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Marker-based	tests	

•  We	now	move	to	test	based	on	molecular	
markers,	either	in	a	candidate	region	(or	
regions)	or	in	a	genomic	scan	

•  Trait-independent,	use		allele	and/or	gamete	
frequencies,	not	additive	variation.	
– Hence,	no	information	of	effect	sizes	

•  Need	to	have	an	understanding	of	the	
patterns	expected	for	strictly	neutral	alleles	



Neutral	equilibrium	model	

•  The	standard	neutral	model,	or	the	neutral	
equilibrium	model,	assumes	
– Strictly	neutral	alleles	
– The	population	is	in	mutation-drift	equilibrium	
– Hence,	the	population	size	has	been	constant	for	a	
sufficiently	long	amount	of	time	to	reach	mutation	
drift	equilibrium	

– No	population	structure		



Behavior	under	drift	alone		

•  Results	in	one	lineage	ultimately	becoming
	fixed	
– Coalescent	theory	

•  Loss	of	variation	(in	the	absence	of	new
	mutation)	

•  Neutral	allele	frequency	as	a	function	of	age	



Loss	of	heterozygosity	under	drift	



Pure	drift	distribution	

•  Can	solve	using	Diffusion	theory	(WL	Appendix	
1)	





Mean	time	to	loss	or	fixation	

Mean	sojourn	time,	conditioned	on	fixation	

Mean	sojourn	time,	conditioned		on	loss	

Mean	sojourn	time 





Age	of	a	neutral	allele	

•  A	common	allele	is	an	old	allele	





Coalescent	time	for	2	alleles	







Drift	and	mutation	

•  k-alleles	

•  Infinite-alleles	

•  SNP	(k=4)	

At equilibrium, key parameter is  
θ = 4Neu. 



Descriptors	of	neutral	variation	
•  Single	summary	statistics	

– Heterozygosity	
– Nucleotide	diversity	
– Number	of	singletons	
– Allele	frequency	

•  Frequency	spectrum	(full	distribution	of	the	
number	of	alleles	and	their	frequencies)	
– Site-frequency	spectrum	(SFS):	single	SNPs	
– Allele-frequency	spectrum	(AFS):	single	
haplotypes	(SNPs	+	LD)	



Frequency	spectra	
•  For	a	sample	of	m	sequences,	this	is	given	by
	(n1,	n2,	,	…	,	nm)	where	nk	is	the	number	of
	alleles	in	the	sample	present	as	exactly	k
	copies	
– Monomorphic	sample,	n1	=	...	=	nm-1		=	0,	nm	=	1	
– All	singletons,	n1	=	m,	n2	=	...	=	nm	=	0	
– 10	sequences:	4	singletons,	1	present	as	two
	copies,	1	present	as	four	copies	n1	=	4,	n2	=	1,	n4	=
	1,	all	others	0	

– The	constraint	on	the		nk	and	m:	Σ	k*	nk	=	m	



Infinite	alleles	vs.	infinite	sites	

•  Infinitely	many	alleles	(infinite	alleles)	
– Consider	a	block	of	DNA	that	has	no	recombinants
	in	your	sample	

– Each	different	DNA	sequence	(haplotype)	is	a
	different	allele	

– Requires	phased	data	
•  Infinitely	many	sites	(infinite	sites) 		

– Each	nucleotide	is	considered	a	different	site	
– Again,	no	recombinants	in	your	sample	
–  	Does	not	require	phased	data,	but	may	used
	polarized	data	(ancestral	vs.	derived	alleles)	



Infinite	alleles	vs	infinite	sites	



Infinite		alleles:		Ewen’s	sampling	
formula	

•  Number	of	alleles,	k,	in	a	sample	of	size	n	



Warren	Ewens	



Ewen’s	(cont)	

•  Prob.	Monomorphic	

•  Mean	and	variance	in	k	



Allele-frequency	spectrum	
•  Let	ni	=	number	of	alleles	with	exactly	i	copies	
in	sample	(size	n)	



Infinite	sites	

•  Ancestral	(original)	vs.	derived	(new	mutation)	
•  Nucleotide	diversity, π

•  Number	of	segregating	sites,	S

•  Site-frequency	spectrum	

– Number,		sj,	of	sites	with	exactly	j	derived	
alleles	in	the	sample	







Site	frequency	spectrum	

•  Can	be	unfolded	or	folded.	
•  Unfolded	SFS	assumes	the	polarity	of	the
	alleles	are	known	

•  Folded	SFS	simply	uses	the	minor	allele
	frequency	

•  Can	express	the	SFS	as	either		
–  the	fraction,	x,	of	sites	in	a	particular	allele
	frequency	in	the	population,	

– Or	the	number,	nk,	of	sites	with	k	derived	alleles	in
	a	sample	



Watterson	distribution	
•  Let	x	=	population	frequency	of	all	sites	with	a	
fraction	of	x	derived	alleles	

Folded	Watterson	distribution,	x	=	freq	of	minor	
allele	(x	<	0.5)	



Expected	number	of	sites	in	a	sample	

unfolded	

folded	


