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Overview 

• Association mapping 

 

– Problems 

– Statistical solutions 

 

• Comments on design and power 



Trait mapping using association 

Allele a is found more frequently with  

Allele A Allele a  



Population structure and association 

 If there are unknown 

subgroups or families, 

 if allele freqs differ  

 between subgroups, 

 if traits differ between 

subgroups, 

 then: 

 spurious association 

  will be observed. 

A       A    a    A 

A     a     A     a 

A     A     A     A 

a     a      a     A 

a     a      a     A 

a     a      A     a 

A  A   A   a   a A    a    a    a     a 
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Between marker association falls with rising genetic distance. 

Association 

without 

linkage. 



LD mapping 

Family based linkage mapping and LD mapping compared: 

 

 LD mapping exploits historic recombination in wild populations 

 and is best at fine mapping. 

 

 

 Linkage analysis exploits contemporary recombination in 

 experimental populations and is best at QTL detection. 



Strengths and weaknesses of LD mapping 

 

Kinship & pop structure  largely solved 

Low power    need large pop sizes 

Better precision   LD decays more rapidly 

Use of existing data   historical collections 

Need high marker density  will be solved 



Pedigree structure generates false +ve’s 

1) Close kinship 

 

Amounts to double counting:  you have less data than you think. 

 

2) Distant branches diverge: selection /drift /founder effects 

 

Genotypes and phenotypes can differ between branches, causing  associations 

across the genome at multiple loci. 

 

Any natural population will comprise a mixture of these effects. 

Relative importance will vary with dataset. 

 

Need to account for both. 

 

In crops, problems associated with kinship effects are massive. 

 

Not a problem in experimental mapping populations eg an F2 
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UK 1969 PBNE Cama

UK 1994 CPB  Cadenza

UK 1942 PBI  Steadfast

UK 1956 WEIB Banco

UK 1965 RUMK Kloka

UK 1943 BLON Bersee

UK 1978 RPB  Armada

UK 1984 RPB  Mission

UK 1965 PBI  Maris Widgeon

UK 1969 DESP West Desprez

UK 1972 DESP Bouquet

UK 1986 PBI  Mercia

UK 1973 GUIL Atou

UK 1974 RPB  Mega

UK 1944 VILM Vilmoren 27

UK 1953 DESP Capelle Desprez

UK 1968 PBI  Maris Ranger

UK 1956 GART N59

UK 1950 Mar Hybrid 46

UK 1960 LEPU Elite Lepeuple

UK 1962 BEOI Champlein

UK 1974 LEGL Flinor

UK 1958 GART Milfast

UK 1947 GART Redman

UK 1950 CENE Staring

UK 1935 ESCA Steel

UK 1935 PBNE Juliana

UK 1931 PBNE Wilhelmina

UK 1947 GART Victor

UK 1935 PBI  Holfast

UK 1931 PBI  Little Joss

UK 1954 GART Masterpiece

UK 1931 PBI  Yeoman

UK 1940 PBNE  Wilma

UK 1940 GART Warden

UK 1952 PADE King II

UK 1957 GART Dominator

UK 1944 PBBE Jubilegem

UK 1988 BREU Apollo

UK 1950 GART Pilot

UK 1931 ESCA Iron III

UK 1963 WEIB Thor

UK 1931 PBI  Squareheads Master [aka Standard Red]

UK 1942 GART Gartons 60

UK 1938 ESCA Chevalier

UK 1938 ESCA Crown

UK 1960 RPB  Flamingo

UK 1975 PBI  Maris Fundin

UK 1980 BENI Copain

UK 2003 CPB  Robigus

UK 2005 STAA Glasgow

UK 1973 JORI Val

UK 1979 RPB  Aquila

UK 1983 RPB  Stetson

UK 1986 WEIB Slejpner

UK 1993 SERA Genesis

UK 1994 RPB  Flame

UK 1991 PBI  Hereward

UK 1997 PBI  Charger

UK 2004 PBI  Gladiator

UK 2001 ELSM Tanker

UK 1993 PBI  Hunter

UK 1990 PBI  Beaver

UK 1990 PBI  Haven

UK 2004 CPB Cordiale

UK 1999 CPB  Malacca

UK 1999 RPB  Claire

UK 1993 ICI  Brigadier

UK 1992 PBI  Torfrida

UK 2004 ADVA Smuggler

UK 1938 DESP Desprez 80 [Joncquois]

UK 1977 RING Kador

UK 1983 PBI  Galahad

UK 1981 GART Rapier

UK 1982 PBI  Fenman

UK 1981 PBI  Norman

UK 1983 PBI  Longbow

UK 1989 PBI  Riband

UK 2004 CEBE Dickson

UK 2001 PBI  Option

UK 1979 PBI  Brigand

UK 1980 PBI  Avalon

UK 1964 RPB  Rothwell Perdix

UK 1993 RPB  Spark

UK 1954 PBNE Minister

UK 1979 PBI  Virtue

UK 1978 PBI  Hustler

UK 1960 PBNE Professeur Marchal

UK 1971 PBI  Maris Nimrod

UK 1972 PBI  Maris Huntsman

UK 1995 DESP Soissons

UK 1968 CAMB Joss Cambier

UK 1992 ICI  Admiral

Pre-
1970 

Post-
1970 

Kinship 

Pre-
1970 

Post-
1970 

Structure or 
kinship? 

Kinship or Structure? 



Experimental solutions 

The transmission disequilibrium test  humans  

(also QTDT, PTD etc.) 

 

Nested Association mapping  - maize (Buckler) 

 

MAGIC    - mouse, Arabidopsis, wheat 

 

Selection experiments 



Analytical solutions 

Genomic control: returning the mean of the distribution of the test 

statistic to its expectation under the null. 

 

 Structured Association:  simple linear regression but include covariates 

to account for subpopulation membership. Use STRUCTURE to get 

the covariates 

 

PCA: Similar to SA but use PCA to adjust both and phenotype for 

subpopulation membership in terms of top (20) eigenvectors of the 

correlation matrix; measure association in terms of correlation 

between the residuals from these models.  

 

Mixed Model: currently the method of choice 

 

Others 
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Raw association with winter/spring habit. Barley.
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Does this look like a credible genetic model? It can lead to strong association between 

many loci and phenotype. 

The effect of structure is genome-wide and 

random with respect to loci. 



Genomic control 

Test locus Unlinked ‘null’ markers 

( )2cE

c2 No stratification 

( )2cE

c2 

Stratification  adjust test statistic 

Stratification present 
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Genomic Control: Rationale 

• There is association at nearly all markers. 

 

• We know the expected distribution of the test statistic 

under the null hypothesis.  

 

• We really only expect association at a few markers. 

 

• So we would not expect the observed distribution to be 

much different from the expected. 
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Expected distribution of chi-squared.
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Genomic control: Example using Chi-Squared, 1 d.f.  
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Genomic Control 

456.0
57.28


iSqObservedCh

hiSqCorrectedC

dianChiSqExpectedMe
dianChiSqObservedMe

iSqObservedCh
hiSqCorrectedC 

Some authors correct using observed and 

expected mean. 

In our example: 
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Genomic Control Corrected Observed vs. Expected.
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Before GC After GC 
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Raw association with winter/spring habit. Barley.
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Association with winter/spring habit following genomic control. Barley.
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Genomic Control 

• Corrects the symptoms of structure. 

• Does not change the ranking of significance of 

association. 

• Loss of statistical power. 

 

Key Benefit. 

• Returns the distribution of the test statistic close 

to its expectation: Allows us to work with 

conventional significance thresholds*.     (*Well almost!) 

 



Structured Association 

Estimate the ancestry of each individual in the sample. Most 

common is to use the programme Structure. 

 

Regress the phenotype on the ancestry coefficients (to adjust for 

effects of population structure) and then on the test marker. 

 

Does not correct adequately for recent coancestry – pedigree 

relationships. 

 

 



Structure View 
Software: Structure v2.2. 

Variety K1 K2 K3 K4 

A 0.1 0.0 0.0 0.9 

B 0.5 0.0 0.0 0.5 

C 0.9 0.1 0.0 0.0 

Q Matrix of Fractional Sub-population 

membership 
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Effect of structure specific correction for population 

structure 

Bonferroni corrected. 

(P=0.05) 

PCA corrected  Association. 



Principal component analysis 

PCA of genotype data gives an indicator of ancestry for each variety 

(the eigenvector) for a population characterised by its the eigenvalue.  

The deviation for each variety from a multiple regression of phenotype 

on eigenvectors gives a a new phenotype adjusted for population 

structure. 

Deviations from regression of candidate markers on eigenvectors gives 

adjusted genotypes in the same way. 

Correlation between adjusted phenotype and adjusted genotype is a a 

measure of association adjusted for the effect of population structure.  

Advice is to include ~ 20 largest principle components for ancestry  

Currently only works for bi-allelic markers. 

Will not adjust for recent coancestry. 
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PCA based correction (a.k.a. Eigenstrat). 

• Define the population structure in terms of 

co-variation between individuals. 

• Simplify the information as principle 

components: eigenvectors. 

• Use an informative subset of these vectors to 

predict genotype and phenotype. 

• Calculate residuals 

• Measure  the correlation between the 

residual phenotype the residual genotype for 

each marker. 
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Principle components contain a lot of structural 

information. 
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Uncorrected association with awn 

colouration in barley. 
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Principle components used to 

correct for population structure.  



Mixed models 

Pedigree relationships mean that the error variances for each individual are no 

longer independent. 

 

In addition to error variances, we must include in the model error covariances 

between related individuals.  

 

If the relationships are known, these are fed into the model as expected genetic 

covariances among individuals. This is the basis of the mixed model. Software 

exists to do this automatically – GenStat, SAS, VCE and others. 

 

If relationships are unknown, they can be estimated using markers, but these are 

not so easily fed into standard software which exploit properties of known 

pedigrees to greatly speed up computation.  Use TASSEL, GenStat, EMMA, SAS 

 

Mixed modelling adjusts for kinship yet still permits the inclusion of covariates to 

adjust for differences in phenotype between subgroups. 



Mixed effects modelling 

• Commonly implemented using software 

called TASSEL – we have found this very 

difficult to use. 

• EMMA (Efficient mixed model analysis) is 

also available free and runs in R. 

• A more rapid (and less temperamental) 

implementation of the EMMA method is 

soon to be available from Will Astle, 

Imperial College. 



Strengths and weaknesses of LD mapping 

 

Kinship & pop structure  largely solved 

Low power    need large pop sizes 

Better precision   LD decays more rapidly 

Use of existing data   historical collections 

Need high marker density  will be solved 

Easy to publish “hits”  educate on good design  



 Want a cheap 

 association 

   mapping 

 publication? 

Do: 

Use a small collection of cultivars. 

Use a small number of “genome wide” markers. 

Run STRUCTURE but with the default parameters. 

 

Don’t: 

Carry out power calculations. 

Check for off-chromosome LD. 

Check that “replicated QTLs” are no more than expected by chance. 

Check the type 1 error rate. 



Underpowered studies in crops, an exemplar: 

Recently published: 

 

7 chromosomes, 46 SSRs, 30 accessions.  

 

Multiple traits scored on 5 plants per accession. 

 

No LD plots, 

No power calculations, 

Many positive results: 



“Strong linkages … were 

found for quantitative 

traits” 

“a few SSR markers were 

linked to multiple traits” 

“some of the associations identify 

chromosomal regions containing 

previously known genetic loci” 

“variation in one trait …linked 

to SSR markers from various 

chromosomal regions” 

“The present data also indicate 

that a relatively high map 

resolution can be achieved by 

association mapping” 

via screening only a small pool of 

genotypes, possible loci conferring a 

specific trait are detected in this 

species, which often requires a large 

pool of germplasm to be screened in 

other species 

“The findings also indicate that the 

efficiency of association mapping 

is much higher in …than in other 

plant species.” 



Sir Austin Bradford Hill. 

(First demonstrated the 

connection between smoking 

and lung cancer.) 

“The glitter of 

the t table diverts 

attention from 

the inadequacies 

of the fare.” 

 



Extract from UK MREC application form: 

 
 

13. Size of the study (including controls) 

 

i) How many patients will be recruited? 

ii) How many controls will be recruited? 

iii) What is the primary end point? 

iv) How was the size of the study determined? 

v) What is the statistical power of the study? 

Good study design is an ethical issue. 



A well designed association genetics study should consider: 

  marker density 

  LD decay 

  allele frequency distribution 

  number of samples 

  relatedness between samples 

 

Are resources adequate for the objectives of the study? 

 What magnitude of effect are you likely to detect? 

 With what precision are you likely to locate QTL? 

 

Are the results too good to be true? 



Small studies can find major genes 

10 cases, 10 controls, 

(40 chromosomes)  

recessive trait: 

White spotting 

Hair ridge. 

Mapped to < 1 cM in ~ 20 

dogs (40 chromsomes) 

 

Nat Genet 2007 39 p1321  



The Wellcome Trust Case Control Consortium, Nature 2007 

 

Genome-wide association study of 14,000 cases of seven 

common diseases and 3,000 shared controls 

 

24 genetic risk factors  

Large collaborative effort:  > 50 research groups 

500 000 markers 

 

But: 

 

These explain only a small proportion of risk: 

power is still low for the effect sizes in humans. 

2007: GWA studies come of age. 



Hundreds of variants clustered in genomic loci 

and biological pathways affect human height. 
 

Nature 2010 doi:10.1038/nature09410 

h2 ~80% 

 

183,727 individuals 

 

>180 loci, 100s of genetic variants 

 

 

“Our data explain approximately 10% of 

the phenotypic variation in height” 
 


