(\theta \mid \boldsymbol{y})$ using the MH with its prior as proposal.
becomes:

where $f(\theta)$ is the prior for θ. Using Bayes' theorem, the target
density can be written as:

Then, the acceptance probability becomes

MH acceptance probability when prior is used as proposal

Suppose we want to sample θ from $f(\theta \mid \boldsymbol{y})$ using the MH with its prior as proposal. Then, the MH acceptance probability becomes:

$$
\alpha=\min \left(1, \frac{f\left(\theta_{\operatorname{can}} \mid \boldsymbol{y}\right) f\left(\theta^{t-1}\right)}{f\left(\theta^{t-1} \mid \boldsymbol{y}\right) f\left(\theta_{c a n}\right)}\right.
$$

where $f(\theta)$ is the prior for θ. Using Bayes' theorem, the target
density can be written as:

$$
f(\theta \mid \boldsymbol{y}) \propto f(\boldsymbol{y} \mid \theta) f(\theta)
$$

Then, the acceptance probability becomes

MH acceptance probability when prior is used as proposal

Suppose we want to sample θ from $f(\theta \mid \boldsymbol{y})$ using the MH with its prior as proposal. Then, the MH acceptance probability becomes:

$$
\alpha=\min \left(1, \frac{f\left(\theta_{\operatorname{can}} \mid \boldsymbol{y}\right) f\left(\theta^{t-1}\right)}{f\left(\theta^{t-1} \mid \boldsymbol{y}\right) f\left(\theta_{\operatorname{can}}\right)}\right.
$$

where $f(\theta)$ is the prior for θ. Using Bayes' theorem, the target density can be written as:

$$
f(\theta \mid \boldsymbol{y}) \propto f(\boldsymbol{y} \mid \theta) f(\theta)
$$

Then, the acceptance probability becomes

MH acceptance probability when prior is used as proposal

Suppose we want to sample θ from $f(\theta \mid \boldsymbol{y})$ using the MH with its prior as proposal. Then, the MH acceptance probability becomes:

$$
\alpha=\min \left(1, \frac{f\left(\theta_{\operatorname{can}} \mid \boldsymbol{y}\right) f\left(\theta^{t-1}\right)}{f\left(\theta^{t-1} \mid \boldsymbol{y}\right) f\left(\theta_{\operatorname{can}}\right)}\right.
$$

where $f(\theta)$ is the prior for θ. Using Bayes' theorem, the target density can be written as:

$$
f(\theta \mid \boldsymbol{y}) \propto f(\boldsymbol{y} \mid \theta) f(\theta)
$$

Then, the acceptance probability becomes

$$
\alpha=\min \left(1, \frac{f\left(\boldsymbol{y} \mid \theta_{\text {can }}\right) f\left(\theta_{\text {can }}\right) f\left(\theta^{t-1}\right)}{f\left(\boldsymbol{y} \mid \theta^{t-1}\right) f\left(\theta^{t-1}\right) f\left(\theta_{\text {can }}\right)}\right.
$$

Sampling σ_{j}^{2}

Thus when the prior for σ_{j}^{2} is used as the proposal, the MH acceptance probability becomes

$$
\alpha=\min \left(1, \frac{f\left(\boldsymbol{y} \mid \sigma_{c a n}^{2}, \boldsymbol{\theta}_{j_{-}}\right)}{f\left(\boldsymbol{y} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)}\right)
$$

where $\sigma_{c a n}^{2}$ is used to denote the candidate value for σ_{j}^{2}, and $\boldsymbol{\theta}_{j_{-}}$ all the other parameters.
only through $r_{j}=x_{j}^{\prime} w($ page 30$)$. Thus

$$
f\left(\boldsymbol{y} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right) \propto f\left(r_{j} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)
$$

Sampling σ_{j}^{2}

Thus when the prior for σ_{j}^{2} is used as the proposal, the MH acceptance probability becomes

$$
\alpha=\min \left(1, \frac{f\left(\boldsymbol{y} \mid \sigma_{c a n}^{2}, \boldsymbol{\theta}_{j_{-}}\right)}{f\left(\boldsymbol{y} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)}\right)
$$

where $\sigma_{\text {can }}^{2}$ is used to denote the candidate value for σ_{j}^{2}, and $\boldsymbol{\theta}_{j_{-}}$ all the other parameters. It can be shown that, α_{j} depends on \boldsymbol{y} only through $r_{j}=\boldsymbol{x}_{j}^{\prime} \boldsymbol{w}$ (page 30). Thus

$$
f\left(\boldsymbol{y} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right) \propto f\left(r_{j} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)
$$

"Likelihood" for σ_{j}^{2}

Recall that

$$
\boldsymbol{w}=\boldsymbol{y}-\mathbf{1} \mu-\sum_{j^{\prime} \neq j} \boldsymbol{x}_{j^{\prime}} \alpha_{j^{\prime}}=\boldsymbol{x}_{j} \alpha_{j}+\boldsymbol{e}
$$

Then,

$$
\mathrm{E}\left(\boldsymbol{w} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\mathbf{0}
$$

When $\delta=1$:

$$
\operatorname{Var}\left(w \mid \delta_{j}=1, \sigma_{j}^{2}, \theta_{j}\right)=x_{j} \boldsymbol{x}_{j}^{\prime} \sigma_{j}^{2}+\boldsymbol{I} \sigma_{e}^{2}
$$

and $\delta=0$:

$$
\operatorname{Var}\left(\boldsymbol{w} \mid \delta_{j}=0, \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\boldsymbol{I} \sigma_{e}^{2}
$$

"Likelihood" for σ_{j}^{2}

Recall that

$$
\boldsymbol{w}=\boldsymbol{y}-\mathbf{1} \mu-\sum_{j^{\prime} \neq j} \boldsymbol{x}_{j^{\prime}} \alpha_{j^{\prime}}=\boldsymbol{x}_{j} \alpha_{j}+\boldsymbol{e}
$$

Then,

$$
\mathrm{E}\left(\boldsymbol{w} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\mathbf{0}
$$

When $\delta=1$:

$$
\operatorname{Var}\left(\boldsymbol{w} \mid \delta_{j}=1, \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\boldsymbol{x}_{j} \boldsymbol{x}_{j}^{\prime} \sigma_{j}^{2}+\boldsymbol{I} \sigma_{e}^{2}
$$

$$
\operatorname{Var}\left(\boldsymbol{w} \mid \delta_{j}=0, \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\boldsymbol{I} \sigma_{e}^{2}
$$

"Likelihood" for σ_{j}^{2}

Recall that

$$
\boldsymbol{w}=\boldsymbol{y}-\mathbf{1} \mu-\sum_{j^{\prime} \neq j} \boldsymbol{x}_{j^{\prime}} \alpha_{j^{\prime}}=\boldsymbol{x}_{j} \alpha_{j}+\boldsymbol{e}
$$

Then,

$$
\mathrm{E}\left(\boldsymbol{w} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\mathbf{0}
$$

When $\delta=1$:

$$
\operatorname{Var}\left(\boldsymbol{w} \mid \delta_{j}=1, \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\boldsymbol{x}_{j} \boldsymbol{X}_{j}^{\prime} \sigma_{j}^{2}+\boldsymbol{I} \sigma_{e}^{2}
$$

$$
\operatorname{Var}\left(\boldsymbol{w} \mid \delta_{j}=0, \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\boldsymbol{I} \sigma_{e}^{2}
$$

"Likelihood" for σ_{j}^{2}

Recall that

$$
\boldsymbol{w}=\boldsymbol{y}-\mathbf{1} \mu-\sum_{j^{\prime} \neq j} \boldsymbol{x}_{j^{\prime}} \alpha_{j^{\prime}}=\boldsymbol{x}_{j} \alpha_{j}+\boldsymbol{e}
$$

Then,

$$
\mathrm{E}\left(\boldsymbol{w} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\mathbf{0}
$$

When $\delta=1$:

$$
\operatorname{Var}\left(\boldsymbol{w} \mid \delta_{j}=1, \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\boldsymbol{x}_{j} \boldsymbol{X}_{j}^{\prime} \sigma_{j}^{2}+\boldsymbol{I} \sigma_{e}^{2}
$$

and $\delta=0$:

$$
\operatorname{Var}\left(\boldsymbol{w} \mid \delta_{j}=0, \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\boldsymbol{I} \sigma_{e}^{2}
$$

"Likelihood" for σ_{j}^{2}

So,

$$
\mathrm{E}\left(r_{j} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=0
$$

and

$$
\begin{gathered}
\operatorname{Var}\left(r_{j} \mid \delta_{j}=1, \sigma_{j}^{2}, \boldsymbol{\theta}_{j-}\right)=\left(\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j}\right)^{2} \sigma_{j}^{2}+\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j} \sigma_{e}^{2}=v_{1} \\
\operatorname{Var}\left(r_{j} \mid \delta_{j}=0, \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right)=\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j} \sigma_{e}^{2}=v_{0}
\end{gathered}
$$

"Likelihood" for σ_{j}^{2}

So,

$$
\mathrm{E}\left(r_{j} \mid \sigma_{j}^{2}, \boldsymbol{\theta}_{j-}\right)=0
$$

and

$$
\begin{gathered}
\operatorname{Var}\left(r_{j} \mid \delta_{j}=1, \sigma_{j}^{2}, \boldsymbol{\theta}_{j-}\right)=\left(\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j}\right)^{2} \sigma_{j}^{2}+\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j} \sigma_{e}^{2}=v_{1} \\
\operatorname{Var}\left(r_{j} \mid \delta_{j}=0, \sigma_{j}^{2}, \boldsymbol{\theta}_{j-}\right)=\boldsymbol{x}_{j}^{\prime} \boldsymbol{x}_{j} \sigma_{e}^{2}=v_{0}
\end{gathered}
$$

So,

$$
f\left(r_{j} \mid \delta_{j}, \sigma_{j}^{2}, \boldsymbol{\theta}_{j_{-}}\right) \propto\left(v_{\delta}\right)^{-1 / 2} \exp \left\{-\frac{r_{j}^{2}}{2 v_{\delta}}\right\}
$$

Alternative View of Prior in BayesB

- How much information is being added by the prior?
- BayesB is identical to ML with additional data!
- Can "see" how much additional data in BayesB prior.

Alternative View of Prior in BayesB

- How much information is being added by the prior?
- BayesB is identical to ML with additional data!
- Can "see" how much additional data in BayesB prior.

Alternative View of Prior in BayesB

- How much information is being added by the prior?
- BayesB is identical to ML with additional data!
- Can "see" how much additional data in BayesB prior.

Maximum Likelihood with Additional Data

- Suppose at locus $j, \delta_{j}=1$, and we observe additional data:

$$
\boldsymbol{u}_{j} \sim N\left(\mathbf{0}, \boldsymbol{I}_{q} \sigma_{j}^{2}\right)
$$

- Assume that only unknown is σ_{j}^{2}
- So, adjust phenotypes as:

$$
\boldsymbol{w}=\boldsymbol{y}-\mathbf{1} \mu-\sum_{j^{\prime} \neq j} \boldsymbol{x}_{j^{\prime}} \alpha_{j^{\prime}}
$$

- Likelihood:

$$
L\left(\sigma_{j}^{2} ; \boldsymbol{w}, \boldsymbol{u}_{j}\right)=L\left(\sigma_{j}^{2} ; \hat{\alpha}_{j}, \boldsymbol{u}_{j}\right)
$$

Likelihood with Additional Data

$$
\begin{aligned}
& L\left(\sigma_{j}^{2} ; \hat{\alpha}_{j}, \boldsymbol{u}_{j}\right) \propto f_{1}\left(\hat{\alpha}_{j} \mid \sigma_{j}^{2}\right) \times f_{2}\left(\boldsymbol{u}_{j} \mid \sigma_{j}^{2}\right) \\
& f_{2}\left(\boldsymbol{u}_{j} \mid \sigma_{j}^{2}\right) \propto\left(\sigma_{j}^{2}\right)^{-q / 2} \exp \left[\frac{-\boldsymbol{u}_{j}^{\prime} \boldsymbol{u}_{j}}{2 \sigma_{j}^{2}}\right]
\end{aligned}
$$

Likelihood with Additional Data

$$
\begin{aligned}
& L\left(\sigma_{j}^{2} ; \hat{\alpha}_{j}, \boldsymbol{u}_{j}\right) \propto f_{1}\left(\hat{\alpha}_{j} \mid \sigma_{j}^{2}\right) \times f_{2}\left(\boldsymbol{u}_{j} \mid \sigma_{j}^{2}\right) \\
& \begin{aligned}
f_{2}\left(\boldsymbol{u}_{j} \mid \sigma_{j}^{2}\right) & \propto\left(\sigma_{j}^{2}\right)^{-q / 2} \exp \left[\frac{-\boldsymbol{u}_{j}^{\prime} \boldsymbol{u}_{j}}{2 \sigma_{j}^{2}}\right] \\
& \propto\left(\sigma_{j}^{2}\right)^{-[\nu / 2+1]} \exp \left[\frac{-\nu S^{2}}{2 \sigma_{j}^{2}}\right]
\end{aligned}
\end{aligned}
$$

- $\quad \nu=q-2, S^{2}=\frac{\boldsymbol{u}_{j}^{\prime} \boldsymbol{u}_{j}}{\nu}$

Alternative algorithm for spike and univariate-t

Rather than use the prior as the proposal for sampling σ_{j}^{2}, we

- sample $\delta_{j}=1$ with probability 0.5
- when $\delta=1$, sample σ_{j}^{2} from a scaled inverse chi-squared distribution with
vscale parameter $=\sigma_{(}^{2(t-1)} / 2$ and 4 degrees of freedom when $\delta_{j}^{(t-1)}=1$, and
- scale parameter $=S_{\alpha}^{2}$ and 4 degrees of freedom when $\delta_{j}^{(t-1)}=0$

Alternative algorithm for spike and univariate-t

Rather than use the prior as the proposal for sampling σ_{j}^{2}, we

- sample $\delta_{j}=1$ with probability 0.5
- when $\delta=1$, sample σ_{j}^{2} from a scaled inverse chi-squared distribution with
- scale paramete $=\sigma_{j}^{2(t-1)} / 2$ and 4 degrees of freedom when $\delta_{j}^{(t-1)}=1$, and
- scale parameter $=S_{\alpha}^{2}$ and 4 degrees of freedom when $\delta_{j}^{(t-1)}=0$

Alternative algorithm for spike and univariate-t

Rather than use the prior as the proposal for sampling σ_{j}^{2}, we

- sample $\delta_{j}=1$ with probability 0.5
- when $\delta=1$, sample σ_{j}^{2} from a scaled inverse chi-squared distribution with

Alternative algorithm for spike and univariate-t

Rather than use the prior as the proposal for sampling σ_{j}^{2}, we

- sample $\delta_{j}=1$ with probability 0.5
- when $\delta=1$, sample σ_{j}^{2} from a scaled inverse chi-squared distribution with
- scale parameter $=\sigma_{j}^{2(t-1)} / 2$ and 4 degrees of freedom when $\delta_{j}^{(t-1)}=1$, and
- scale parameter $=S_{\alpha}^{2}$ and 4 degrees of freedom when $\delta_{j}^{(t-1)}=0$

Alternative algorithm for spike and univariate-t

Rather than use the prior as the proposal for sampling σ_{j}^{2}, we

- sample $\delta_{j}=1$ with probability 0.5
- when $\delta=1$, sample σ_{j}^{2} from a scaled inverse chi-squared distribution with
- scale parameter $=\sigma_{j}^{2(t-1)} / 2$ and 4 degrees of freedom when $\delta_{j}^{(t-1)}=1$, and
- scale parameter $=S_{\alpha}^{2}$ and 4 degrees of freedom when $\delta_{j}^{(t-1)}=0$

Multivariate- t mixture

Prior:

$$
\left(\alpha_{j} \mid \pi, \sigma_{\alpha}^{2}\right) \begin{cases}\sim \mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) & \text { probability }(1-\pi), \\ =0 & \text { probability } \pi\end{cases}
$$ and

$$
\left(\sigma_{\alpha}^{2} \mid \nu_{\alpha}, S_{\alpha}^{2}\right) \sim \nu_{\alpha} S_{\alpha}^{2} \chi_{\nu_{\alpha}}^{-2}
$$

Further,
$\pi \sim \operatorname{Uniform}(0,1)$

- The α_{j} variables with their corresponding $\delta_{j}=1$ will follow a multivariate- t distribution.
- This is what we have called Bayes-C π

Multivariate- t mixture

Prior:

$$
\left(\alpha_{j} \mid \pi, \sigma_{\alpha}^{2}\right) \begin{cases}\sim \mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) & \text { probability }(1-\pi) \\ =0 & \text { probability } \pi\end{cases}
$$ and

$$
\left(\sigma_{\alpha}^{2} \mid \nu_{\alpha}, S_{\alpha}^{2}\right) \sim \nu_{\alpha} S_{\alpha}^{2} \chi_{\nu_{\alpha}}^{-2}
$$

Further,

$$
\pi \sim \operatorname{Uniform}(0,1)
$$

- The α_{j} variables with their corresponding $\delta_{j}=1$ will follow a multivariate- t distribution.
- This is what we have called Bayes-C π

Multivariate- t mixture

Prior:

$$
\left(\alpha_{j} \mid \pi, \sigma_{\alpha}^{2}\right) \begin{cases}\sim \mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) & \text { probability }(1-\pi) \\ =0 & \text { probability } \pi\end{cases}
$$

and

$$
\left(\sigma_{\alpha}^{2} \mid \nu_{\alpha}, S_{\alpha}^{2}\right) \sim \nu_{\alpha} S_{\alpha}^{2} \chi_{\nu_{\alpha}}^{-2}
$$

Further, $\pi \sim \operatorname{Uniform}(0,1)$

- The α_{j} variables with their corresponding $\delta_{j}=1$ will follow a multivariate- t distribution.
- This is what we have called Bayes-C π

Multivariate- t mixture

Prior:

$$
\left(\alpha_{j} \mid \pi, \sigma_{\alpha}^{2}\right) \begin{cases}\sim \mathrm{N}\left(0, \sigma_{\alpha}^{2}\right) & \text { probability }(1-\pi) \\ =0 & \text { probability } \pi\end{cases}
$$

and

$$
\left(\sigma_{\alpha}^{2} \mid \nu_{\alpha}, S_{\alpha}^{2}\right) \sim \nu_{\alpha} S_{\alpha}^{2} \chi_{\nu_{\alpha}}^{-2}
$$

Further,

$$
\pi \sim \operatorname{Uniform}(0,1)
$$

- The α_{j} variables with their corresponding $\delta_{j}=1$ will follow a multivariate- t distribution.
- This is what we have called Bayes- $\mathrm{C} \pi$

Full conditionals for single-site Gibbs

Full-conditional distributions for $\mu, \boldsymbol{\alpha}$, and σ_{e}^{2} are as with the Normal prior.
Full-conditional for δ_{j} :

Full conditionals for single-site Gibbs

Full-conditional distributions for $\mu, \boldsymbol{\alpha}$, and σ_{e}^{2} are as with the Normal prior.
Full-conditional for δ_{j} :

$$
\begin{array}{r}
\operatorname{Pr}\left(\delta_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{-j}, \boldsymbol{\delta}_{-j}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \pi\right)= \\
\operatorname{Pr}\left(\delta_{j} \mid r_{j}, \boldsymbol{\theta}_{j_{-}}\right)
\end{array}
$$

Full conditionals for single-site Gibbs

Full-conditional distributions for $\mu, \boldsymbol{\alpha}$, and σ_{e}^{2} are as with the Normal prior.
Full-conditional for δ_{j} :

$$
\begin{array}{r}
\operatorname{Pr}\left(\delta_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{-j}, \boldsymbol{\delta}_{-j}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \pi\right)= \\
\operatorname{Pr}\left(\delta_{j} \mid r_{j}, \boldsymbol{\theta}_{j_{-}}\right)
\end{array}
$$

$$
\operatorname{Pr}\left(\delta_{j} \mid r_{j}, \boldsymbol{\theta}_{j_{-}}\right)=\frac{f\left(\delta_{j}, r_{j} \mid \boldsymbol{\theta}_{j_{-}}\right)}{f\left(r_{j} \mid \boldsymbol{\theta}_{j_{-}}\right)}
$$

Full conditionals for single-site Gibbs

Full-conditional distributions for $\mu, \boldsymbol{\alpha}$, and σ_{e}^{2} are as with the Normal prior.
Full-conditional for δ_{j} :

$$
\begin{gathered}
\operatorname{Pr}\left(\delta_{j} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}_{-j}, \boldsymbol{\delta}_{-j}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \pi\right)= \\
\operatorname{Pr}\left(\delta_{j} \mid r_{j}, \boldsymbol{\theta}_{j_{-}}\right) \\
\operatorname{Pr}\left(\delta_{j} \mid r_{j}, \boldsymbol{\theta}_{j_{-}}\right)=\frac{f\left(\delta_{j}, r_{j} \mid \boldsymbol{\theta}_{j_{-}}\right)}{f\left(r_{j} \mid \boldsymbol{\theta}_{j_{-}}\right)} \\
=\frac{f\left(r_{j} \mid \delta_{j}, \boldsymbol{\theta}_{j_{-}}\right) \operatorname{Pr}\left(\delta_{j} \mid \pi\right)}{f\left(r_{j} \mid \delta_{j}=0, \boldsymbol{\theta}_{j_{-}}\right) \pi+f\left(r_{j} \mid \delta_{j}=1, \boldsymbol{\theta}_{j_{-}}\right)(1-\pi)}
\end{gathered}
$$

Full conditional for σ_{α}^{2}

This can be written as

$$
f\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y} \mid \sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) f\left(\sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

But, can see that

$$
f\left(\boldsymbol{y} \mid \sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y} \mid \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

So,

$$
f\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

Note that σ_{α}^{2} appears only in $f\left(\boldsymbol{\alpha} \mid \sigma_{\alpha}^{2}\right)$ and $f\left(\sigma_{\alpha}^{2}\right)$:

and

Full conditional for σ_{α}^{2}

This can be written as

$$
f\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y} \mid \sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) f\left(\sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

But, can see that

$$
f\left(\boldsymbol{y} \mid \sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y} \mid \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

So,

$$
f\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

Note that σ_{α}^{2} appears only in $f\left(\boldsymbol{\alpha} \mid \sigma_{\alpha}^{2}\right)$ and $f\left(\sigma_{\alpha}^{2}\right)$:
and

Full conditional for σ_{α}^{2}

This can be written as

$$
f\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y} \mid \sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) f\left(\sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

But, can see that

$$
f\left(\boldsymbol{y} \mid \sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y} \mid \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

So,

$$
f\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

Note that σ_{α}^{2} appears only in $f\left(\alpha \mid \sigma_{\alpha}^{2}\right)$ and $f\left(\sigma_{\alpha}^{2}\right)$:
and

Full conditional for σ_{α}^{2}

This can be written as

$$
f\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y} \mid \sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) f\left(\sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

But, can see that

$$
f\left(\boldsymbol{y} \mid \sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y} \mid \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

So,

$$
f\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

Note that σ_{α}^{2} appears only in $f\left(\boldsymbol{\alpha} \mid \sigma_{\alpha}^{2}\right)$ and $f\left(\sigma_{\alpha}^{2}\right)$:

$$
f\left(\boldsymbol{\alpha} \mid \sigma_{\alpha}^{2}\right) \propto\left(\sigma_{\alpha}^{2}\right)^{-k / 2} \exp \left\{-\frac{\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}}{2 \sigma_{\alpha}^{2}}\right\}
$$

and

Full conditional for σ_{α}^{2}

This can be written as

$$
f\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y} \mid \sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) f\left(\sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

But, can see that

$$
f\left(\boldsymbol{y} \mid \sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\boldsymbol{y} \mid \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

So,

$$
f\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto f\left(\sigma_{\alpha}^{2}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right)
$$

Note that σ_{α}^{2} appears only in $f\left(\boldsymbol{\alpha} \mid \sigma_{\alpha}^{2}\right)$ and $f\left(\sigma_{\alpha}^{2}\right)$:

$$
f\left(\boldsymbol{\alpha} \mid \sigma_{\alpha}^{2}\right) \propto\left(\sigma_{\alpha}^{2}\right)^{-k / 2} \exp \left\{-\frac{\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}}{2 \sigma_{\alpha}^{2}}\right\}
$$

and

$$
f\left(\sigma_{\alpha}^{2}\right) \propto\left(\sigma_{\alpha}^{2}\right)^{-\left(\nu_{\alpha}+2\right) / 2} \exp \left\{\frac{\nu_{\alpha} S_{\alpha}^{2}}{2 \sigma_{\alpha}^{2}}\right\}
$$

Full conditional for σ_{α}^{2}

Combining these two densities gives:

$$
f\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto\left(\sigma_{\alpha}^{2}\right)^{-\left(k+\nu_{\alpha}+2\right) / 2} \exp \left\{\frac{\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}+\nu_{\alpha} S_{\alpha}^{2}}{2 \sigma_{\alpha}^{2}}\right\}
$$

and

Full conditional for σ_{α}^{2}

Combining these two densities gives:

$$
f\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \propto\left(\sigma_{\alpha}^{2}\right)^{-\left(k+\nu_{\alpha}+2\right) / 2} \exp \left\{\frac{\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}+\nu_{\alpha} S_{\alpha}^{2}}{2 \sigma_{\alpha}^{2}}\right\}
$$

So,

$$
\left(\sigma_{\alpha}^{2} \mid \boldsymbol{y}, \mu, \boldsymbol{\alpha}, \boldsymbol{\delta}, \sigma_{e}^{2}\right) \sim \tilde{\nu}_{\alpha} \tilde{S}_{\alpha}^{2} \chi_{\tilde{\nu}_{\alpha}}^{-2}
$$

where

$$
\tilde{\nu}_{\alpha}=k+\nu_{\alpha}
$$

and

$$
\tilde{S}_{\alpha}^{2}=\frac{\boldsymbol{\alpha}^{\prime} \boldsymbol{\alpha}+\nu_{\alpha} \boldsymbol{S}_{\alpha}^{2}}{\tilde{\nu}_{\alpha}}
$$

Hyper parameter: S_{α}^{2}

If σ^{2} is distributed as a scaled, inverse chi-square random variable with scale parameter S^{2} and degrees of freedom ν

$$
\mathrm{E}\left(\sigma^{2}\right)=\frac{\nu S^{2}}{\nu-2}
$$

Recall that under some assumptions

So, we take

Hyper parameter: S_{α}^{2}

If σ^{2} is distributed as a scaled, inverse chi-square random variable with scale parameter S^{2} and degrees of freedom ν

$$
\mathrm{E}\left(\sigma^{2}\right)=\frac{\nu S^{2}}{\nu-2}
$$

Recall that under some assumptions

$$
\sigma_{\alpha}^{2}=\frac{V_{a}}{\sum_{j} 2 p_{j} q_{j}}
$$

So, we take

Hyper parameter: S_{α}^{2}

If σ^{2} is distributed as a scaled, inverse chi-square random variable with scale parameter S^{2} and degrees of freedom ν

$$
\mathrm{E}\left(\sigma^{2}\right)=\frac{\nu S^{2}}{\nu-2}
$$

Recall that under some assumptions

$$
\sigma_{\alpha}^{2}=\frac{V_{a}}{\sum_{j} 2 p_{j} q_{j}}
$$

So, we take

$$
S_{\alpha}^{2}=\frac{\left(\nu_{\alpha}-2\right) V_{a}}{\nu_{\alpha} k(1-\pi) 2 \overline{p q}}
$$

Full conditional for π

Using Bayes' theorem,
$f\left(\pi \mid \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right) \propto f\left(\boldsymbol{y} \mid \pi, \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}\right) f\left(\pi, \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}\right)$

But,

- Conditional on δ the likelihood is free of π
- Further, π only appears in probability of the vector of bernoulli variables: δ

Thus,

$$
f\left(\pi \mid \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right)=\pi^{(k-m)}(1-\pi)^{m}
$$

where $m=\delta^{\prime} \delta$, and k is the number of markers. Thus, π is sampled from a beta distribution with $a=k-m+1$ and
$b=m+1$.

Full conditional for π

Using Bayes' theorem,

$$
f\left(\pi \mid \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right) \propto f\left(\boldsymbol{y} \mid \pi, \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}\right) f\left(\pi, \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}\right)
$$

But,

- Conditional on δ the likelihood is free of π
- Further, π only appears in probability of the vector of bernoulli variables: δ

Thus,

$$
f\left(\pi \mid \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right)=\pi^{(k-m)}(1-\pi)^{m}
$$

where $m=\delta^{\prime} \delta$, and k is the number of markers. Thus, π is sampled from a beta distribution with $a=k-m+1$ and
$b=m+1$.

Full conditional for π

Using Bayes' theorem,

$$
f\left(\pi \mid \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right) \propto f\left(\boldsymbol{y} \mid \pi, \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}\right) f\left(\pi, \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}\right)
$$

But,

- Conditional on δ the likelihood is free of π
- Further, π only appears in probability of the vector of bernoulli variables: $\boldsymbol{\delta}$
Thus,

$$
f\left(\pi \mid \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{\boldsymbol{e}}^{2}, \boldsymbol{y}\right)=\pi^{(k-m)}(1-\pi)^{m}
$$

where $m=\delta^{\prime} \delta$, and k is the number of markers. Thus, π is sampled from a beta distribution with $a=k-m+1$ and
$b=m+1$.

Full conditional for π

Using Bayes' theorem,

$$
f\left(\pi \mid \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right) \propto f\left(\boldsymbol{y} \mid \pi, \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}\right) f\left(\pi, \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}\right)
$$

But,

- Conditional on δ the likelihood is free of π
- Further, π only appears in probability of the vector of bernoulli variables: $\boldsymbol{\delta}$
Thus,

$$
f\left(\pi \mid \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right)=\pi^{(k-m)}(1-\pi)^{m}
$$

where $m=\boldsymbol{\delta}^{\prime} \boldsymbol{\delta}$, and k is the number of markers.
sampled from a beta distribution with $a=k-m+1$ and
$b=m+1$.

Full conditional for π

Using Bayes' theorem,

$$
f\left(\pi \mid \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right) \propto f\left(\boldsymbol{y} \mid \pi, \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}\right) f\left(\pi, \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}\right)
$$

But,

- Conditional on δ the likelihood is free of π
- Further, π only appears in probability of the vector of bernoulli variables: $\boldsymbol{\delta}$
Thus,

$$
f\left(\pi \mid \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right)=\pi^{(k-m)}(1-\pi)^{m}
$$

where $m=\boldsymbol{\delta}^{\prime} \boldsymbol{\delta}$, and k is the number of markers. Thus, π is sampled from a beta distribution with $a=k-m+1$ and $b=m+1$.

BayesC π with Unknown S_{α}^{2}

- Prior for S_{α}^{2} : Gamma(a,b)

$$
f\left(S_{\alpha}^{2} \mid a, b\right) \propto b^{a}\left(S_{\alpha}^{2}\right)^{a-1} \exp \left\{-b S_{\alpha}^{2}\right\}
$$

- Using Bayes theorem,

- Given $\mu, \boldsymbol{\alpha}$, and $\sigma_{e}^{2}, f\left(\boldsymbol{y} \mid S_{\alpha}^{2}, \sigma_{\alpha}^{2}, \ldots\right)$ does not depend on S_{α}^{2}. - In $f\left(S_{N}^{2}, \sigma^{2} \ldots\right), S_{N}^{2}$ is only in $f\left(S_{N}^{2} \mid a, b\right)$ and $f\left(\sigma_{N}^{2} \mid S_{N}^{2}, \nu_{\alpha}\right)$

BayesC π with Unknown S_{α}^{2}

- Prior for S_{α}^{2} : Gamma(a,b)

$$
f\left(S_{\alpha}^{2} \mid a, b\right) \propto b^{a}\left(S_{\alpha}^{2}\right)^{a-1} \exp \left\{-b S_{\alpha}^{2}\right\}
$$

- Using Bayes theorem,

$$
f\left(S_{\alpha}^{2} \mid \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right) \propto f\left(\boldsymbol{y} \mid S_{\alpha}^{2}, \sigma_{\alpha}^{2}, \ldots\right) f\left(S_{\alpha}^{2}, \sigma^{2} \ldots\right)
$$

- Given μ, α, and $\sigma_{e}^{2}, f\left(\boldsymbol{y} \mid S_{\alpha}^{2}, \sigma_{\alpha}^{2}, \ldots\right)$ does not depend on S_{α}^{2}. - In $f\left(S_{\alpha}^{2}, \sigma^{2} \ldots\right), S_{\alpha}^{2}$ is only in $f\left(S_{\alpha}^{2} \mid a, b\right)$ and $f\left(\sigma_{\alpha}^{2} \mid S_{\alpha}^{2}, \nu_{\alpha}\right)$

BayesC π with Unknown S_{α}^{2}

- Prior for S_{α}^{2} : Gamma(a,b)

$$
f\left(S_{\alpha}^{2} \mid a, b\right) \propto b^{a}\left(S_{\alpha}^{2}\right)^{a-1} \exp \left\{-b S_{\alpha}^{2}\right\}
$$

- Using Bayes theorem,

$$
f\left(S_{\alpha}^{2} \mid \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right) \propto f\left(\boldsymbol{y} \mid S_{\alpha}^{2}, \sigma_{\alpha}^{2}, \ldots\right) f\left(S_{\alpha}^{2}, \sigma^{2} \ldots\right)
$$

- Given $\mu, \boldsymbol{\alpha}$, and $\sigma_{e}^{2}, f\left(\boldsymbol{y} \mid S_{\alpha}^{2}, \sigma_{\alpha}^{2}, \ldots\right)$ does not depend on S_{α}^{2}.

BayesC π with Unknown S_{α}^{2}

- Prior for S_{α}^{2} : Gamma(a,b)

$$
f\left(S_{\alpha}^{2} \mid a, b\right) \propto b^{a}\left(S_{\alpha}^{2}\right)^{a-1} \exp \left\{-b S_{\alpha}^{2}\right\}
$$

- Using Bayes theorem,

$$
f\left(S_{\alpha}^{2} \mid \boldsymbol{\delta}, \mu, \boldsymbol{\alpha}, \sigma_{\alpha}^{2}, \sigma_{e}^{2}, \boldsymbol{y}\right) \propto f\left(\boldsymbol{y} \mid S_{\alpha}^{2}, \sigma_{\alpha}^{2}, \ldots\right) f\left(S_{\alpha}^{2}, \sigma^{2} \ldots\right)
$$

- Given $\mu, \boldsymbol{\alpha}$, and $\sigma_{e}^{2}, f\left(\boldsymbol{y} \mid S_{\alpha}^{2}, \sigma_{\alpha}^{2}, \ldots\right)$ does not depend on S_{α}^{2}.
- In $f\left(S_{\alpha}^{2}, \sigma^{2} \ldots\right), S_{\alpha}^{2}$ is only in $f\left(S_{\alpha}^{2} \mid a, b\right)$ and $f\left(\sigma_{\alpha}^{2} \mid S_{\alpha}^{2}, \nu_{\alpha}\right)$

BayesC π with Unknown S_{α}^{2}

- Prior for S_{α}^{2} : Gamma(a,b)

$$
f\left(S_{\alpha}^{2} \mid a, b\right) \propto b^{a}\left(S_{\alpha}^{2}\right)^{a-1} \exp \left\{-b S_{\alpha}^{2}\right\}
$$

- Prior for σ_{α}^{2} :

- Combining these gives:

BayesC π with Unknown S_{α}^{2}

- Prior for S_{α}^{2} : Gamma(a,b)

$$
f\left(S_{\alpha}^{2} \mid a, b\right) \propto b^{a}\left(S_{\alpha}^{2}\right)^{a-1} \exp \left\{-b S_{\alpha}^{2}\right\}
$$

- Prior for σ_{α}^{2} :

$$
f\left(\sigma_{\alpha}^{2}\right) \propto\left(\sigma_{\alpha}^{2}\right)^{-\left(\nu_{\alpha}+2\right) / 2} \exp \left\{\frac{\nu_{\alpha} S_{\alpha}^{2}}{2 \sigma_{\alpha}^{2}}\right\}
$$

- Combining these gives:

BayesC π with Unknown S_{α}^{2}

- Prior for S_{α}^{2} : Gamma(a,b)

$$
f\left(S_{\alpha}^{2} \mid a, b\right) \propto b^{a}\left(S_{\alpha}^{2}\right)^{a-1} \exp \left\{-b S_{\alpha}^{2}\right\}
$$

- Prior for σ_{α}^{2} :

$$
f\left(\sigma_{\alpha}^{2}\right) \propto\left(\sigma_{\alpha}^{2}\right)^{-\left(\nu_{\alpha}+2\right) / 2} \exp \left\{\frac{\nu_{\alpha} S_{\alpha}^{2}}{2 \sigma_{\alpha}^{2}}\right\}
$$

- Combining these gives:

$$
f\left(S_{\alpha}^{2} \mid \sigma_{\alpha}^{2}, \boldsymbol{y}, \ldots\right) \propto S_{\alpha}^{2(a-1+\nu / 2)} \exp \left\{-S_{\alpha}^{2}\left(\frac{\nu_{\alpha}}{2 \sigma_{\alpha}^{2}}+b\right)\right\}
$$

BayesC π with Unknown S_{α}^{2}

So, $f\left(S_{\alpha}^{2} \mid a, b\right)$ is Gamma $\left(a^{*}, b^{*}\right)$, where

$$
a *=a+\nu_{\alpha} / 2
$$

and

$$
b *=b+\frac{\nu_{\alpha}}{2 \sigma_{\alpha}^{2}}
$$

Simulation I

- 2000 unlinked loci in LE
- 10 of these are QTL: $\pi=0.995$
- $h^{2}=0.5$
- Locus effects estimated from 250 individuals

Simulation I

- 2000 unlinked loci in LE
- 10 of these are QTL: $\pi=0.995$
- $h^{2}=0.5$
- Locus effects estimated from 250 individuals

Simulation I

- 2000 unlinked loci in LE
- 10 of these are QTL: $\pi=0.995$
- $h^{2}=0.5$
- Locus effects estimated from 250 individuals

Simulation I

- 2000 unlinked loci in LE
- 10 of these are QTL: $\pi=0.995$
- $h^{2}=0.5$
- Locus effects estimated from 250 individuals

Results for Bayes-B

Correlations between true and predicted additive genotypic values estimated from 32 replications

π	S^{2}	Correlation
0.995	0.2	$0.91(0.009)$
0.8	0.2	$0.86(0.009)$
0.0	0.2	$0.80(0.013)$
0.995	2.0	$0.90(0.007)$
0.8	2.0	$0.77(0.009)$
0.0	2.0	$0.35(0.022)$

Simulation II

- 2000 unlinked loci with Q loci having effect on trait
- N is the size of training data set
- Heritability $=0.5$
- Validation in an independent data set with 1000 individuals
- Bayes-B and Bayes-C π with $\pi=0.5$

Simulation II

- 2000 unlinked loci with Q loci having effect on trait
- N is the size of training data set
- Heritability = 0.5
- Validation in an independent data set with 1000 individuals
- Bayes-B and Bayes-C π with $\pi=0.5$

Simulation II

- 2000 unlinked loci with Q loci having effect on trait
- N is the size of training data set
- Heritability $=0.5$
- Validation in an independent data set with 1000 individuals
- Bayes-B and Bayes-C π with $\pi=0.5$

Simulation II

- 2000 unlinked loci with Q loci having effect on trait
- N is the size of training data set
- Heritability $=0.5$
- Validation in an independent data set with 1000 individuals
- Bayes-B and Bayes-C π with $\pi=0.5$

Simulation II

- 2000 unlinked loci with Q loci having effect on trait
- N is the size of training data set
- Heritability $=0.5$
- Validation in an independent data set with 1000 individuals
- Bayes-B and Bayes-C π with $\pi=0.5$

Results

Results from 15 replications

				$\operatorname{Corr}(g, \hat{g})$	
N	Q	π	$\hat{\pi}$	Bayes-C π	Bayes-B
2000	10	0.995	0.994	0.995	0.937
2000	200	0.90	0.899	0.866	0.834
2000	1900	0.05	0.202	0.613	0.571
4000	1900	0.05	0.096	0.763	0.722

Simulation III

- Genotypes: 50k SNPs from 1086 Purebred Angus animals, ISU
- Phenotypes:
- QTL simulated from 50 randomly sampled SNPs - substitution effect sampled from $\mathrm{N}\left(0, \sigma_{\alpha}^{2}\right)$

- $h^{2}=0.25$
- QTL were included in the marker panel
- Marker effects were estimated for 50k SNPs

Simulation III

- Genotypes: 50k SNPs from 1086 Purebred Angus animals, ISU
- Phenotypes:
- QTL simulated from 50 randomly sampled SNPs
- substitution effect sampled from $\mathrm{N}\left(0, \sigma_{\alpha}^{2}\right)$

- QTL were included in the marker panel
- Marker effects were estimated for 50k SNFs

Simulation III

- Genotypes: 50k SNPs from 1086 Purebred Angus animals, ISU
- Phenotypes:
- QTL simulated from 50 randomly sampled SNPs
- substitution effect sampled from $\mathrm{N}\left(0, \sigma_{\alpha}^{2}\right)$

- QTL were included in the marker panel
- Marker effects were estimated for 50k SNFs

Simulation III

- Genotypes: 50k SNPs from 1086 Purebred Angus animals, ISU
- Phenotypes:
- QTL simulated from 50 randomly sampled SNPs
- substitution effect sampled from $\mathrm{N}\left(0, \sigma_{\alpha}^{2}\right)$
- $\sigma_{\alpha}^{2}=\frac{\sigma_{g}^{2}}{502 \overline{p q}}$
- QTL were included in the marker panel
- Marker effects were estimated for 50k SNFs

Simulation III

- Genotypes: 50k SNPs from 1086 Purebred Angus animals, ISU
- Phenotypes:
- QTL simulated from 50 randomly sampled SNPs
- substitution effect sampled from $\mathrm{N}\left(0, \sigma_{\alpha}^{2}\right)$
- $\sigma_{\alpha}^{2}=\frac{\sigma_{g}^{2}}{502 \overline{p q}}$
- $h^{2}=0.25$
- QTL were included in the marker panel
- Marker effects were estimated for 50k SNPs

Simulation III

- Genotypes: 50k SNPs from 1086 Purebred Angus animals, ISU
- Phenotypes:
- QTL simulated from 50 randomly sampled SNPs
- substitution effect sampled from $\mathrm{N}\left(0, \sigma_{\alpha}^{2}\right)$
- $\sigma_{\alpha}^{2}=\frac{\sigma_{g}^{2}}{502 \overline{p q}}$
- $h^{2}=0.25$
- QTL were included in the marker panel
- Marker effects were estimated for 50k SNPs

Simulation III

- Genotypes: 50k SNPs from 1086 Purebred Angus animals, ISU
- Phenotypes:
- QTL simulated from 50 randomly sampled SNPs
- substitution effect sampled from $\mathrm{N}\left(0, \sigma_{\alpha}^{2}\right)$
- $\sigma_{\alpha}^{2}=\frac{\sigma_{g}^{2}}{502 \overline{p q}}$
- $h^{2}=0.25$
- QTL were included in the marker panel
- Marker effects were estimated for 50k SNPs

Validation

- Genotypes: 50k SNPs from 984 crossbred animals, CMP
- Additive genetic merit (g_{i}) computed from the 50 QTL
- Additive genetic merit predicted $\left(\hat{g}_{i}\right)$ using estimated effects for 50k SNP panel

Validation

- Genotypes: 50k SNPs from 984 crossbred animals, CMP
- Additive genetic merit (g_{i}) computed from the 50 QTL
- Additive genetic merit predicted $\left(\hat{g}_{i}\right)$ using estimated effects for 50k SNP panel

Validation

- Genotypes: 50k SNPs from 984 crossbred animals, CMP
- Additive genetic merit (g_{i}) computed from the 50 QTL
- Additive genetic merit predicted $\left(\hat{g}_{i}\right)$ using estimated effects for 50k SNP panel

Results

Correlations between g_{i} and \hat{g}_{i} estimated from 3 replications

	Correlation	
π	Bayes-B	Bayes-C
0.999	0.86	0.86
0.25	0.70	0.26

BayesC π :

- $\hat{\pi}=0.999$
- Correlation $=0.86$

Results

Correlations between g_{i} and \hat{g}_{i} estimated from 3 replications

	Correlation	
π	Bayes-B	Bayes-C
0.999	0.86	0.86
0.25	0.70	0.26

BayesC π :

- $\hat{\pi}=0.999$
- Correlation $=0.86$

Results

Correlations between g_{i} and \hat{g}_{i} estimated from 3 replications

	Correlation	
π	Bayes-B	Bayes-C
0.999	0.86	0.86
0.25	0.70	0.26

BayesC π :

- $\hat{\pi}=0.999$
- Correlation $=0.86$

Results

Correlations between g_{i} and \hat{g}_{i} estimated from 3 replications

	Correlation	
π	Bayes-B	Bayes-C
0.999	0.86	0.86
0.25	0.70	0.26

BayesC π :

- $\hat{\pi}=0.999$
- Correlation $=0.86$

