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Bayes Theorem

The conditional probability of X given Y is

CPr(X,Y)  Pr(Y|X)Pr(X)
PIXIY) = "Bryy = Pu()

where Pr(X, Y) is the joint probability of X and Y, Pr(X) is the
probability of X, and Pr(Y) is the probability of Y.
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Conditional Probability by Example

Joint distribution of smoking and lung cancer in a hypothetical

population of 1,000,000:

Smoking
Yes No
Lung Cancer 42,500 7,500
No | 207,500 | 742,500
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Conditional Probability by Example

Joint distribution of smoking and lung cancer in a hypothetical
population of 1,000,000:

Smoking
Yes No
42,500 7,500 50,000
No | 207,500 | 742,500 | 950,000
250,000 750,000

Lung Cancer

Question: What is the relative frequency of lung cancer among
smokers?

. 42500
Answer: 256.000 — 0.17
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Conditional Probability by Example

» As explained below, this relative frequency is also the
conditional probability of lung cancer given smoking.
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Conditional Probability by Example

» As explained below, this relative frequency is also the
conditional probability of lung cancer given smoking.

» The frequentist definition of probability of an event is the
limiting value of its relative frequency in a large number of
trials.

» Suppose we sample with replacement individuals from the
250,000 smokers and compute the relative frequency of
lung cancer incidence.

» It can be shown that as the sample size goes to infinity, this

: ; 42,500
relative frequency will approach =555 = 0.17.

» This conditional probability is usually written as
42.500/1,000.000 _ (3 47
250,000/1,000,000 — ~-' /-

» The ratio in the numerator is joint probability of smoking
and lung cancer, and the ratio in the denominator is the
marginal probability of smoking.
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Meaning of Probability in Bayesian Inference

» In the frequency approach, probability is a limiting
frequency
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Meaning of Probability in Bayesian Inference

» In the frequency approach, probability is a limiting
frequency
» In Bayesian inference, probabilities are used to quantify
your beliefs or knowledge about possible values of
parameters
» What is the probability that h* > 0.5?
» What is the probability that milk yield is controlled by more
than 100 loci?

/87



Essentials of Bayesian Inference

» Prior probabilities quantify beliefs about parameters before
the data are analyzed
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Essentials of Bayesian Inference

» Prior probabilities quantify beliefs about parameters before
the data are analyzed

» Parameters are related to the data through the model or
“likelihood”, which is the conditional probability density for
the data given the parameters

» The prior and the likelihood are combined using Bayes
theorem to obtain posterior probabilities, which are
conditional probabilities for the parameters given the data

» Inferences about parameters are based on the posteior
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Bayes Theorem in Bayesian Inference

» Let (@) denote the prior probability density for 6
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Bayes Theorem in Bayesian Inference

» Let (@) denote the prior probability density for 6
» Let f(y|@) denote the likelihood
» Then, the posterior probability of 6 is:

ftoly) = "0

x f(y|6)f(0)
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Computing posteriors

» Often no closed form for f(6|y)
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Computing posteriors

» Often no closed form for f(0]y)
» Further, even if computing f(8]y) is feasible, obtaining
f(6;|y) would require integrating over many dimensions

» Thus, in many situations, inferences are made using the
empirical posterior constructed by drawing samples from
f(6ly)

» Gibbs sampler is widely used for drawing samples from
posteriors
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Gibbs sampler

» Want to draw samples from f(xy, X2, ..., Xn)
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Gibbs sampler

» Want to draw samples from f(x1, Xz,

ey Xn)

» Even though it may be possible to compute

f(X1,X2,. ..
f(X1,X2,. ..
> Gibbs:

7Xn)

» Get valid a starting point x°
» Draw sample x! as:

t
o
%
X3

Xp

from
from
from

from

f(xy |X2t71 ) X3

f(xo|xd, x4,
f(xa|xt, xb, ...

f(xalxt, X5, . ..

t—1

, Xn), it is difficult to draw samples directly from
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Gibbs sampler

» Want to draw samples from f(x1, X2, ..., Xn)

» Even though it may be possible to compute
f(X1, Xz, ..., Xn), it is difficult to draw samples directly from
f(X1,Xo,...,Xn)

» Gibbs:

» Get valid a starting point x°
» Draw sample x! as:

1t 1
xt from  fOalxd T
—1 —1
x5 from  f(x|x!, X} ,...,x,t,1 )
t7
x4 from foxalxt, xb, ... xp7 ")
¢ from FOlxt, XL xt
Xn 0 (n|17 20 n—1)
» The sequence x', x2,...,x" is a Markov chain with

stationary distribution f(x1, X2, ..., Xn)
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Inference from Markov chain

Can show that samples obtained from the Markov chain can be
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Inference from Markov chain

Can show that samples obtained from the Markov chain can be
used to draw inferences from f(xq, X2, ..., Xp) provided the
chain is:
» Irreducible: can move from any state 7/ to any other state j
» Positive recurrent: return time to any state has finite
expectation
» Markov Chains, J. R. Norris (1997)
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Example

Let f(x) be a bivariate normal density with means
o= [1 2]

and covariance matrix

1 05
V= [0.5 2.0]

Suppose we do not know how to draw samples from f(x), but
know how to draw samples from f(x;|x;), which is univariate
normal with mean:

Vi

pij = pi+ (% — pj)
Vi

and variance
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Gibbs sampler

» Gibbs:
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Gibbs sampler

» Gibbs:

» Start with x° = m

» Draw sample x! as:

xt from  f(xq|xt")

t
X, from

f(xz|x{)
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Gibbs sampler

» Gibbs:
» Start with x° = m
» Draw sample x! as:

xt from  f(xq|xt")
x5 from  f(x|x!)
» Use the sequence x', x2, ..., x" to compute any property

of f(x), for example

Pr(x; > p1 and xo > pp)
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MCMC Estimates of Pr(xy > 1 and X > pp)

Prob

0.05 0.10 0.15 0.20 0.25 0.30
I

0.00

DE

o

T T T T T T

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
iteration
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Metropolis-Hastings sampler

» Sometimes may not be able to draw samples directly from
f(xilxi_)
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Metropolis-Hastings sampler

» Sometimes may not be able to draw samples directly from
f(xilxi_)
» Convergence of the Gibbs sampler may be too slow
» Metropolis-Hastings (MH) for sampling from f(x):
» a candidate sample, y, is drawn from a proposal distribution
alylx'")

>

xt—1Y with probability «
~ | xt="  with probability 1 — a

fy)a(x'~'y) )

o= Mt FE T gy e 1)

» The samples from MH is a Markov chain with stationary
distribution f(x)

17/67



Proposal distributions

Two main types:

18/67



Proposal distributions

Two main types:
» Approximations of the target density: f(x)

18/67



Proposal distributions

Two main types:

» Approximations of the target density: f(x)
» Not easy to find approximation that is easy to sample from

18/67



Proposal distributions

Two main types:

» Approximations of the target density: f(x)

» Not easy to find approximation that is easy to sample from
» High acceptance rate is good!

18/87



Proposal distributions

Two main types:

» Approximations of the target density: f(x)

» Not easy to find approximation that is easy to sample from
» High acceptance rate is good!

» Random walk type: stay close to the previous sample

18/87



Proposal distributions

Two main types:

» Approximations of the target density: f(x)

» Not easy to find approximation that is easy to sample from
» High acceptance rate is good!

» Random walk type: stay close to the previous sample
» Generally easy to construct proposal

18/67



Proposal distributions

Two main types:

» Approximations of the target density: f(x)

» Not easy to find approximation that is easy to sample from
» High acceptance rate is good!

» Random walk type: stay close to the previous sample

» Generally easy to construct proposal
» High acceptance rate may indicate that candidate is too
close to previous sample

18/67



Proposal distributions

Two main types:

» Approximations of the target density: f(x)
» Not easy to find approximation that is easy to sample from
» High acceptance rate is good!

» Random walk type: stay close to the previous sample

» Generally easy to construct proposal

» High acceptance rate may indicate that candidate is too
close to previous sample

» Intermediate acceptance rate is good

18/67



MH Sampler to Estimate Pr(x; > 1 and xo > pp)
MH Sampler:

» Start with x° = [8]
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MH Sampler to Estimate Pr(x; > 1 and xo > pp)

MH Sampler:

» Start with x0 = m

» Draw sample x! as:

where u; is Uniform(—v,.}/‘2 vi/3).

(]
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MH Sampler to Estimate Pr(x; > 1 and xo > pp)

MH Sampler:

> Start with x0 = m

» Draw sample x! as:

t—1
i.=Xx3 +u
t—1
Yo =X  + U

where u; is Uniform(—v,.}/z, v,}/z).
» Compute )
. f(y
a = min(1, f(xiH))
and

4 with probability o
~ I xt" with probability 1 —

19/87



MCMC Estimates of Pr(xy > 1 and X > pp)

<
3]
. U ———
2
2 o
5 o
g8
=
o
s |
T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

iteration
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Distribution of y; Sampled Using MH

Histogram of y1

Frequency
2000 3000 4000
!

1000
I

yi
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Part I

Bayesian Inference: Application to Whole
Genome Analyses
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Model

Model:
Yi=p+Y Xjoj+e;

Priors:
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Model

Model:
Yi=p+Y Xjoj+e;
j
Priors:
» 1 ox constant (not proper, but posterior is proper)
> (6)l02) ~ (id)N(0, 02); 02 ~ e S2x; 2
» Consider several different priors for «;
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Normal
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Normal

> Prior: (aj|02) ~ (id)N(0,02); o2 is known
» What is 02?

» Assume the QTL genotypes are a subset of those
available for the analysis

» Then, the genotypic value of i can be written as:

gi = p+ X

» Note that « is common to all
» Thus, the variance of g; comes from x| being random

» So, ag is not the genetic variance at a locus

» If locus j is randomly sampled from all the loci available for
analysis:
» Then, o; will be a random variable
» 02 = Var(q))

24/67



Relationship of 2 to genetic variance

Assume loci with effect on trait are in linkage equilibrium. Then,
the additive genetic variance is

k
Va=> 2pg?,
J

where p; = 1 — q; is gene frequency at SNP locus ;.
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Relationship of 2 to genetic variance

Assume loci with effect on trait are in linkage equilibrium. Then,
the additive genetic variance is

K
Va=>_2pg;,
j

where p; = 1 — q; is gene frequency at SNP locus ;.
Letting U; = 2p;q; and V; = o,

k
Va=> UV
J
For a randomly sampled locus, covariance between U; and V; is

UUERYTINIA

Cuv =

25/87



Relationship of o2 to genetic variance

Rearranging the previous expression for Cyy gives

Vi
S UV =kCuv + (> uj)(Z;( )
J J
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Relationship of 2 to genetic variance

Rearranging the previous expression for Cyy gives

Vi
S UV =kCuv + (> uj)(Z;( )
J J

So,

Z.a2
Va=kCuv + (D 209)(=)
j

.a? .
Letting 02 = % gives

Va = kCuv + (O _ 2p;q))7%
j

and,
o Va—kCyy

Ua =
> 2p;q;
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Blocked Gibbs sampler

v

Let 0 = [u, o]
Can show that (8]y, 02) ~ N(8, C~'52)

v

6=Cc'Wy, w=[,X

" 1X
X XX +1%

v

Blocked Gibbs sampler

» Garcia-Cortés and Sorensen (1996, GSE 28:121-126)
» Likelihood, Bayesian and MCMC Methods - -- (LBMMQG,
Sorensen and Gianola, 2002)

27187



Full conditionals for single-site Gibbs
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Full conditionals for single-site Gibbs

1y-Xa) o2
> (/’L‘y7aa0—g) ~ N(M: 76)

2
> (ogly. ey .02) ~ N(ay, %)
>

G

~

Qj =

w=Yy-— 1ILL—ZXJ'/C¥/'/
J'#
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Full conditionals for single-site Gibbs

1Ty-X o2
( (Y-Ao) i)

n ’n

> (ply, o, 08) ~
(aj‘ynu’a aj 709) N(aja 7)

>

w=Yy-— 1ILL—ZXJ'/C¥/'/
J'#

¢ = (XjX; + e)
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Full conditionals for single-site Gibbs
1y-Xa) o
> (uly, . 08) ~ N(-YZ22, %)

0'2

> (ojly. 0y 05) ~ N(G5, %)

>
/
X]-W

d': _
l .
Gj

I'#i

2
0 = (xjx; + %)
> (031y. 1) ~ [(y — WOY (y — W6) + veSEX 2. )
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Derive: full conditional for «;

From Bayes’ Theorem,

f(oy, ¥, 1, j ,03)
f(y7 m, &, Ug)

f(aj’ya M, aj_: 02) =
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From Bayes’ Theorem,

f(oy, ¥, 1, j ,03)
f(y7 m, &, Ug)

f(aj’ya M, aj_: 02) =

(&8 f(y‘ajv 122X Ug)f(a/)f(ﬂ7 aj Ug)
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Derive: full conditional for «;

From Bayes’ Theorem,

f(oy, ¥, 1, j ,03)
f(y7 m, &, Ug)

f(aj’ya M, aj_: 02) =

(&8 f(y‘ajv 122X Ug)f(O//)f(M, aj Ug)

2

w— Xja)) (W — Xjo; o;
(W= X0 = X5)y 02) V2 oxp(— 11 )

2
208

—n/2

exp{—

o (0g)
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Derive: full conditional for «;

From Bayes’ Theorem,

f(oy, ¥, 1, j ,03)
f(y7 m, &, Ug)

f(aj’ya M, aj_: 02) =

(&8 f(y‘ajv 122X Ug)f(()//)f(ﬂ, aj Ug)

2

w— Xja)) (W — Xjo; _ o
(W= X0 = X5)y 02) V2 oxp(— 11 )

2
208

—n/2

exp{—

 (03)
where

W:y—1,u—ij/aj,
J#A
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Derive: full conditional for «;

The exponential terms in the joint density can be written as:

1 o2
———{w'w — 2Xjwa; + [X)x; + U—g]a]?}
(0%
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Derive: full conditional for o;

The exponential terms in the joint density can be written as:

1 o2
———{w'w — 2Xjwa; + [X)x; + U—g]a]?}
(0%

Completing the square in this expression with respect to o;
gives
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Derive: full conditional for o;

The exponential terms in the joint density can be written as:

1 0'2 2
———{w'w —2xjwa; + [xjx; + U—g]aj}
e «@
Completing the square in this expression with respect to o;
gives
1

-5 —{ci(q — &) + w'w - ¢df}
Je

where
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Derive: full conditional for o;

The exponential terms in the joint density can be written as:

1 0'2 2
———{w'w —2xjwa; + [xjx; + U—g]aj}

e «@
Completing the square in this expression with respect to o;

gives
1

2 £ 2
~ 5z (Giley — &) + w'w — "}
e
where
xj’-w
aj = L~
G
So, ,
(o — &)
(O‘]|ynu7a] 7U§)O(exp{ 2/ }

20/67



Full conditional for o2

From Bayes’ theorem,

f(o2,y, 1, )

f 2 ) 70" =
e = Ty

21/87



Full conditional for o2

From Bayes’ theorem,

f(o2,y, 1, )

f(o3ly, m a) =
e = Ty

oc F(y|o, 1, @)f(05) (1, )
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Full conditional for o2

From Bayes’ theorem,

f(o2,y, 1, )

f(o3ly, m a) =
e = Ty

o (Yo, u, ) f(a3)f(u, cx)
where
(W — onzj)/(W — onzj)
202

—n/2

f(ylog. 1, @) o (o) "2 exp{~ }
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Full conditional for o2

From Bayes’ theorem,

f(o2,y, 1, )

f(o3ly, m a) =
e = Ty

o (Yo, u, ) f(a3)f(u, cx)
where
(W — onzj)/(W — onzj)
202

—n/2

f(ylog. 1, @) o (o) "2 exp{~ }

and
- (Sg’/e/z)ye/2 2

veS2
f(Ug) W Oe

2
208

)_(2+Ve)/2 exp(_

)
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Full conditional for o2

So,

SSE + 1,52

H(o2lY, n, ) oc (o5) ") 2 exp(—
203

)

where
SSE = (W — Xjaj)/(W — Xjaj)
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Full conditional for o2

So,
_ » SSE + 1,52
f(O'g|y7 My O’,) 8 (Ug) (2+n+ e)/2 exp(_?ee)
Oe
where
SSE = (W — Xjaj)/(W — XjOéj)
So, y
f(o2ly. 1, @) ~ 7eSax;2
where

SSE + 1,52

g = N+ vg; ng p
Ve

29/87



Alternative view of Normal prior

Consider fixed linear model:

y=1u+ Xa+e
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Alternative view of Normal prior

Consider fixed linear model:

y=1+Xa+e
This can be also written as

y=[1 X] [“]+e

(01
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Alternative view of Normal prior

Consider fixed linear model:

y=1u+ Xa+e

This can be also written as
_ 2
y=[1 X| [ ] +e

Suppose we observe for each locus:

*

Vi = t¢

23/87



Least Squares with Additional Data

Fixed linear model with the additional data:

=l Tl

e
€
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Least Squares with Additional Data

Fixed linear model with the additional data:

) HEIRR

1 0 [z O] X][a]_[1 O
X r{| o nLllo 1]l |x
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Least Squares with Additional Data

Fixed linear model with the additional data:

y| (1 X||np e
=l W lal [
OLS Equations:
1 0 [z O] X][a]_[1 O
X I'f{o niillo 1]lal” [x 71

11 1'X P _
&

/ / a2
X1 XX—i—I?

24/67



Univariate-t

Prior:
(ajlo?) ~ N(0, 07)

2 2 -2
Uj ~ Vg Sua Xvg,
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Univariate-t

Prior:
(ajlo-z) ~N(0,0%)

2 2
. ~ VOéS lea

Can show that the unconditional distribution for ; is
aj ~ (iid)t(0, S2_, va)

(Sorensen and Gianola, 2002, LBMMQG pages 28,60)
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Univariate-t

Prior:
(ejl0?) ~ N(0, o)

2
)

Can show that the unconditional distribution for ; is

2 -2
~ Vg Sz/a Xua

aj ~ (id)H(0, 82, )

(Sorensen and Gianola, 2002, LBMMQG pages 28,60)

This is Bayes-A (Meuwissen et al., 2001; Genetics
157:1819-1829)
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Univariate-t

Plots of PDF for typical parameters:

04r

03¢

027

0.1}

0.0

-4 -2 0 2 4 6 8 10

Generated by Wolfram|Alpha (www.wolframalpha.com)
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Full conditional for single-site Gibbs

Full conditionals are the same as in the "Normal" model for
u, aj, and 2.
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52[012,03,...,0,2(]
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Full conditionals are the same as in the "Normal" model for
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£= [012,03,...,0,2(]

Full conditional conditional for sz:

f(o?|y, i o, & ,08) o< F(Y, 11, 0, €, 03)
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Full conditional for single-site Gibbs

Full conditionals are the same as in the "Normal" model for
p, oj, and o2. Let
2 2 2
52 [O'1,0'2,...,O'k]
Full conditional conditional for sz:

f(o?|y, i o, & ,08) o< F(Y, 11, 0, €, 03)

oc F(y|, v, €, 02) F(oyl0?) (07 ) F(n, o , &} 02)
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Full conditional for single-site Gibbs

Full conditionals are the same as in the "Normal" model for
p, oj, and o2. Let

£= [012,03,...,0,2(]
Full conditional conditional for sz:
f(O'/2|y, o, o, Sj_? O-g) S8 f(y’ u, o, 57 O-g)

oc F(y|, v, €, 02) F(oyl0?) (07 ) F(n, o , &} 02)

2 2

— v, S()/
x (of Pl ) ¢ el
/
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Full conditional for single-site Gibbs

Full conditionals are the same as in the "Normal" model for
p, oj, and o2. Let

£= [012,03,...,0,2(]
Full conditional conditional for sz:
f(O'/2’y, o, o, Sj_? O-g) S8 f(y’ u, o, 57 O-g)

oc F(y|, v, €, 02) F(oyl0?) (07 ) F(n, o , &} 02)

2 2

— v, S()/
< (of ) expl =g ) el G2
/

% +Va82
( 2) (2+Va+1)/2exp{j27.2
/

}
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Full conditional for aj?

So, 5
(U}?’ya H, o, 5_7 Ug) ~ ’7aS§X;a2
where
Do = Vo + 1
and

2 2
- of +v,S
S=-"—-—

Vo
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Multivariate-t

Prior:
(ajo?) ~ (iid)N(0, 02)

2 2 -2
Oq ™~ Va SI/OCXVOC
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Multivariate-t

Prior:
(aj|0?) ~ (iid)N(0, 02)

02 ~ 1, S? X;f

Can show that the unconditional distribution for « is
a ~ multivariate-#(0, IS2_, v.,)

(Sorensen and Gianola, 2002, LBMMQG page 60)
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Multivariate-t

Prior:
(ajo?) ~ (iid)N(0, 02)

0’ ~ VoéS2 X;f

Can show that the unconditional distribution for « is
a ~ multivariate-#(0, IS2_, v.,)

(Sorensen and Gianola, 2002, LBMMQG page 60)

We will see later that this is Bayes-C with = = 0.
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Full conditional for o2

We will see later that

2 2 ~ Q2 -2
(aa\y,,u,a,ae) ~ VOéSasza
where
Uy =vs+ K
and
g2 _ a’a—l—l/asg

« Da
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Spike and univariate-t

Prior:

5 N(0, 7 2)  probability (1 — ),
Chy ,){

=0 probability ©

and
(02|1/a, O5) uaSQ _2
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Spike and univariate-t

Prior:
~ N 2 o o
(o)l UjQ) (0,07) probab!I!ty(1 ),
=0 probability 7
and
(crjz|1/a, S2) ~ uasgng
Thus,

~ univariate-1(0, S2,v,) probability (1 — =),

(ay|m)(iid) {: 0 probability =
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Spike and univariate-t

Prior:
(ajlr,02) 4~ N(0,02) probability (1 — ),
T =0 probability 7
and
(U/'2|Va, Sg) ~ Uasgx;az
Thus,
(oylm)(iid) { ™ univariate-(0, S2,v,) probability (1 — ),
|7
: =0 probability

This is Bayes-B (Meuwissen et al., 2001; Genetics
157:1819-1829)
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Notation for sampling from mixture

The indicator variable §; is defined as

sj=1= (a,-|a,2) ~ N(o,a/?)

and
5 =0 = (qjl0?) =0

A42/87



Sampling strategy in MHG (2001)

» Sampling o2 and . are as under the Normal prior.
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Sampling strategy in MHG (2001)

» Sampling o2 and y are as under the Normal prior.

» MHG proposed to use a Metropolis-Hastings sampler to
draw samples for aj? and q; jointly from their full-conditional
distribution.
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Sampling strategy in MHG (2001)

» Sampling o2 and y are as under the Normal prior.

» MHG proposed to use a Metropolis-Hastings sampler to
draw samples for aj? and q; jointly from their full-conditional
distribution.

» First, o2 is sampled from

f(0/2|y7 m, o, 5_7 Ug)
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Sampling strategy in MHG (2001)

» Sampling 02 and  are as under the Normal prior.

» MHG proposed to use a Metropolis-Hastings sampler to
draw samples for aj? and q; jointly from their full-conditional
distribution.

» First, o2 is sampled from
f(0/2|y7 m, o, 5_7 Ug)

using MH with prior as proposal.

» Then, «; is sampled from its full-conditional, which is
identical to that under the Normal prior

A43/67



MH acceptance probability when prior is used as
proposal

Suppose we want to sample ¢ from f(6|y) using the MH with its
prior as proposal.
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MH acceptance probability when prior is used as
proposal

Suppose we want to sample ¢ from f(6|y) using the MH with its
prior as proposal. Then, the MH acceptance probability

becomes:
(Ocan|Y)F(O)
(0=11y)f(can)

a= min(1,;

where f(0) is the prior for 6.
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MH acceptance probability when prior is used as
proposal

Suppose we want to sample ¢ from f(6|y) using the MH with its
prior as proposal. Then, the MH acceptance probability
becomes:

(Bcanly)f(6"T)
(01=11y)f(Ocan)

where f(6) is the prior for . Using Bayes’ theorem, the target
density can be written as:

f(0ly) o f(y0)£(0)

a= min(1,;
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MH acceptance probability when prior is used as
proposal

Suppose we want to sample ¢ from f(6|y) using the MH with its
prior as proposal. Then, the MH acceptance probability

becomes:
(Ocan|Y) (6 1)
(0=11y)f(can)

where f(0) is the prior for . Using Bayes’ theorem, the target
density can be written as:

f(6]y) o< f(y16)f(6)
Then, the acceptance probability becomes

f(y|0can)f(Ocan) F(0" 1)
f(ylot=")f(0'=)f(Ocan)

a= min(1,;

a = min(1,
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Sampling o?

Thus when the prior for o2 is used as the proposal, the MH
acceptance probability becomes

1 f(y‘aganv ej_))

o =min( 2.0, )

where oZ,, is used to denote the candidate value for o7, and 6;_
all the other parameters.
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Sampling o?

Thus when the prior for o2 is used as the proposal, the MH
acceptance probability becomes

1 f(y‘aganv ej_))

o =min( 2.0, )

where oZ,, is used to denote the candidate value for o7, and 6;_
all the other parameters. It can be shown that, o; depends on y
only through r; = x;w (page 30). Thus

f(ylo?,0; ) o f(rj]0?,6; )

A45/67



"Likelihood" for sz

Recall that

W:y—1,u—ZXj/Ozj/ = Xjoj €
J#i
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"Likelihood" for af

Recall that

W:y—1ﬂ—zxj’aj’:Xja/+e
J#i

Then,
E(w|o?,0; )=0
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"Likelihood" for sz

Recall that
J#i
Then,
E(w|o?,0; )=0
When 6 = 1:

Var(w|s; =1,07,6; ) = X;Xjo? + lo5
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"Likelihood" for sz

Recall that
J#i
Then,
E(w|o?,0; )=0
When 6 = 1:
Var(w|s; =1,07,6; ) = X;Xjo? + lo5
and § = 0:

Var(w|d; = 0,0%,6; ) = loj
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"Likelihood" for af

So,
E(r02,6;) =0

and

Var(rj|d; = 1,02,6; ) = (X}x;)?07 + X}Xj05 = v

Var(rj|6; = 0,07,0; ) = X}Xjo5 = Vg

47/687



"Likelihood" for af

So,
E(fl0?.6,) =0
and
(w22 1 wlyn?
Var(ri|oj =1,0 ],0 ) = (XjXj) 0 + XjXjog = V4
Var(rj|6; = 0,07,0; ) = X}Xjo5 = Vg
So,
2

I
1(51.07.8;)  (v)) 2 exp( 5. )

47/687



Alternative View of Prior in BayesB

» How much information is being added by the prior?
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Alternative View of Prior in BayesB

» BayesB is identical to ML with additional data!
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Alternative View of Prior in BayesB

» Can “see” how much additional data in BayesB prior.
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Maximum Likelihood with Additional Data

» Suppose at locus j, ; = 1, and we observe additional data:
uj ~ N(0,140%)
> Assume that only unknown is o?
» So, adjust phenotypes as:
w=Yy-— 1/L — ZX//O[/'/
J'#i
» Likelihood:

L(sz; w, Uj) = L(O'jz; &j, Uj)

A49/87



Likelihood with Additional Data

L(oF; &, uj) o fi(a]07) x fa(ujlo?)

/

_ —uiy;
luof) x (oF) V2 expl— ;"]
)
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Likelihood with Additional Data

| 4
L(o%; &y, Up) o< fy(85107) x fo(ujo?)
| 4
2 2\—q/2 i~
h(ujlof) o (o7) o eXp[ch‘?]
—18?

o< (oF) /2 eXp[T‘g]

J
uu
» v=q-2,8="2

v
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Alternative algorithm for spike and univariate-t

Rather than use the prior as the proposal for sampling a/?, we
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» sample §; = 1 with probability 0.5
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Alternative algorithm for spike and univariate-t

Rather than use the prior as the proposal for sampling a/?, we
» sample ¢; = 1 with probability 0.5

» when ¢ = 1, sample sz from a scaled inverse chi-squared
distribution with
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Alternative algorithm for spike and univariate-t

Rather than use the prior as the proposal for sampling a/?, we
» sample ¢; = 1 with probability 0.5
» when ¢ = 1, sample sz from a scaled inverse chi-squared

distribution with

» scale parameter = o;

when 5}"1) —1,and

_2(171)/2 and 4 degrees of freedom
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Alternative algorithm for spike and univariate-t

Rather than use the prior as the proposal for sampling a , we
» sample ¢; = 1 with probability 0.5

» when ¢ = 1, sample sz from a scaled inverse chi-squared
distribution with

» scale parameter 2(1 R

/2 and 4 degrees of freedom
when 5/( D _ , and
» scale parameter = 82 and 4 degrees of freedom when

51
o; =0

51/87



Multivariate-t mixture

Prior:

-~ 2 e o
(aj|7r’o_2) N(0, %) probab!I!ty(1 ),
=0 probability

and
(02|Va, S2) ~ 14 S2x;, 2
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Multivariate-t mixture

Prior:
(afr.0?) ]~ N(0,02) probability (1 — =),
Qaj|T, 0 -
/ =0 probability
and
(02|Va, S2) ~ 14 S2x;, 2
Further,

7 ~ Uniform(0, 1)
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Multivariate-t mixture

Prior:
(afr.0?) ]~ N(0,02) probability (1 — ),
o\, o .
! =0 probability
and
(02|Va, S2) ~ 14 S2x;, 2
Further,

7 ~ Uniform(0, 1)

» The a; variables with their corresponding J; = 1 will follow
a multivariate-t distribution.
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Multivariate-t mixture

Prior:
(afr.0?) ]~ N(0,02) probability (1 — =),
Qj|Tt, O -
/ =0 probability
and
(02|Va, S2) ~ 14 S2x;, 2
Further,

7 ~ Uniform(0, 1)

» The a; variables with their corresponding J; = 1 will follow
a multivariate-t distribution.

» This is what we have called Bayes-Cn

52/87



Full conditionals for single-site Gibbs

Full-conditional distributions for u, o, and ag are as with the
Normal prior.
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Full conditionals for single-site Gibbs

Full-conditional distributions for u, o, and ag are as with the
Normal prior.
Full-conditional for dj:

Pr(5j|y, W, o_j, 6—j7 O’i, O'g, 7T) =
Pr(5j\rj, 01'7)

53/87



Full conditionals for single-site Gibbs

Full-conditional distributions for u, o, and ag are as with the
Normal prior.
Full-conditional for dj:

Pr(o;ly, 1, a_j, (5_1-,05,03,77) =
Pr(5j\rj, 0]'7)

f(0;,1;16;_)

PG00 = 1o,
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Full conditionals for single-site Gibbs

Full-conditional distributions for u, o, and ag are as with the
Normal prior.
Full-conditional for dj:

Pr(o;ly, 1, a_j, (5_1-,05,03,77) =
Pr(5j\rj, 0]'7)

F(5j, 1716 )
f(r;l6;)
_ f(rjloj, 8, ) Pr(dj|m)
f(rl0; = 0,6; )m + f(rjlo; = 1,0; )(1 — )

Pr(ojlr, 6, ) =
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Full conditional foro2

This can be written as

f(@i“’vﬂ: a,5, Ug) X f(y|0-§u u, &, 67 Ug)f(agnuﬂ «, 6705))
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Full conditional foro2

This can be written as
f(U§z|y7 /’L7 a7 57 Ug) X f(y|0-§u Ma a7 67 Ug)f(o'gu ,U’a a7 67 O-g)
But, can see that

f(ylo2, u, @, 8,03) o f(y|u, o, 8,03)
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Full conditional foro?2

This can be written as
H(o21Y, 1, 8,05) o< (ylod, i, e, 8,08)f(08, 1, @, 8,05)
But, can see that
H(ylo%, 1, e, 8,05) o< H(y|n, @, 6,03)

So,
f(Ug’y,M,a,é,O—g) X f(o-§¢7/1/7a7670—§)
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Full conditional foro2

This can be written as
H(o21Y, 1, 8,05) o< (ylod, i, e, 8,08)f(08, 1, @, 8,05)
But, can see that
H(ylo%, 1, e, 8,05) o< H(y|n, @, 6,03)

So,
f(Ui’y,M,a,é,O—g) X f(o-§¢7/'1/7a7670—§)

Note that o2 appears only in f(a|c2) and f(o2):

_ oo
f(alo?) o (02) 2 exp(~ 2o}
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Full conditional foro2

This can be written as
H(o21Y, 1, 8,05) o< (ylod, i, e, 8,08)f(08, 1, @, 8,05)
But, can see that
H(ylo%, 1, e, 8,05) o< H(y|n, @, 6,03)

So,
f(Ui’y,M,a,é,O—g) X f(o-§¢7/'1/7a7670—§)

Note that o2 appears only in f(a|c2) and f(o2):
2 2\—k/2 a'o
f(alod) o< (a3) 7 eXp{—E}

and

a

2
F(02) o (02) 1212 exp( oSy
202
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Full conditional for o2

Combining these two densities gives:

—(k+v da+v,S o
f(021Y, 1, v, 8,08) o (05) " Het2)/2 x {i}
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Full conditional for o2

Combining these two densities gives:

—(k+v da+v,S o
f(021Y, 1, v, 8,08) o (05) " Het2)/2 x {i}

So,
(Ua]y,,u,a 0 ae) ~ VQSQX;E
where
U =K+ v,
and

g2 _ o'a+ 1,52
[0 - ~
V()f
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Hyper parameter: S2

If o2 is distributed as a scaled, inverse chi-square random
variable with scale parameter S2 and degrees of freedom v

v &?
v—2

E(O’z) =
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Hyper parameter: S2

If o2 is distributed as a scaled, inverse chi-square random
variable with scale parameter S2 and degrees of freedom v

v &?
v—2

E(0?) =
Recall that under some assumptions

02 = 7\/3
o >22pg
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Hyper parameter: S2

If o2 is distributed as a scaled, inverse chi-square random
variable with scale parameter S2 and degrees of freedom v

v &?
v—2

E(O’z) =

Recall that under some assumptions

02 = 7\/3
o >22pg
So, we take
(va —2)Va

2 __
Sa = Jok(1 = 7)2pg

56/67



Full conditional for 7

Using Bayes’ theorem,

(7T|5 M, &, O-ouo-emy) (&8 f(y|7r 5 y by O, O omo-e)f(ﬂ- 6 y Hy O, O a’ae)
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Full conditional for 7

Using Bayes’ theorem,

(7T|6 /’L7 a? aaag?y) (&8 f(y|7r 5 ILL? a? omo-e)f(ﬂ- 6 ILL7 a’ Oé’o-e)

But,
» Conditional on § the likelihood is free of &

57/687



Full conditional for 7

Using Bayes’ theorem,

(7T|(S M, 0, 0 aaamy) (&8 f(y|7T 5 y by O, O omo-e)f(ﬂ- 5 y Hy O, O a?ae)

But,
» Conditional on § the likelihood is free of &

» Further, m only appears in probability of the vector of
bernoulli variables:
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Full conditional for 7
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Full conditional for 7

Using Bayes’ theorem,
(7T|5 M, 0, 0 aaamy) (&8 f(y|7T 5 y by O, O omo-e)f(ﬂ- 5 y Hy O, O a?ae)

But,

» Conditional on § the likelihood is free of 7

» Further, m only appears in probability of the vector of

bernoulli variables:
Thus,
(7-‘-|(s u, o, o ou 067 y) = ﬂ-(k_m)“ - ﬂ-)m

where m = §’8, and k is the number of markers. Thus, 7 is
sampled from a beta distribution witha=k — m+ 1 and
b=m+1.
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BayesCr with Unknown S2

» Prior for S2: Gamma(a,b)

f(Sila, b) oc b3(S5)* " exp{~bSZ}
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BayesCr with Unknown S2

» Prior for S2: Gamma(a,b)
f(S2|a, b) o b3(S2) " exp{—bSZ}
» Using Bayes theorem,
F(S310, 1, v, 05, 05, ) o< H(y|SE, 0%, .. J(S5,0%..)

» Given u, o, and o2, f(y|S2,02,...) does not depend on S2.
> In f(S2,02...), S2is only in f(S2]a, b) and f(02|S2, v,)
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» Prior for S2: Gamma(a,b)
f(Sila, b) o b?(S3)% " exp{—bS;}

» Prior for 02:

f(02) o< (02)” (”"+2)/26X|0{ a}

[0}

59/R87



BayesCr with Unknown S2

» Prior for S2: Gamma(a,b)
f(Sila, b) o b?(S3)% " exp{—bS;}

» Prior for o2:

f(02) o< (02)” (”"+2)/26X|0{ a}

» Combining these gives:

((SE108.y....) oc SEE 1412 exp( 2% + )}
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BayesCr with Unknown S2

So, f(S2|a, b) is Gamma(a*,b*), where
ax=a+v,/2

and
Vo

202

«

bx =b+
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Simulation |

» 2000 unlinked loci in LE
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Simulation |

» 2000 unlinked loci in LE

» 10 of these are QTL: 7 = 0.995

» » =05

» Locus effects estimated from 250 individuals
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Results for Bayes-B

Correlations between true and predicted additive genotypic

values estimated from 32 replications

™ S2  Correlation
0.995 0.2 0.91(0.009)
0.8 0.2 0.86(0.009)
00 02 0.80(0.013)
0.995 2.0 0.90(0.007)
08 2.0 0.77(0.009)
00 20 0.35(0.022)
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Simulation Il

» 2000 unlinked loci with Q loci having effect on trait
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Simulation Il

2000 unlinked loci with Q loci having effect on trait

N is the size of training data set

Heritability = 0.5

Validation in an independent data set with 1000 individuals
Bayes-B and Bayes-Cr with = 0.5

vV v.v v Y
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Results

Results from 15 replications

Corr(g, 9)
N Q T 7t Bayes-Cr Bayes-B

2000 10 0.995 0.994 0.995 0.937
2000 200 0.90 0.899 0.866 0.834
2000 1900 0.05 0.202 0.613 0.571
4000 1900 0.05 0.096 0.763 0.722
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Simulation IlI

» Genotypes: 50k SNPs from 1086 Purebred Angus
animals, ISU
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Simulation IlI

» Genotypes: 50k SNPs from 1086 Purebred Angus
animals, ISU
» Phenotypes:

» QTL simulated from 50 randomly sampled SNPs

» substitution effect sampled from N(0,02)
0_2
> 0% = 50264

» P»=0.25
» QTL were included in the marker panel
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Simulation IlI

» Genotypes: 50k SNPs from 1086 Purebred Angus
animals, ISU
» Phenotypes:

» QTL simulated from 50 randomly sampled SNPs
» substitution effect sampled from N(0,02)
0_2
> 0% = 50264
» h? =0.25

» QTL were included in the marker panel
» Marker effects were estimated for 50k SNPs
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Validation

» Genotypes: 50k SNPs from 984 crossbred animals, CMP
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Validation

» Genotypes: 50k SNPs from 984 crossbred animals, CMP
» Additive genetic merit (g;) computed from the 50 QTL
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Validation

» Genotypes: 50k SNPs from 984 crossbred animals, CMP
» Additive genetic merit (g;) computed from the 50 QTL

» Additive genetic merit predicted (g;) using estimated
effects for 50k SNP panel
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Results

Correlations between g; and g; estimated from 3 replications

Correlation

T Bayes-B Bayes-C

0.999 0.86 0.86
0.25 0.70 0.26

67/67



Results

Correlations between g; and g; estimated from 3 replications

Correlation

T Bayes-B Bayes-C

0.999 0.86 0.86
0.25 0.70 0.26

BayesCr:

67/67



Results

Correlations between g; and g; estimated from 3 replications

Correlation

T Bayes-B Bayes-C

0.999 0.86 0.86
0.25 0.70 0.26

BayesCr:
» & =0.999

67/67



Results

Correlations between g; and g; estimated from 3 replications

Correlation

T Bayes-B Bayes-C

0.999 0.86 0.86
0.25 0.70 0.26

BayesCr:
» 7 =0.999
» Correlation = 0.86
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