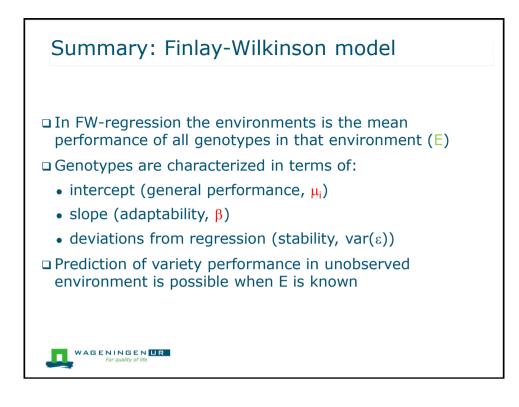

Environmental index		
 Environmental variable = Environmental main effect (E_j). As a deviation from the average 	env s01_y1 s14_y2 s01_y2 s12_y2 s12_y1 s02_y1 s14_y1 s10_y2	E 1.3736 1.2801 0.7984 0.6474 0.5603 0.4688 0.3721 0.3238
$\underline{y}_{ij} = \mu + \underline{G}_i + \underline{E}_j + (\underline{GE}_{ij} + \underline{e}_{ij})$ $\Box \text{ Environments can be ranked on E:}$ $\bullet \text{ E} > 0: \text{ better than average}$	s11_y2 s04_y1 s05_y2 s18_y2 s18_y1 s10_y1	0.2137 0.1575 -0.1759 -0.1951 -0.2540 -0.2587
 E < 0: worse than average 	s16_y1 s11_y1 s16_y2 s05_y1 s04_y2	-0.3489 -0.3641 -0.3775 -0.7386 -0.7470
	s02_y2 s07_y1 s07_y2	-0.7532 -0.7825 -1.2001



Full results								
$\underline{y}_{ij} = \mu_i + \beta_i E_j + \underline{\varepsilon}_{ij}$	Sorted sensitiv	Sensitivity	es s.e.	Mean	S.e.	Var(ε) Mean square deviation		
What would happen with these parameters if we remove some of the genotypes?	1) POLONICU 2) O.ZENADI 3) HEBDA03 4) MBBACHIR 5) BIDI17 6) POLONIZB 7) OFANTO 8) EIDER 9) OUMRAB19 10) INRAT69 11) MEXICALI 12) DUILIO 13) KEBIR 14) SAHEL77 15) BELIKH02 16) B.DUR194 17) CHENS 18) WAHA 19) SIMETO 20) BID/WAHA 21) HEBD/CDO 22) VITRON	$ \beta \\ 0.7897 \\ 0.8336 \\ 0.8628 \\ 0.9206 \\ 0.9407 \\ 0.9724 \\ 0.9863 \\ 0.9935 \\ 1.0092 \\ 1.0138 \\ 1.0158 \\ 1.0223 \\ 1.0326 \\ 1.0464 \\ 1.0647 \\ 1.06635 \\ 1.0685 \\ 1.0684 \\ 1.0752 \\ 1.0812 \\ 1.08$	0.07559 0.07559	μ _i 1.687 1.575 1.617 1.617 1.611 1.685 1.661 1.929 1.940 1.929 1.940 1.812 1.969 1.973 1.832 2.076 2.001 2.015 2.021 1.746 1.965	0.05033 0.05033	0.09032 0.09884 0.06455 0.08581 0.05514 0.02562 0.02562 0.03523 0.07472 0.05176 0.02185 0.11352 0.03979 0.06401 0.02546 0.04165 0.07589 0.02367 0.04052 0.04987		
WAGENINGEN UR For quality of life	23) ARDENTE 24) GTADUR	1.0940 1.1395	0.07559 0.07559	1.774 2.084	0.05033 0.05033	0.05174 0.02416		

