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Bayesian estimation of marker effects

The linear model for estimating effects of genetic marker

y = Xb + Zu + KMg + e

y => observations
b => effects of fixed factors
u => effects of a random polygenic factor
g => random marker effects
e => random residuals
X , Z , K => indcidence matrices linking effects to observations
M => marker matrix (dimensions “N-animals×N-marker”)

Note that Mg yields genomic breeding values for every animal with a marker
genotype.
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Bayesian estimation of marker effects

We are interested in:

p(b, u, g , σ2
a ,D, σ

2
e |y)

σ2
a=polygenic variance, σ2

e=residual variance, D=diagonal matrix with
marker variance, elements of D may vary.
We could infer about b, u, g , σ2

a , D and σ2
e by sampling directly from this

distribution → usually impossible.
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Bayesian estimation of marker effects

Using the Bayesian paradigm:

p(b, u, g , σ2
a ,D, σ

2
e |y) ∝ (y |b, u, g , σ2

e )p(b)p(u|σ2
a)p(σ2

a)p(g |D)p(D)p(σ2
e )

p(b, u, g , σ2
a ,D, σ

2
e |y)→ joint posterior distribution

(y |b, u, g , σ2
e )→ likelihood of the data

p(b), p(σ2
a), p(σ2

e ), p(D) → unconditional prior distributions
p(u|Aσ2

a), p(g |D) → conditional prior distributions
prior distributions need to be defined (known) to make the Bayesian paradigm
work
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Bayesian estimation of marker effects

Prior distribution

y |b, u, g , σ2
e ∼ N(Xb + Zu + KMg , Iσ2

e ) normal

b ∼ constant

u|A, σ2
a ∼ N(0,Aσ2

a) normal

gi |Di ∼ N(0,Di ) normal

σ2
a ∼ νaS

2
aχ
−2
νa inverse chi − square

σ2
e ∼ νeS

2
e χ
−2
νe inverse chi − square

Di ∼ νiS
2
i χ
−2
νi inverse chi − square
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Bayesian estimation of marker effects

Fully conditional posterior distributions I

simplify the joint posterior by forming a sequence of fully conditional
posteriors assuming (pretending) that some parameters are know (assign
starting values)

fully conditional posteriors have usually a simpler form that the joint posterior
distribution → sample directly

assume that everything is known except Θi , Θ = [b, u]′

p(Θi |σ2
a ,Θj,j 6=i , g ,D, σ

2
e , y) ∝ p(y |b, u, g , σ2

e )p(b)p(u|σ2
a)

∼ N(Θ̂′i ,C
−1
i,i σ

2
e )

Note that C−1
i,i is the diagonal element of the MME coefficient matrix. Θ̂i is

obtained by solving the MME for Θi assuming that all other parameters are known
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Bayesian estimation of marker effects

Fully conditional posterior distributions II

assume that everything is known except σ2
a

p(σ2
a |u, b, g ,D, σ2

e , y) ∝ p(u|σ2
a)p(σ2

a)

∼ ν̃aS̃
2
aχ
−2
ν̃a
, S̃2

a =
a′A−1a+νaS

2
a

q+νa

Note that S2
a and νa are so called “hyper-parameters” which represent prior

knowledge. For example it can be a variance obtained in a different trial with νa
degrees of freedom. Now you already see what we are doing in the fraction above:
νaS

2
a calculates the sum of squares of that trial this it added to our sum of

squares a′A−1a. Then this total sum of squares is divided by the total degrees of
freedom, which is our degrees of freedom q and the degrees of freedom from the
different trial νa. Try to imagine how νa can dominate our results!!
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Bayesian estimation of marker effects

Fully conditional posterior distributions III

assume that everything is know except gi

p(gi |b, u, gi+1,N , σ
2
a ,D, σ

2
e , y) ∝ p(y |b, u, g , σ2

e )p(gi |Di )

∼ N(ĝi ,C
−1
i,i σ

2
e )

Note that Ci,i is the diagonal element of the MME coefficient matrix at
row/column of gi .

assume that everything is know except Di

p(Di |b, u, g , σ2
a ,Di+1,N , σ

2
e , y) ∝ p(gi |Di )p(Di )

∼ ν̃g S̃
2
gχ
−2
ν̃g
, S̃2

g =
gigi+νgS

2
g

1+νg
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Bayesian estimation of marker effects

Fully conditional posterior distributions IV

assume that everything is know except σ2
e

p(σ2
e |u, b, g ,D, σ2

e , y) ∝ p(y |b, u, g , σ2
e )p(σ2

e )

∼ ν̃e S̃
2
e χ
−2
ν̃e
, S̃2

e =
e′e+νeS

2
e

q+νe

See above for an explanation of S2
e and νe .
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Bayesian estimation of marker effects

Gibbs sampling (Markov Chain Monte Carlo technique) I

The problem

Sampling from p(xi |xj,j=1..N,j 6=i ) may not yield unbiased results because the
outcome of sampling xi , and therefore a parameter calculated from this
samples (e.g. x̂i ) may change if xj changes.

The solution
Precondition: all conditional posteriors can be defined
Sample successively through the chain of conditional posteriors and replace
old parameters by the sampled one.
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Bayesian estimation of marker effects

Gibbs sampling (Markov Chain Monte Carlo technique) II

Example

y = Xb + Zu + KMg + e

The MME is then: X ′X X ′Z X ′KM
Z ′X Z ′Z + A−1σ2

a Z ′KM
M ′K ′X M ′K ′Z M ′K ′KM + D

  Θb

Θu

Θg

 =

 X ′y
Z ′y

M ′K ′y


C Θ = R
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Bayesian estimation of marker effects

Gibbs sampling (Markov Chain Monte Carlo technique) III
Example (continued)

assign starting value to all elements in Θ, σ2
a , σ2

e and all elements in D

for i in 1:length(Θ)
1 cancel Θi by Θi = 0
2 calculate Θ̂i =

Ri−Ci,:Θ

Ci,i

3 draw a new Θi from N(Θ̂i ,C
−1
i,i σ

2
e )

repeat iterating over Θ until convergence

intermediate steps
if Θu is finished

calculate a Ŝ2
a by ΘuA−1Θu

draw a new σ2
a from χ−2(Ŝ2

a + S2
a νa, νa + nu)

when starting with Θg

draw a new σ2
gi

from χ−2(Ŝ2
gi

+ S2
g νg , νg + 1)

calculate a Ŝ2
gi

by Θ2
i

Note that we draw for every single marker an own variance
when all elements of Θ are processed

calculate a Ŝ2
e by (y − Xb − Zu − KMg)′(y − Xb − Zu − KMg)

draw a new σ2
e from χ−2(Ŝ2

e + S2
e νe , νe + ny )

Convergence

Θ → vector of random draws from conditional posterior distributions
methodology above has properties of a Markov Chain → reaches stationary
distribution (sometimes elements in Θ but usually σ2

a and σ2
e don’t change

anymore.)
when reaching stationary distribution Θ can be regarded as draw from the
joint posterior distribution
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Bayesian estimation of marker effects

Conclusion
Gibb sampling → Markov Chain Monte Carlo Method

explores the joint space of all parameters in the model by sampling from
conditional distributions
provides estimates for all parameters
parameters are more reliable than REML (likelihood surface)
it takes some time
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Bayesian estimation of marker effects

The Bayesian “Alphabet” I

Naming background (convention??)

founding publication about estimating marker effects via Markov Chain
Monte Carlo → Meuwissen et. al 2001
called their algorithm “BayesA” and “BayesB”
science full of followers, subsequent developments → “BayesC”, “BayesCπ”,
“BayesD” and “BayesR”
questions:

will “BayesZ” be the final invention??
what if we run out of letters??
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Bayesian estimation of marker effects

The Bayesian “Alphabet” II

Differences

Recall p(g |D) and p(D)

In full p(Di,i ) = p(Di,i |ν, S2) → conditional
making p(gi |Di,i ) unconditional of Di,i yields the unconditional prior of gi →
different for the different algorithms

diagonal elements of D are from different distributions

BayesA

all marker have an effect
unconditional prior → t-distribution
Di,i is drawn from inverse chi-square
that’s what we did in the example
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Bayesian estimation of marker effects

The Bayesian “Alphabet” III

BayesB

marker have no effect with probability π
π → user defined
unconditional prior for marker with effect → t distribution
generating σ2

gi from inverse chi-square

BayesCπ

marker have no effect with probability π
π is sampled from β distribution after all gi have been processed
unconditional prior for marker with effect → t distribution
Di,i = σ2

g .

σ2
g is generated once from inverse chi-square after all gi have been processed
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Bayesian estimation of marker effects

The Bayesian “Alphabet” IV

BayesR

unconditional prior of marker is a mixture of normal distributions
N(0, σ2

1), N(0, σ2
j ), ......., N(0, σ2

n), where σ2
1=0

probability assigned to every distribution π1, .......πn,
∑n

j πj = 1

for every single gi
calculate εj=p(y|σ2

j )πj for all j
calculate φj =

εj∑n
j εj

calculate Φj

draw a uniform random number τ between zero and 1
assign that variance of distribution j to Di,i where Φj−1 < τ < Φj+1

after all gi have been processed
count the number of marker in each distribution (c1, ....., cn)
draw π from a Dirichlet distribution D(c1, ...., cn,K) where K is prior
knowledge about values in c1, ...., cn
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About BESSiE

BESSiE I

What is it:

a program for Best Linear Unbiased Prediction (BLUP) and Bayesian (MCMC)
analysis of linear mixed models including genetic markers

program algorithms

mode BLUP
“normal” BLUP
GBLUP (replace A−1 by G−1)
SNP BLUP (replace A−1 by
D−1, diagonal elements in D
are σ2

a/Nmarker )
single step BLUP (replace A−1

by H−1)

mode GIBBS (Gibbs sampling)

“normal” models without
“Bayesian alphabet”
BayesA
BayesB
BayesCπ
BayesR
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About BESSiE

BESSiE II

The global model in BESSiE y1
.
yn

 =

 X1 0 0
0 . 0
0 0 Xn

 b1
.
bn

+

 Z1,1 . Z1,k 0 0 0 0 0 0
0 0 0 . . . 0 0 0
0 0 0 0 0 0 Zn,1 . Zn,k





u1,1
.
u1,k
.
.
.
un,1
.
un,k


+

+

 K1M 0 0
0 . 0
0 0 KnM

 g1
.
g2

 +

 e1
.
e2


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About BESSiE

BESSiE III

possible random factors in the model

NRM ∼ N([0, .., 0]′Σ⊗ A) (A → pedigree derived relationship matrix)
GRM ∼ N([0, .., 0]′Σ⊗ G ) (G → marker based relationship matrix)
Single step ∼ N([0, .., 0]′Σ⊗ H) (H → combination of A and G if some
individual are not genotyped)
IDE ∼ N([0, .., 0]′Σ⊗ I )

external ∼ N([0, .., 0]′Σ⊗ K ) (K → a user defined matrix)
genetic groups
SNP ∼ N([0, .., 0]′Σ⊗ I )

Σ → D (D is diagonal, its elements are derived via “Bayesian Alphabet” or a
fraction of the total genetic variance(“SNP_BLUP”))
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About BESSiE

BESSiE IV

possible fixed factors in the model

dummy (mean, contemporary group etc.)
co-variable (age, weight etc., polynomial user-defined (e.g. age1+age2 ....))
genetic groups

possible phenotypes
continuous
binary (0,1)
categorical (0,1,2,....,k)
every combination of these phenotypes
weighted observations (e.g. breeding values)

V. Boerner (AGBU) BESSiE February 4, 2016 22 / 24



About BESSiE

BESSiE V

output

default:
Logfile only

to be switched on:
sampled/solved factor level solutions (e.g. marker effects, animal effects)
and/or their means (asii, binary)
sampled variances for random factors (e.g. additive genetic variance) or their
means (asii, binary)
sampled marker variances
distribution counter (BayesR, BayesCπ)
distribution probabilities (BayesR, BayesCπ)

V. Boerner (AGBU) BESSiE February 4, 2016 23 / 24



About BESSiE

BESSiE VI

What else:
no limits

unlimited number phenotypes
unlimited number traits
unlimited number of factors
unlimited number of marker

Its just a matter of time!!!
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