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Timetable
Monday

9:00-10:30am 1: Introduction and Overview.
11:00am-12:30pm 2: Identity by Descent; relationships and relatedness
1:30-3:00pm 3: Genetic variation and allelic association.
3:30-5:00pm 4: Allelic association and population structure.

Tuesday
9:00-10:30am 5: Genetic associations for a quantitative trait
11:00am-12:30pm 6: Hidden Markov models; HMM
1:30-3:00pm 7: Haplotype blocks and the coalescent.
3:30-5:00pm 8: LD mapping via coalescent ancestry.

Wednesday a.m.
9:00-10:30am 9: The EM algorithm
11:00am-12:30pm 10: MCMC and Bayesian sampling
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Wednesday p.m.
1:30-3:00pm 11: Association mapping in structured populations
3:30-5:00pm 12: Association mapping in admixed populations

Thursday
9:00-10:30am 13: Inferring ibd segments; two chromosomes.
11:00am-12:30pm 14: BEAGLE: Haplotype and ibd imputation.
1:30-3:00pm 15: ibd between two individuals.
3:30-5:00pm 16: ibd among multiple chromosomes.

Friday
9:00-10:30am 17: Pedigrees in populations.
11:00am-12:30pm 18: Lod scores within and between pedigrees.
1:30-3:00pm 19: Wrap-up and questions.

Bibliography
Software notes and links.
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Introduction and Overview

1. TWO IRRITATING QUESTIONS/COMMENTS
2. MARKERS, DATA STRUCTURES, AND TRAITS
3. PROBLEMS OF WGAS
4. NOT ASSOCIATION vs LINKAGE
5. PEDIGREES AND POPULATIONS; ibd vs IBS
6. HOW STRONG SHOULD THIS PEDIGREE PRIOR BE??
7. QUANTITATIVE TRAITS
8. WHY POPULATION STRUCTURE?
9. OUTLINE; FIRST HALF
10. OUTLINE; SECOND HALF
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1. TWO IRRITATING QUESTIONS/COMMENTS:

• (1) Do you do study linkage or association?
Answer: YES. We’ll come back to that one shortly.

• (2) You use MCMC so you must be a Bayesian.
Response: There is nothing Bayesian about MCMC.

• MCMC is simply a method to sample from a probability known only
up to a normalizing constant: Pr(X; θ) = h(X; θ)/c(θ), where
c(θ) cannot be computed explicitly.

• MCMC is widely used by Bayesians, to sample from posterior dis-
tributions

π(θ | X) = Pr(X; θ)π(θ)/

�

x

Pr(X; θ)π(θ)dθ

since the denominator often cannot be computed.

• Using Bayes’ Theorem: Pr(X|Y ) = Pr(Y |X)Pr(X)/Pr(Y ) does
NOT make one a Bayesian.
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2. MARKERS, DATA STRUCTURES, AND TRAITS:

Date Marker type Data structure Trait type
1970 Blood types Nuclear families Mendelian
1980 RFLPs Large pedigrees Simple traits
1990 STRs Small pedigrees Quantitative traits

(Microsatellites)
2000 SNPs Case/Control Complex traits

(“unrelated”)
2010 1M SNPs and Pedigrees in Complex

Sequence data Populations quantitative traits
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3. PROBLEMS OF WGAS:

• Traits are complex; many genes of small effect. Leads to increas-
ingly larger studies; 10,000 cases/controls.

• Traits are heterogeneous.
The problem of rare variants; allelic heterogeneity.
There are many ways to mess up a functional gene.

• Where is the “missing heritability”? Genes interact; epistasis.

• Data quality control (PLINK; (Purcell et al., 2007); GENEVA (Laurie
et al., 2010)). Large studies ⇒ multi-centre studies. Genotyping fail-
ure is NOT random, and case-control differences in time of sampling,
lab handling, .......

• Population structure and history;
Problems increase as study sizes increase.
Cases (ascertained) and controls usually differ in population history.

Dr Elizabeth A Thompson UNE-Short Course Feb 2011

Identity by descent in pedigrees and populations Session 1 - 4

4. NOT ASSOCIATION vs LINKAGE:

• The objective is to map genes affecting a trait;
find where they are in the genome.

• Linkage results in the cosegregation of DNA at nearby genetic loci.

• Linkage therefore maintains associations in the allelic types of DNA
on a chromosome at nearby genetic loci; these associations (linkage
disequilibrium; LD) are used in association mapping.

• Linkage results in patterns of cosegregation that can be inferred in
pedigrees: this dependence in segregation is used in classical link-
age mapping.

• The difference is not in the objective, but in the data structures,
models, and data we choose to use.
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5. PEDIGREES AND POPULATIONS; ibd vs IBS:

• In human populations the (known) pedigrees are small, relative to
dairy cattle pedigrees.

• The pedigrees I look at are large human pedigrees, but still small,
relative to dairy cattle pedigrees.

• The number of SNPs for human data is huge (1M SNP chip), vs
50K for dairy cattle – but I work at the 50K level.

• However, LD is likely much higher in cattle populations, due to
breeding, history etc.

• I look at identity by descent (ibd), rather than allelic associations
(identity by state: IBS); IBS is a reflection of ibd whether in pedigrees
or populations.

• The only (?) difference between pedigrees and populations is that
a pedigree gives a very strong prior on ibd.
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6. HOW STRONG SHOULD THIS PEDIGREE PRIOR BE??:

• 1990s marker data, in absence of trait model, show no evidence of
relatedness among families.

• Assumption of rare recessive trait drives inference of ancestry.

• Details of the ancestral pedigree are surely wrong/biased.
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7. QUANTITATIVE TRAITS:

• Quantitative traits are important:
“Traditional” animal breeding quantitative traits.
Quantitative measures of human complex diseases.
Quantitative measures of gene expression (eQTL).

• Exact models specific to the problem:
Herd, year, ... fixed effects;

shared environment variance components
Diet, smoking, ...; shared environment;

missing covariates – less control of environment.
Plate effects, dye effects, batch effects, ......

• Message 1: whatever the quantitative trait model superimposed, it
is better done on ibd and coancestry, rather than allelic effects.

• Message 2: Markers are useful for what they can tell us about ibd.

• Message 3; To find what markers tell us about ibd we need to un-
derstand the population genetics underlying the relationship.

Dr Elizabeth A Thompson UNE-Short Course Feb 2011

Identity by descent in pedigrees and populations Session 1 - 8

8. WHY POPULATION STRUCTURE?:

• This is a new area for me to teach in a course; notes not polished!
– note re numbering of slides!

• Course has evolved in the writing; become focused towards models
for population structure, and inference of population structure and
under population structure.

• Population genetics, and ideas of ancestry, gene identity by descent
(ibd) have much to offer association studies.

• Focus on ideas underlying methods; not implementation.

• Focus on structured populations: all real populations have struc-
ture.

• Focus on model-based methods: for quantitative traits we need
models, for the phenotypes, so model-based analysis of marker data
makes sense.
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9. OUTLINE; FIRST HALF:

• Part 1: Basics
2: Identity by Descent; relationships and relatedness
3: Genetic variation and allelic association.
4: Allelic association and population structure.
5: Genetic associations for a quantitative trait

• A bridge to Part 2:
6: Hidden Markov models; HMM

• Part 2: Haplotypes and coalescents
7: Haplotype blocks and the coalescent.
8: LD mapping via coalescent ancestry.
9: The EM algorithm.
10: MCMC and Bayesian sampling
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10. OUTLINE; SECOND HALF:

• A bridge to Part 3:
11: Association mapping in structured populations
12: Association mapping in admixed populations

• Part 3: ibd inference in populations
13: Inferring ibd segments; two chromosomes.
14: BEAGLE: Haplotype and ibd imputation.
15: ibd between two individuals.
16: ibd among multiple chromosomes.

• and finally, ibd in pedigrees
17: Pedigrees in populations.
18: Lod scores within and between pedigrees.
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Identity by Descent; relationships and
relatedness

1. MENDEL’s LAWS: THE INHERITANCE OF DNA
2. PEDIGREES IN POPULATIONS: POPULATION PEDIGREES
3. THE INHERITANCE OF CHROMOSOMES
4. ibd of CHROMOSOMAL SEGMENTS
5. LENGTHS OF ibd SEGMENTS
6. VARIATION IN ibd IN OFFSPRING OF FIRST COUSINS
7. RELATIONSHIPS, RELATEDNESS AND ibd
8. WHY ESTIMATE RELATIONSHIP/RELATEDNESS?
9. PRZEWALSKI HORSES: MIXED UP RECORDS
10. CALIFORNIA CONDORS: NO RECORDS, LITTLE DATA
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1. MENDEL’s LAWS; INHERITANCE OF DNA:

• Mendel’s Laws (1866): For diploid individuals:
1. At any given locus, each individual has two genes, one maternal
and the other paternal. Each individual copies to each offspring a ran-
domly chosen one of its two genes; independently to each offspring,
independently of gene segregated by the spouse, independently of
gene segregated from parent.
2. Independently for different loci. (Not true; segregation of genes at
loci on the same chromosome are dependent)

• Hence, individuals carry at a locus pieces of DNA that are copied
through repeated segregations from their ancestors. Relatives who
share a common ancestor may both carry copies of the same ances-
tral piece of DNA. Such pieces of DNA are said to be

identical by descent (ibd) .

• Known or unknown, members of populations are related!

• ibd is relative! – to some time point or founder population.
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2. PEDIGREES IN POPULATIONS: POPULATION PEDIGREES:

• Details of the ancestral pedigree are surely wrong/biased.
We want to use the ibd information, but not the ancestral pedigree.
• 1990s data were insufficient for between-family inference of ibd.

With modern data, we could infer ibd among families.
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3. THE INHERITANCE OF CHROMOSOMES:

CHROMOSOMES

2 loci  close

together 

gives high prob

of deriving from

same parental chromosome

5 POSSIBLE

OFFSPRING

CHROMOSOMES

TWO PARENTAL

• Chromosomes are inherited
in large chunks, ∼ 10

8 bp.
• Assume, no genetic interference.

• In any meiosis, crossovers oc-
cur as a Poisson process along the
chromosome.
• Between any two positions (loci),
in any meiosis, there is recombi-
nation if the DNA at those posi-
tions derives from different parental
chromosomes (i.e. odd number of
crossovers).
• Probability of recombination in-
creases with genetic distance.
• At large distances, even and odd
have equal probability; r ≈ 1/2.
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4. ibd PROBABILITIES IN REMOTE RELATIVES:

Pr(2 kids get same) = 1/2

Pr(descendants share)
= 2× (1/2)

m

Pr(share any genome length L=30 Morgans)
= 1− exp(−(m− 1)L/2

m−1
)

K. P. Donnelly (1983).
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5. LENGTHS OF ibd SEGMENTS:
100 Mbp

I 1234612

• ibd genome segments are few, not short
K. P. Donnelly (1983).

• From the start point of the segment:
In any meiosis, distance to next recomb. is

exponential (E) mean 1.
• Over m meioses, where is closest recomb.?

Meioses are independent (Mendel’s 1 st law)
For m meioses, m times rate in Poisson process.
Min of m indep. Es mean 1 is E mean 1/m.

• For m = 20, expected length is
1/20 Morgans or 5 Mbp.

• Human (and bovine) genomes are short!!
(The variance in proportion genome shared is high)
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6. VARIATION IN ibd IN OFFSPRING OF FIRST COUSINS:
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f̂ true

f̂

Leutenegger et al. (2003)
simulated offspring of 1000
indep. first cousin pairs:
Estimation of f using 5cM

microsatellite map
(630 markers)

f = 1/16 = 0.0625

At most 50 “indep” ibd events.
The human genome is short.
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7. RELATIONSHIPS, RELATEDNESS AND ibd:

• Pedigree relationships?
Validating pedigrees: human, Przewalski horses.
Is this my half-sib? Which horse is this?
Even a whole genome of data may not answer this,

without prior information/specific hypotheses.

• General degree of relationship (kinship)?
California condors, estimating population substructure.
Are these two birds closely related ? How close?
Do these two birds share more genome than these two?
Can be estimated with enough genetic data,

but it is a genome-wide ”average” answer?

• ibd at specific genome locations ?
Associating genome locations with traits; linkage analysis.
Do affected relatives tend to be ibd at this candidate location?
With modern genetic data (dense SNP markers)

we can detect even (relatively) small segments of ibd.
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8. WHY ESTIMATE RELATIONSHIP/RELATEDNESS?:

• Forensic questions: identifying individuals from their relatives
victims of natural or man-made disasters

• Legal questions: Identifying parents, children, siblings:
paternity testing, adoptions, immigration cases.

• Medical Genetics: for example, sib pair studies
Validation of stated pedigree relationships. Sample swaps.

• Conservation Genetics: establishing breeding strategy for
severely endangered species: California condor,
Przewalski horse, Caribbean iguanas

• Ecological Genetics: gene flow, and reproductive success
dispersal of seed pollen and juveniles
perennial plants, armadillos, salmon
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9. PRZEWALSKI HORSES: MIXED UP RECORDS:

Only “true” wild horse:
66 chromosomes (vs 64)

Captive-bred (13 founders)
1927-1997

One was known Mongolian domestic.
Askania Nova; main “pure” group,
and one more recent (1953) founder.

Many uncertainties; horses mixed up. Wrong ones shipped.
– concerns as to validity of International Stud Book.
San Diego “pure” stallion (1985), led to establishing of two groups
(“pure”/“mixed”)in USA, but he was not. etc. etc.
1992: genetic marker data used to resolve many pedigree errors.

Now reintroduced in China & Mongolia, but still threatened.
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10. CALIFORNIA CONDORS: NO RECORDS, LITTLE DATA:

Genetically; Three groups

1984-5: Population crash; survivors into captivity; also eggs
Condors live long, fly far; how are these related ??
Topa-Topa in LA Zoo 20 years, maybe brother to AC5 –from wild
Who should be bred? Who released? Maintain the gene pool.
Now over 200 total: 100 in SD/LA, 100 fly (semi-)free.
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Genetic variation and allelic association

1. GENETIC TERMINOLOGY
2. GENE ibd AND ALLELIC TYPES
3. POPULATION KINSHIP and INBREEDING
4. ALLELE and GENOTYPE frequencies
5. POPULATION SUBDIVISION AND STRUCTURE
6. MEASURES OF POPULATION STRUCTURE: Wright (1951)
7. MAINTAINING VARIATION: MUTATION AND SELECTION
8. RANDOM GENETIC DRIFT
9. HOMOZYGOSITY AND POPULATION DIVERGENCE

Dr Elizabeth A Thompson UNE-Short Course Feb 2011



Identity by descent in pedigrees and populations Session 3 - 1

1. GENETIC TERMINOLOGY:

• Human cell nucleus — has 46 chromosomes (each double-strand
DNA): 22 pairs of autosomes, and 2 sex chromosomes, X and/or Y.

• Nuclear genome:
DNA of these (22+X+Y) chromosomes, 3× 10

9 bp.

• Locus— position on a chromosome, or DNA at that position, or the
piece of DNA coding for a trait.

• Allele— type of the DNA at a particular locus

• SNP — single nucleotide polymorphism; two alleles A and B.

• Genotype— (unordered) pair of alleles at a particular locus
in a particular individual. AA, AB, BB
Homozygote– a genotype with two like alleles. AA, BB
Heterozygote – a genotype with two unlike alleles. AB

• Phenotype— observable characteristics of an individual
For SNP loci we score a genotype, but there may be error.
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2. GENE ibd AND ALLELIC TYPES:

• What is a gene?? – “a much over-used word” (R. C. Elston)
– the chunk of DNA coding for a functional protein.
– Not a locus. Not an allele.

• A simple model: (in which non-ibd implies Hardy Weinberg freq.)
ibd genes are of the same allelic type: ignores mutation etc.
non-ibd genes are of independent types: ignores popn structure...

• In a pedigree ibd is easily defined, relative to the founders of the
pedigree as stated, but pedigrees exist within populations ....

• In a population, there is no absolute definition of ibd, but relative to
any given time point, some individuals share more ibd than do others.

• More closely related individuals are (on average) more similar than
are less related individuals, because they have higher probabilities
of having ibd genes, that are copies of the same gene in a common
ancestor.
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3. POPULATION KINSHIP and INBREEDING:

• The simplest probabilities of gene ibd are between two genes.

• For genes: The population kinship ψ is the probability two homol-
ogous genes in chromosomes randomly chosen from the population
are ibd. (See note below.)

• For individuals, the coefficients of kinship (ψ) and inbreeding (f )
are

ψ(B,C) = Pr(homologous genes segregating
from B and C are ibd)

f(B) = Pr(homologous genes in B are ibd)
= ψ(MB,FB)

where MB and FB are the parents of B.

For one locus, segregating ≡ randomly chosen.
but for multiple loci “randomly chosen” is not well defined.
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4. ALLELE and GENOTYPE frequencies:
• Suppose A has frequency p, B has frequency q = (1− p).
In what population?? Technically, the one relative to which we are
measuring ibd. In practice: a current population sample. Sensitivity
to allele frequencies is an issue.

• Suppose an individual has inbreeding coefficient f :
Pr(AA) = (1− f)p

2
+ fp = p

2
+ fpq

Pr(AB) = (1− f)2pq = 2pq − 2fpq

Pr(BB) = (1− f)q
2
+ fq = q

2
+ fpq

• If f = 0; Pr(AA) = p
2, Pr(AB) = 2pq, Pr(BB) = q

2.
These are Hardy-Weinberg frequencies (HWE).
(f = 0 means the individual’s parents have no common ancestors,
relative to ...?)

• One generation of random mating∗ establishes HWE, since, by def-
inition, the two genes in an individual are copies of independently
sampled parental genes. (*: Random union of gametes.)

• If widespread non-HWE, then likely there is structure.
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5. POPULATION SUBDIVISION AND STRUCTURE:

• Suppose populations i, each in HWE, with pi the freq of allele A in
population i, and αi the proportion of population i.
So Pr(A) = p =

�
i
αipi

Pr(AA)− (Pr(A))
2

=

�

i

αip
2

i
− p

2
=

�

i

αi(pi − p)
2 ≥ 0

Pr(AB)− 2Pr(A)Pr(B) = 2

�
�

i

αipi(1− pi)− p(1− p)

�

= − 2

�
�

i

αip
2

i
− p

2

�
= −2

�

i

αi(pi − p)
2

• Thus, population subdivision results in homozygote excess relative
to HWE. This excess is known as the Wahlund variance σ

2

f
.

In total, we therefore have heterozygote deficiency, but (for multiple
alleles) not necessarily for each heterozygote.
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6. MEASURES OF POPULATION STRUCTURE: Wright (1951):

• Let X = 1 is allele is A, and X = 0 otherwise. E(X) = p,
Var(X) = p(1− p).

• For an individual (I) in a (sub)population (S), allele indicators X1,X2;
Pr(X1 = X2 = 1) = Pr(AA) = p

2
+ fp(1− p), or

corr.(X1, X2) = (E(X1X2)− E(X1)E(X2))/

�
Var(X1)Var(X2)

= (Pr(AA)− p
2
)/p(1− p) = f = FIS

FIS measures departure from HWE within (sub)-populations.

• Now consider subpopulations (S) making up total population (T).
And correlation of alleles within subpopulations (S) relative to (T).
Now E(X1X2) is Pr(AA) of previous slide, and corr.(X1, X2) is

FST = σ
2

f
/p(1− p) = (Pr(AA)− p

2
)/p(1− p)

where now Pr(AA) refers to probability both alleles are A.
FST measures association due to population structure.
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7. MAINTAINING VARIATION: MUTATION AND SELECTION:
• Mutation is the only source of new variation at a locus.

Mutation rates are about 10−8 to 10
−9 per bp per meiosis.

Mutation rates are about 10−5 to 10
−6 per coding functional gene.

Mutation rates are hard to measure directly.

• Directional selection removes variation.
In equilibrium, “loss” = “gain”.
Hence, indirect estimates of mutation rates.
Consider normal allele A and rare mutatnt B.

• For example: rare dominant with selection coeficient s:
we lose a B allele, with prob, s, for each AB individual.
we gain µ B alleles, in each of 2N meioses (approx.)
So Ns2q(1− q) = 2Nµ, or µ = 2sq. (q = µ/2s.)

• For example, recessive with selection coefficient s:
we lose 2 B alleles, with prob, s, for each BB individual.
we gain µ B alleles, in each of 2N meioses (approx.)
So Ns2q

2
= 2Nµ, or µ = sq

2. (q =

�
µ/s.)
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8. RANDOM GENETIC DRIFT:

• Real populations are finite (and have structure, and history, . . . ).

• Let X(t) be number of A alleles at time t in popn size 2N genes.
Suppose (X(t)|X(t− 1)) is Bin(2N,X(t− 1)/2N)

(Wright-Fisher model; random union of gametes). Then

E(X(t)) = E(E(X(t)|X(t− 1))) = E

�
2N

X(t− 1)

2N

�

= E(X(t− 1)) = . . . = X(0)

• Ultimately (without mutation) variation is lost:
E(X(∞)) = X(0) so Pr(X(∞) = 2N) = X(0)/2N .

• ibd increases. Consider non-ibd, (1− f(t)):

(1−f(t)) = (1−(1/2N))(1−f(t−1)) = (1−(1/2N))
t

with ibd measured relative to time 0.
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9. HOMOZYGOSITY AND POPULATION DIVERGENCE:

• Homozygosity increases:

Note E(X
2
) = Var(X) + (E(X))

2

So E(X(t)
2
) = E(E(X(t)

2|X(t− 1)))

= E(Var(X(t)|X(t− 1))) + E(X(t− 1)
2
)

• Homozygosity increases relative to time 0, because the allele fre-
quency has increasing chance of being closer to 0 or 1, but population
is still in HWE.

• Populations diverge: Let Vt = Var(X(t)) and X1(t) and X2(t)

counts in two indep popns with same X(0)

E((X1(t)−X2(t))
2
) = E(X

2

1
)− 2E(X1X2) + E(X

2

2
)

= (Vt +X(0)
2
)− 2X(0)

2
+ (Vt +X(0)

2
)

= 2Vt

≈ (4Nt)(X(0)/2N)(1−X(0)/2N)
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Allelic association and population
structure

1. SEGREGATION OF HAPLOTYPES
2. ALLELIC ASSOCIATION; LINKAGE DISEQULIBRIUM
3. DECAY OF LD
4. LD and POPULATION STRUCTURE
5. THE BASIC ALLELIC ASSOCIATION TEST
6. THE GENOME-WIDE DISTRIBUTION OF p-VALUES
7. GENOMIC CONTROL: Devlin and Roeder (1999)
8. DETECTING POPULATION STRUCTURE
9. WITHIN-LOCUS CONTROL: the TDT (1993)
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1. SEGREGATION OF HAPLOTYPES:

• For 2 SNPs, alleles Aj,Bj at locus j there are 4 haplotypes: A1A2,
A1B2, B1A2 and B1B2 frequencies q1, q2, q3, q4.

• Only the double heterozygote A1B1, A2B2 cannot be phased,

• Homozygous individuals (both loci): for example an A1A1, B2B2

individual segregates only A1B2 haplotypes.

• Homozygote/Heterozygote: for example, an A1A1, A2B2 individ-
ual passes on A1A2 or A1B2 each with probability 1/2 regardless
of recombinaton probability ρ.

• A double-heterozygote individual passes each of the four haplo-
types A1A2, A1B2, B1A2 and B1B2, with probabilities:
(1− ρ)/2, ρ/2, ρ/2 and (1− ρ)/2 if his genotype is A1A2/B1B2,
ρ/2, (1−ρ)/2, (1−ρ)/2, and ρ/2 if his genotype is A1B2/B1A2.

• Recombination breaks up chromosomes, but we only see this di-
rectly if genotypes are heterozygous at all loci.
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2. ALLELIC ASSOCIATION; LINKAGE DISEQULIBRIUM:
• A measure of allelic association between the two loci is

∆ = Pr(A1A2) − Pr(A1) Pr(A2)

= q1 − (q1 + q2) (q1 + q3)

= (q1q4 − q2q3)

since q1+q2+q3+q4 = 1. This measure is known as the coefficient
of linkage disequilibrium.

• Allelic associations between loci arise from population structure,
admixture and history, or from selection.
Example of mixture/subdivision— the “nuisance” case. Vs. case of
interest— original mutation on some genetic background.

• Associations are, however, maintained by tight linkage (ρ ≈ 0).
LD blocks are the remnants of recombination; they are not caused by
linkage, but they survive because of linkage.

• Contrast with HWE: Even for unlinked loci equilibrium (∆ = 0) is
not achieved in one generation.
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3. DECAY OF LD:
• Suppose current haplotype frequencies are q1, q2, q3 and q4, and
at next generation are q

∗
1
, q∗

2
, q∗

3
and q

∗
4
.

• Now, for example, an offspring A1A2 haplotype arises
from a A1A2/A1A2 parent with prob 1.
from a A1A2/A1B2 or A1A2/B1A2, with prob 1/2,
from a A1A2/B1B2 with prob (1− ρ)/2

from a A1B2/B1A2 with prob ρ/2. Thus

q
∗
1

= q
2

1
+ 2q1(q2 + q3)/2 + 2q1q4(1− ρ)/2+ 2q2q3ρ/2

= q1(q1 + q2 + q3 + q4) − ρ(q1q4 − q2q3) = q1 − ρ∆.

Analogously, q∗
2
= q2+ρ∆, q∗

3
= q3+ρ∆ and q

∗
4
= q4−ρ∆. Thus,

in expectation, allele frequencies are unchanged (q∗
1
+q

∗
2
= q1+q2):

∆
∗

= q
∗
1
q
∗
4
− q

∗
2
q
∗
3

= (q1 − ρ∆)(q4 − ρ∆) − (q2 + ρ∆)(q3 + ρ∆)

= ∆− ρ∆(q1 + q2 + q3 + q4) + ρ
2
(∆

2 −∆
2
)

= (1− ρ)∆.
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4. LD and POPULATION STRUCTURE:

• Population stratification creates LD, even if there is no LD within
subpopulations. If allele frequencies differ so will the frequency of
haplotypes.

• Consider populations i in proportions αi and allele A alleles fre-
quencies p1i, p2i at two loci.
As before Pr(A1) = p1 =

�
i
αip1i, and Pr(A2) = p2 =

�
i
αip2i.

• Then

∆ = Pr(A1A2) − Pr(A1)Pr(A2)

=

�

i

αip1ip2i − (

�

i

αip1i)(

�

j

αjp2j)

=

�

i

αi(p1i − p1)(p2i − p2).

• An association test is looking for LD between a SNP and a “causal
locus”; i.e. association between case-status and the SNP alleles.
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5. THE BASIC ALLELIC ASSOCIATION TEST:
• Basically, we are looking for a difference in SNP genotype or allele
frequencies between cases and controls.

AA AB BB total ) A B total
# B 0 1 2 (fixed)
Cases r0 r1 r2 R 2r0 + r1 r1 + 2r2 2R

Controls s0 s1 s2 S 2s0 + s1 s1 + 2s2 2S

Total n0 n1 n2 N 2n0 + n1 n1 + 2n2 2N

• The χ
2 statistic is

Y
2

=
2N(2N(r1 + 2r2)− 2R(n1 + 2n2))

2

(2R)(2S)(2N(n1 + 2n2)− (n1 + 2n2)
2)

• Test using χ
2

1
dsn (or do Fisher Exact test).

• Tests are not independent: the SNPs are tightly linked, and there is
LD – that is the whole point.
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6. THE GENOME-WIDE DISTRIBUTION OF p-VALUES:
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d)
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• Under the null hypothes, the p-values should be uniform U(0,1).
• Ignoring population structure etc. we will see a mixture of U(0,1)

and associations giving rise to small p-values.
• This is basis of FDR appoaches for microarrays (Storey, 2002).
Same problem of very large numbers of tests.
• The χ

2 tail probabilities are meaningless for the extreme p-values
we seek ∼ 10

−8 when doing 100K tests – they are simply a measure
of where are the most extreme associations.
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7. GENOMIC CONTROL: Devlin and Roeder (1999):

• A big problem is that there are MANY differences between cases
and controls! Also, due to ascertainment, that cases are often more
inter-related than controls (e.g. WTCCC).

• This causes inflation on the Y
2 statistic– see red curve above. But

how should we estimate the inflation factor.

• Under the null hypothesis; X = +

√
Y 2 is absolute value of N(0,1);

Median of X is 0.675.

• Median more robust than mean: recall there will be a few true as-
sociations (large X-values). Median is not affected by these.

• Estimate inflation factor λ over the genome as
(median(X1, ......, X100000)/0.675)

2.

• Then adjust all Y 2

j
by factor λ; Assume Y

2
/λ is χ

2

1
.
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8. DETECTING POPULATION STRATIFICATION:

• “Desirable” LD caused by original causal variant mutation, main-
tained by tight linkage.

• “Undesirable LD” caused by admixture, population heterogeneity,
..., allele frequency differences in cases and controls.

• Whereas Devlin and Roeder (1999) use the genome-wide distri-
bution of p-values to adjust the statistics to account for stratification,
Pritchard and Rosenberg (1999) use the distribution to test for strati-
fication.

• Test for this population stratification, by choosing � unlinked marker
loci over the genome. It is unlikely (??) that any are tightly linked to
causal loci. So, for SNPs, these should give valid χ

2

1
distributions.

• Use Y
2

S
=

�
�

j=1
Y

2

j
∼ χ

2

�
.

• Choice of �? Complex traits? – e.g. height Visscher et al. (2008).
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9. WITHIN-LOCUS CONTROL: the TDT (1993):
Spielman et al. (1993); Spielman and Ewens (1996)

• Case-parent trios; Alleles transmitted and not transmitted to n un-
related affected kids from parents;

Transmitted Nontransmitted allele
allele A B Total
A a b a+ b

B c d c+ d

Total a+ c b+ d 2n

• Assume no
ambiguities

— no all-AB trios.

• Only heterozygous parents give information; a and d irrelevant.

• Test statistic (b− c)
2
/(b+ c) is χ

2

1
under the null hypothesis of no

linkage and/or no association. (McNemar’s test)

• Note need both linkage AND association, to obtain non-null result.

• Population stratification control; – control is the other allele in the
same parent.
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Genetic associations for a quantitative
trait

1. GENOTYPE ASSOCIATION IN A CASE-CONTROL STUDY
2. ASSOCIATION WITH A QUANTITATIVE TRAIT
3. TDT-TYPE TESTS FOR A QUANTITATIVE TRAIT
4. TRANSMISSION TESTS FOR A QUANTITATIVE TRAIT
5. THE QTDT; (Allison et al. (1999); Abecasis et al. (2000))
6. THE QTDT; TESTING BY PERMUTATION
7. ASSOCIATIONS USING ibd; Haseman and Elston (1972)
8. ESTIMATION OF ibd PROBABILITIES: SINGLE MARKER
9. ESTIMATION OF ibd PROBABILITIES: DENSE SNPs

Dr Elizabeth A Thompson UNE-Short Course Feb 2011



Identity by descent in pedigrees and populations Session 5 - 1

1. GENOTYPE ASSOCIATION IN A CASE-CONTROL STUDY:

• Again, we are looking for a difference in SNP genotype frequencies
between cases and controls.

AA AB BB total
# B 0 1 2 (fixed by design)
Cases r0 r1 r2 R

Controls s0 s1 s2 S

Total n0 n1 n2 N

• We can do a χ
2-test with 2 degrees of freedom.

Or, reduce to 2× 2 for dominant/recessive model.

• Or, better, for additive model, Armitage trend test, with weights
0,1,2, gives χ

2

1
statistic;

Y
2

A
=

N(N(r1 + 2r2)−R(n1 + 2n2))
2

RS(N(n1 + 4n2)− (n1 + 2n2)
2)

Compare with previous statistic (Devlin and Roeder, 1999).
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2. ASSOCIATION WITH A QUANTITATIVE TRAIT:

AA AB BB
# B 0 1 2
Count n0 n1 n2

Mean X0 X1 X2

SS S
2

0
S
2

1
S
2

2

• Here, we seek an association of phenotype
with the 0,1,2 number of B alleles.
• Generally, there is much more information in
a quantitative trait.
• Do not have to define cases/controls.

• Can do ANOVA-type test – test for differences among the three
genotypes; χ2 with 2 degrees of freedom.

• Or, pairs of t-test;
e.g. AB vs. AA and BB vs. AA, if all three genotypes have sub-

stantial frequencies.

• Or, can do regression-type test; Regress on the number of B alle-
les; assumes additivity – cf. Armitage trend test.

• All such tests require a model (e.g. Normality), but t-tests are quite
robust to non-normality,
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3. TDT-TYPE MEANS TESTS FOR A QUANTITATIVE TRAIT:

Allison (1997) proposes tests Q1-Q5; see also Rabinowitz (1997).

• Transmission from heterozygous parent to offspring observed for
quantitative trait, Y ; assume only one parent is heterozygous.

• Means of individuals genotype AA,AB,BB are µAA, µAB, µBB.
T = 1 if B was transmitted; T = 0 else.

• Q1: Random sampling: a t-test of differences in mean between
groups with T = 1 and T = 0.

• Q2: Extreme sampling: choose offspring with Y < ZL or Y > ZU .
Under the null hypothesis there is no association between L/U and
T = 0/1; do a χ

2

1
test on the 2× 2 table.

• Q3: Extreme sampling: a t-test: select offspring as for Q2, and do
t-test as for Q1.

• These tests are all based on Y given T .
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4. TRANSMISSION TESTS FOR A QUANTITATIVE TRAIT:

• Q4: Alternatively, we can test T given Y .
H0: Pr(T = 1 | Y > ZU) = Pr(T = 1 | Y < ZL) = 1/2.
Do a test of the observed binomial proportions.

• Note 1: When sample from only one tail (e.g. Zl = −∞ and ZU is
“case” threshold) this just the original TDT (Spielman et al., 1993).

• Note 2: Under segregation distortion, and H0, Pr(T = 1 | Y >

ZU) = Pr(T = 1 | Y < ZL) �= 1/2, but Pr(T = 1 | Y >

ZU) + Pr(T = 0 | Y < ZL) = 1. Hence construct test robust to
segregation distortion by reversing one of the samples.

• Q5: Testing independence of Y and offspring genotype X =

0,1,2 for AA,AB,BB.
Uses all families: parent types AB×AA, AB×AB, and AB×BB.
First: regress Y on parent mating type 1,2,3 – remove stratifcation.
Then: add X and X

2 as predictors; test significance – reduction in
residual sum-of-squares, using F-tests.

• Power: Q1 < (Q2, Q4) < Q3 < Q5.
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5. THE QTDT; (Allison et al. (1999); Abecasis et al. (2000)):

• TDT-type test (??), using nuclear families with/without parents.

• Variance component framework: partitions variance due to linkage,
LD and stratification.

• X = −1,0,1 for genotypes AA, AB, BB in offspring; a is addi-
tive genetic effect of the marker locus on the trait. LD ↔ a �= 0.

• Families k = 1, ...,K, offspring i = 1, ..., nk,
Simple means model: E(Yki) = µ+ βaXki; H0 : βa = 0.

• There is within-family dependence, both genetic and enviromental:
Var(Yki) = σ

2
a
+ σ

2
s
+ σ

2
e
, Cov(Yki, Yki�) = πkii�σ

2
a
+ σ

2
s

• Stratified means model: Each family k has its own µk and marker
(i.e. X) probabilities.

• E(Yki) = µ + βbbk + βwwki, where bk = E(Xki) given family
data, and wki = Xki − bi

Dr Elizabeth A Thompson UNE-Short Course Feb 2011

Identity by descent in pedigrees and populations Session 5 - 6

6. THE QTDT; TESTING BY PERMUTATION:

• Use a multivariate Normal likelihood; that is the trait values are
Normal with the means and covariance matrices of the model.

• Maximize w.r.t parameters under H0 : βa = 0 (Or, βw = 0), and
under unconstrained model.

• Subject to many assumptions, the loge-likelihood-ratio is χ
2, but

likely these conditions are not met.

• Ascertainment of extremes (Allison, 1997) will skew the trait distri-
bution.

• Instead, permutation tests are often used; e.g. in case-control stud-
ies permute case/control status.

• In families, permutation is harder, due to the dependence among
individuals. However, in absense of LD, wk = (wki) and −wk are
equiprobable. Create new data sets by random choice of wk and
−wk independently for each of the K families.
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7. ASSOCIATIONS USING LOCUS-SPECIFIC ibd ; Haseman
and Elston (1972):
• Regression ideas explored much earlier, in linkage sib-pair studies,
using ibd not marker genotypes.

• Sibs share 0,1,2 genes ibd from parents with probabilities 1/4, 1/2,
1/4. At a causal locus, sibs sharing more ibd will be more similar.

• For sibs in pair i with quantitative trait values Yi1, Yi2,
let Xi = (Yi1 − Yi2)

2; Regress Xi on Zi = 0,1,2 ibd.
Test for significant (negative) association of Xi and Zi.

• But Zi is not observed:
Suppose we can estimate Pr(Z|•) where • represents marker data
at test locus; suppose probabilities (πi0,πi1,πi2).

• Mean sharing = µi = πi1 + 2πi2.
Regress Xi on µi or on πi2 or ...

• Basic idea: more ibd at a (locus linked to) a causal locus results in
more phentypic similarity.
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8. ESTIMATION OF ibd PROBABILITIES: SINGLE MARKER:

• Single-marker estimation: sibs only:
Pr(A) = p. Pr(B) = q = (1− p).
Pr(Z) = (1/4,1/2,1/4), for Z = 0,1,2.

Sibs Pr(•|Z) ∝ Pr(Z|•)
genos Z = 0 Z = 1 Z = 2 Z = 0 Z = 1 Z = 2

AA, AA p
4

p
3

p
2

p
2

2p 1

AA, AB 2p
3
q p

2
q 0 p 1 0

AA, BB p
2
q
2 0 0 1 0 0

AB, AB 4p
2
q
2

pq 2pq 2pq 1 1

• Parents remove dependence on p and can add information:
• Example 1: sibs AA,AA;
If parents AA×AA; no information; Pr(Z|•) = (1/4,1/2,1/4)

If parents AA×AB: Pr(Z|•) = (0,1/2,1/2)

• Example 2: sibs AB,AB;
If parents AA×AB: Pr(Z|•) = (0,1/2,1/2)

If parents AA×BB; no information; Pr(Z|•) = (1/4,1/2,1/4)

If parents AB ×AB: Pr(Z|•) = (1/2,0,1/2)
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9. ESTIMATION OF ibd PROBABILITIES: DENSE SNPs:

• For sibs, and modern marker data, segments of 0,1,2 sharing are
easy to determine;
Share 2 ibd: genotypes the same over many SNP markers.
Share 1 ibd: at all loci share at least 1, but at some loci share only 1
Share 0 ibd: at some loci, one sib is AA other is BB.

• 1 ↔ 2, 1 ↔ 0 occur on average at 50 Mbp, so with good markers
have little problem (except maybe at edges).

• Use informative SNPs, not in high LD, and allow for error.

• Note: QTDT and Haseman-Elston uses estimated locus-specific
ibd. This is in contrast to regressing on estimated proportions of
genome shared; cf Visscher et al. (2008). But both use the idea of
variation in ibd; not all sib pairs are equally “related”.

• For more remote relatives, shorter segments, and/or missing data,
uncertain allele frequencies, .... ibd may be less clear. We need a
probability model, and method to estmate Pr(Z) given marker data.
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Hidden Markov models: HMM

1. HIDDEN MARKOV MODELS: HMMs
2. EXAMPLE OF SIB-PAIR ibd
3. EXAMPLE OF SIB-PAIR DATA PROBABILITIES
4. THE PROBABILITY OF DATA
5. THE BAUM FORWARD ALGORITH (Baum, 1972)
6. COMPUTING PROBABILITIES OF LATENT STATE
7. EXAMPLE OF SIB-PAIR DATA
8. NUMERICAL EXAMPLE OF SIB-PAIR DATA
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1. HIDDEN MARKOV MODELS: HMMs:
Z1

Zj−1 Zj Zj+1 Z�

Y1 Yj−1 Yj Yj+1 Y�

Y
∗(j−1)

Y
†(j+1)

• Hidden state is Zj, j = 1,2, ..., �, assumed Markov:

Pr(Z) = Pr(Z1)

��

j=2

Pr(Zj | Zj−1)

• Data Yj, j = 1,2, ..., �, depends only on each Zj:

Pr(Y | Z) =

��

j=1

Pr(Yj | Zj).

• Given Zj, Y
∗(j−1)

, Yj, and Y
†(j+1) are mutually independent.

Also, given Zj, Y
∗(j−1)

, Yj, and Zj+1 are independent.
Also, given Zj, Y

†(j+1)
Yj, and Zj−1 are independent.
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2. EXAMPLE OF SIB-PAIR ibd:

• Hidden state is Zj = 0,1,2 shared ibd at locus j, j = 1,2, ..., �.
Pr(Z1) = 1/4,1/2,1/4 for Z1 = 0,1,2.

• Mendel’s first law: the 4 meioses from parents to the two sibs are
independent.
Maternal ibd is independent of paternal ibd.
At recombination ρ probability maternal (or paternal) sharing changes
is R = 2ρ(1− ρ) ≈ 2ρ for small ρ.

• In absence of genetic interference (crossovers ocurring as Poisson
process), Zj is Markov; transitions depend on j. At recombination ρj

let Rj = 1− (ρ
2

j
+ (1− ρj)

2
). (Rj could differ paternal/maternal.)

• Thus we have the transition matrix Pr(Zj | Zj−1):
0 1 2

0 (1−Rj)
2

2Rj(1−Rj) R
2

j

1 Rj(1−Rj) 1− 2Rj(1−Rj) Rj(1−Rj)

2 R
2

j
2Rj(1−Rj) (1−Rj)

2
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3. EXAMPLE OF SIB-PAIR DATA PROBABILITIES:

• Data Yj, j = 1,2, ..., �, are the genotypes of the two sibs at locus
j. Each Yj depends only on each Zj, provided there is no LD (??).

• Suppose at marker j, the frequency of A allele is pj.
Recall the basic model: if ibd same allelic type, if not ibd then of

independent allelic types.
0 1 2

AA,AA p
4

j
p
3

j
p
2

j

AA,AB 2p
3

j
(1− pj) p

2

j
(1− pj) 0

AA,BB p
2

j
(1− pj)

2 0 0
AB,AB 4p

2

j
(1− pj)

2
pj(1− pj)

∗
2pj(1− pj)

And similarly with A ↔ B and pj ↔ (1− pj).
∗: pj(1− pj) = p

2

j
(1− pj) + pj(1− pj)

2; 2A,1B or 1A,2B.

• It is also possible to incorporate an error model; see Leutn session.
It is also possible to incorporate LD: see BEAGLE session.
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4. THE PROBABILITY OF DATA:
Z1

Zj−1 Zj Zj+1 Z�

Y1 Yj−1 Yj Yj+1 Y�

Y
∗(j−1)

Y
†(j+1)

• For data observations Y = (Yj, j = 1, . . . , �), we want to com-
pute Pr(Y). By the first-order Markov dependence of the Zj,

Pr(Y) =

�

Z

Pr(Z,Y) =

�

Z

Pr(Y | Z) Pr(Z)

=

�

Z

(Pr(Z1)

��

j=2

Pr(Zj | Zj−1)

��

j=1

Pr(Yj | Zj)).

• Let Y ∗(j)
= (Y1, . . . , Yj), the data along the chromosome up to

and including locus j.
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5. THE BAUM FORWARD ALGORITH (Baum, 1972):
Z1

Zj−1 Zj Zj+1 Z�

Y1 Yj−1 Yj Yj+1 Y�

Y
∗(j−1)

Y
†(j+1)

• With Y
∗(j)

= (Y1, . . . , Yj), note Y = Y
∗(�). Now define

R
∗
j
(z) = Pr(Yk, k = 1, . . . , j, Zj = z) = Pr(Y ∗(j)

, Zj = z)

with R
∗
1
(z) = Pr(Y1|Z1)Pr(Z1 = z). Then

R
∗
j
(z) = Pr(Yj | Zj = z)

�

z∗

�
Pr(Zj = z | Zj−1 = z

∗
)R

∗
j−1

(z
∗
)
�

for j = 2, . . . , l, with Pr(Y) =
�

z∗ R
∗
�
(z

∗
).

• For each locus j = 1, ..., � along the chromosome, for each of M
values of Zj = z we must sum over each of M values of Zj−1 = z

∗.
For M states and � loci, compution is order �M2.
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6. COMPUTING PROBABILITIES OF LATENT STATE:
Z1

Zj−1 Zj Zj+1 Z�

Y1 Yj−1 Yj Yj+1 Y�

Y
∗(j−1)

Y
†(j+1)

• Now also define
R

†
j
(z) = Pr(Yk, k = j+1, . . . , � | Zj = z) = Pr(Y †(j+1) | Zj = z).

•
R

†
j−1

(z) = Pr(Yk, k = j, . . . , � | Zj−1 = z)

=

�

z∗

Pr(Yk, k = j, . . . , �, Zj = z
∗ | Zj−1 = z)

=

�

z∗

Pr(Yj | Zj = z
∗
)R

†
j
(z

∗
)Pr(Zj = z

∗ | Zj−1 = z)

• Then
Pr(Zj = z | Y) =

Pr(Y, Zj = z)

Pr(Y)
=

R
∗
j
(z)R

†
j
(z)

Pr(Y)
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7. EXAMPLE OF SIB-PAIR DATA:

• In this case, M = 3 (Zj = 0,1,2), so computation is fast and
storage of all R∗

j
(z) and R

†
j
(z) is feasible.

• We obtain πj(k) = Pr(Zj = k | Y) for k = 0,1,2 and all j.

• Note, these probabilities πj(k) are often called multipoint ibd prob-
abilities. They are multipoint in sense that they use all the data Y
at multiple markers. However, they are the marginal probabilities at
each locus j.

• We could also obtain joint probabilities at pairs of loci:

Pr(Zj−1 = z∗, Zj = z | Y) = Pr(Y, Zj=1 = z
∗
, Zj = z) / Pr(Y)

= R
∗
j−1

(z
∗
)Pr(Yj|Zj = z)P (Zj = z | Zj−1 = z

∗
)R

†
j
(z) / Pr(Y)

• However, even for only 3 states, more than pairs of adjacent loci
would get tedious. The ibd states at nearby loci are quite dependent.
The marginal distributions Pr(Zj = k | Y) are not everything.
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8. NUMERICAL EXAMPLE OF SIB-PAIR DATA:

• Consider 2 sibs, and genotypes at 3 linked loci.
AA,AB; AB,AB; AA,AB.

• Suppose Pr(A) is 0.9, 0.5, 0.1 at the 3 loci. Then single locus
probabilities of 0,1,2 ibd are (0.474, 0.526, 0), (0.2, 0.4, 0.4), and
(0.09, 0.91, 0).

• Recombination probability
between adjacent loci is 0.05.
Gives marker-to-marker transi-
tion matrix in 0,1,2 ibd as

Z = 0 1 2
0 0.819025 0.17195 0.009025
1 0.085975 0.82805 0.085975
2 0.009025 0.17195 0.819025

• R
∗
2
= Pr(Y1, Y2, Z2) = (0.0083,0.0099,0.0019),

Pr(Y) = Pr(Y1, Y2, Y3) = 0.0001, and
R

†
2
= Pr(Y3 | Z2) = (0.0030,0.0076,0.0016) giving

Pr(Z2 | Y) = R
∗
2
R

†
2
/P (Y) = (0.24,0.73,0.03).
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Haplotype blocks and the coalescent

1. HAPLOTYPE BLOCKS MAINTAINED BY LINKAGE
2. SURVIVAL OF A JUNCTION OR RARE VARIANT
3. SURVIVAL OF A JUNCTION OR RARE VARIANT; GRAPHS
4. HAPLOTYPES WITHOUT COANCESTRY
5. THE COALESCENT: IDEALIZED
6. THE COALESCENT: REALITY STRIKES
7. MORE REALITIES AND THE ANCESTRY OF A CHROMOSOME
SEGMENT
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1. HAPLOTYPE BLOCKS MAINTAINED BY LINKAGE:

• Tight linkage maintains not just pairwise LD but haplotype blocks.

• Using only pairwise LD loses information; there is dependence
across the loci within a haplotype.

• The block structure of LD is particularly well captured by BEAGLE
(Browning, 2006) model for LD (see later).

• There is heterogeneity of recombination, and there are recombina-
tion hot-spots. These lead to breaks in LD. Sperm-typing provides
confirmation of some of these inferred hotspots (Li and Stephens,
2003).

• However, most of the “block” structure we see derives not (only)
from recombination heterogeneity, but from the shared inheritance of
recombination breakpoints, or junctions (Fisher, 1954).

• Each new junction operates like a new (rare) variant allele, in terms
of its survival, population frequency, and haplotypic background.
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2. SURVIVAL OF A JUNCTION OR RARE VARIANT:

• Any new mutation or recombination breakpoint has low probability
of long-term survival.

• Hence, conditional on survival, expected counts are high. Expected
counts are super-exponential in early generations.

• Hence, conditional on long-term survival, expected counts are even
higher, and can be highest for neutral or disadvatageous variants.

• These high-count recombination breakpoints can account for a lot
of “block structure” in LD.

• Most rare variants we find are young. For an older, but still rare,
variant, the rapid early expansion should be taken into account in
considering its ancestry.

• Many variants underlying complex traits are rare – fine-scale map-
ping of rare variants is still an important problem,
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3. SURVIVAL OF A JUNCTION OR RARE VARIANT;GRAPHS:
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4. HAPLOTYPES WITHOUT COANCESTRY:

• Earlier papers doing LD mapping did not allow for dependence
among the chomosomes due to coancestry. This is well addressed
by methods of Graham and Thompson (1998).

• Earlier papers doing LD mapping did not allow for dependence over
the chromosome due to descent of segments. This is main focus of
McPeek and Strahs (1999).

• McPeek and Strahs (1999) is a long and complex paper. They also
present a way to take coancestry dependence into account, but only
through pairwise covariance structure.

• For excellent summary review of these earlier LD mapping papers
see introduction of McPeek and Strahs (1999)
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5. THE COALESCENT: IDEALIZED:

• Samples are smaller than populations! Rather than consider gene
descent in a population, it can be useful to consider just the ancestry
of an observed sample.

• For sample size k (haploid) in a constant population size 2N (N
diploids) , the probability any pair share a parent is 1/(2N). So the
time to common ancestry is exponential with rate 1/(2N).

• There are k(k−1)/2 pairs, and the minimum of independent expo-
nentials is exponential. (K << N). So the time to the next coales-
cent event is exponential with rate k(k − 1)/(4N), and successive
events are independent.

• Rates decrease quadratic in remaining lineages: many recent coa-
lescences, and a few deep branches.

• Expected total time depth:
�

K

2
4N/(k(k − 1)) ≈ 4N .

• Expected total branch length:
�

K

2
4N/(k − 1) ≈ 4N log(K)
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6. THE COALESCENT: REALITY STRIKES:

• Biggest factor is expanding populations. At any point in time this
just provides a scaling of time; coalescence rates are inversely pro-
portional to effective population size.

• This leads to negative correlations in coalescent times. If, by chance,
a coalescence time is longer, the population at that time will be smaller,
so, on average, the next coalescence time will be shorter.

• In expanding pop-
ulations, earlier inter-
coalescence times are
relatively shorter, but
this does NOT mean
phylogeny will be star-
shaped.
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7. MORE REALITIES AND THE ANCESTRY OF A CHROMO-
SOME SEGMENT:

• Recall conditional on survival there is rapid early expansion. For a
coalescent of a rare variant allele within a larger population it is the
“population size” of the variant that counts.

• Ascertained rare variants do not have the general population coa-
lescent. If disease-associated, there may be selection.

• In general, also migration, and population structure (subdivision).

• Along the chromosome recombination events change the coales-
cent ancestry, leading to the ancestral recombination graph.

• This is too complex for us! Instead, we will just consider the seg-
ment until broken by a recombination event.
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LD mapping via coalescent ancestry

1. LD AS A REFLECTION OF ANCESTRAL HAPLOTYPES
2. RECOMBINATION ON A COALESCENT ANCESTRY
3. THE LATENT RECOMBINANT CLASSES
4. LD MAPPING OF A RARE ALLELE
5. INTERVAL MAPPING LIKELIHOOD
6. FINE-MAPPING BY HAPLOTYPE DECAY
7. THE LIKELIHOOD GIVEN LATENT ANCESTRAL STATE
8. AND MORE POSSIBILITIES
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1. LD AS A REFLECTION OF ANCESTRAL HAPLOTYPES:

• Suppose we have a collection of haplotypes believe to carry a rare
causal variant, and variant is already mapped to some small region.
We wish to fine-scale map the causal locus.

• Example: Graham and Thompson (1998) 50 “disease” haplotypes.
4 markers each with 4 “alleles” (e.g clusters of 3 SNPs)
In control population,

each marker allele at each marker has frequency 0.25.

Marker
Allele Control M1 M2 M3 M4

freq.
A 0.25 9 38 6 5
B 0.25 12 6 2 28
C 0.25 24 4 41 7
D 0.25 5 2 1 10

50 50 50 50

Clearly there is LD!
Where is the gene?
What is the ancestral haplotype?
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2. RECOMBINATION ON A COALESCENT ANCESTRY:

• Suppose we have a good method to generate realizations of the
coalescent of the causal variant – will depend on demography, age,
frequency, .... the haplotypes are not a random sample from the pop-
ulation! The coalescent history is shorter than for a random sample.

0

1

2

3

0 2 2 1 3 0

• Consider a marker in the region; say a
cluster of SNPs so close that no recombi-
nation among them (say at a few Kbp), and
at a distance order few 100Kbp from disease
locus.
• Consider recombination events on the co-
alescent between the marker and the causal
variant.
• At each recombination event, the disease
haplotype picks up a random marker allele
from the control population. The descendant
lineages carry that allele.
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3. THE LATENT RECOMBINANT CLASSES:

• The current haplotypes fall into recombinant classes each descended
from a recombination event without further recombination.

• In the 6-haplotype figure, there are 4 classes, 2 of size 2, 2 of size 1:
X = (2,2,0, ..,0); Xi = number of classes size i.

• Within a class, the haplotypes have same marker allele. In different
classes, they are independent.

• A is the coalescent ancestry, demographic history parameters J .
R are the recombination events on A, depends on ρ, and
X is a function of (A, R).

• Data Y, allelic counts at marker, among the disease haplotypes.
Pr(Y |X) depends on control-population marker allele freqencies q.

• Pq(Y | X) =
�

C
P (C | X) where C = (cij) is a configura-

tion of recombinant classes consistent with Y and X, such that cij
classes size i are assigned allele j.
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4. LD MAPPING OF A RARE ALLELE: due to Jinko Graham:

(and introduction to Monte Carlo Likelihood).

• Now we have a likelihood for ρ, for given J , q;

L(ρ) = Pq,ρ,J(Y) =

�

A

�

R

Pq(Y | X(A, R))Pρ(R|A)PJ(A)

= E(Pq(Y | X(A, R)))

where here R and A are random with the appropriate prob dsn.

• How to compute this???; an example of Monte Carlo likelihood.
Generate A, and then R on A by Monte Carlo.
Then we have X a function of A and R.

• For each realized X compute Pq(Y | X) by exact network algo-
rithm, due to Jinko Graham.

• Averaging these probs gives a Monte Carlo estmate of L(ρ).
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5. INTERVAL MAPPING LIKELIHOOD:

• Extend to interval mapping:
Markers at distance s (known): trait location at (ρ, s− ρ).
Data Y = (Y1, Y2) at the two flanking markers, M1 and M2, with
control-population allele frequencies q1 and q2.

• A is the coalescent ancestry at the disease locus, and R1 and R2

are the recombinations to left-marker (M1) and right marker M2.

• Note recombinations to left and right are independent. There is no
assumption here – these are rare events in different meioses of the
history.

L(ρ) = Pq,ρ,J(Y) =

�

A

�
�

R1

Pq1
(Y1 | X(A, R1))Pρ(R1|A)

�
×

�
�

R2

Pq2
(Y2 | X(A, R2))Ps−ρ(R2 | A)

�
PrJ(A)

• But interval mapping still does not consider the whole haplotype.
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6. FINE-MAPPING BY HAPLOTYPE DECAY:
McPeek and Strahs (1999)

• Considering markers pairwise loses information; instead consider
whole haplotype. Ideally, consider dependence among haplotypes
(as per Graham and Thompson (1998)) and across haplotypes.

• As before, assume variant is localized to region.
Suppose haplotype frequencies in a control population are known.

• Label the position of the disease locus as 0. In reality, this is un-
known, but likelihood is computed for each hypothesized position.

• Relative to an ancestral haplotype τ meioses ago, the probability a
haplotype length d Morgans remains intact is exp(−τd). The length
of intact haplotype (left+right) is Gamma(2, τ), with mean 2τ

−1.

• First consider 1 haplotype hobs, and suppose we we could see the
range of the intact ancestral haplotype.

Dr Elizabeth A Thompson UNE-Short Course Feb 2011

Identity by descent in pedigrees and populations Session 8 - 7

7. THE LIKELIHOOD GIVEN LATENT ANCESTRAL STATE:

• If, relative to location 0, we observe intact haplotype from −k to j:

L(τ
−1

) ∝ g(τ
−1

,−k, j)

= exp(−τd−k,j)(1− exp(−τd−k−1,−k))(1− exp(−τdj,j+1))

• Latent state Z = 1 ancestral, Z = 0 non-ancestral.

Pr(Z(x+ d) = 1 | Z(x) = 1) = exp(−τ |d|)
Pr(Z(x+ d) = 0 | Z(x) = 1) = (1− exp(−τ |d|))
Pr(Z(x+ d) = 0 | Z(x) = 0) = 1

• If breakpoints not observed, use HMM for Z(x) in each direction
from position 0.

• With ancestral haplotype ha as parameter, and data haplotype hobs.

L(ha, τ
−1

) = g(τ
−1

,−k, j)

P0(hobs(j +1, j +2, ...))P0(hobs(−k − 1,−k − 2, ...))

where P0() is the null (population) probability.
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8. Summing over latent possibilities:

ha

hobs

0 1 2 3 4 5 6 7 8 9-1-2-3-4-5-6-7

• Agreement over (-5,3): ancestral segment k = −5 to j = 3?
Maybe (-5,-4) is common; agreement by chance?
Maybe (5,6,7,8) is rare; mutation/error at 4?

• By chance agreement, breakpoints could be closer to 0 than (−k, j)

L(ha, τ
−1

) =

j�

j �=0

k�

k�=0

�
g(τ

−1
,−k

�
, j

�
)

P0(hobs(j
�
+1, j

�
+2, ...))P0(hobs(−k

� − 1,−k
� − 2, ...))

�

• Allow mutation; haplotype may be ancestral but of different allelic
type. Include mutation probabilities, and sum over markers to edge
of data set.
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8. AND MORE POSSIBILITIES:

• Missing marker data, or missing phase information from genotypes.

• Allow variant ancestral haplotypes. (Multiple origins.);

L = (1− p)L(ha, τ
−1

) + pP0(hobs)

• Dependence among haplotypes– model pairwise dependence only–
quasi-likelihood approach, but better than assuming independence.

.......

• How to estimate all the parameters introduced in this model: ha,
τ
−1, mutation parameters, ......

• Baum algorithm and EM algorithm.

Dr Elizabeth A Thompson UNE-Short Course Feb 2011



Identity by descent in pedigrees and populations Session 9 - 0

The EM algorithm

1. THE LIKELIHOOD GIVEN HMM DATA
2. THE COMPLETE-DATA LOG-LIKELIHOOD
3. THE EM ALGORITHM FOR PARAMETER ESTIMATION
4. A NON-HMM EXAMPLE
5. EM EXAMPLE contd.
6. BACK TO HMM EXAMPLE
7. THE McPeek and Strahs (1999) EXAMPLE

Dr Elizabeth A Thompson UNE-Short Course Feb 2011

Identity by descent in pedigrees and populations Session 9 - 1

1. THE LIKELIHOOD GIVEN HMM DATA:
Z1

Zj−1 Zj Zj+1 Z�

Y1 Yj−1 Yj Yj+1 Y�

Y
∗(j−1)

Y
†(j+1)

• Hidden state is Zj, j = 1,2, ..., �, assumed Markov:

Pr(Z) = Pr(Z1)

l�

j=2

Pr(Zj | Zj−1)

• Data Yj, j = 1,2, ..., �, depends only on each Zj:

Pr(Y | Z) =

��

j=1

Pr(Yj | Zj).

•
Pr(Y) =

�

Z

Pr(Z,Y) =

�

Z

Pr(Y | Z) Pr(Z)

The Baum (1972) algorithm enables us to compute Pr(Y).
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2. THE COMPLETE-DATA LOG-LIKELIHOOD:

• Often, data observations Pr(Yj |Zj) and latent transitions P (Zj |Zj−1)

will have parameters to be estimated.

• Often, if we could observe Z estimation (MLE) would be easy.

• Then the likelihood based on Y and Z would be

logPr(Y,Z) = logPr(Y | Z) + logPr(Z)

= log(Pr(Z1)) +

��

j=2

log(Pr(Zj | Zj−1)) +

��

j=1

log(Pr(Yj | Zj))

• The ECDLL is E(logPr(Z,Y) | Y). It is a function of data Pr(Y)

and the parameters.

• The ECDLL is a tool to help us maximize the likelihood Pr(Y) with
respect to parameters. It is NOT the thing we want to maximize.
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3. THE EM ALGORITHM FOR PARAMETER ESTIMATION:

• A procedure for maximum likelihood estimation of parameters in
latent variable problems.

• Data Y; likelihood Pr(Y) hard to compute and/or hard to maximize.

• E-step: At current parameter values compute the ECDLL.
M-step Maximize the ECDLL, to obtain new parameter estimates.

• Repeat, alternating E-steps and M-steps until convergence.

• At each round of E-step,M-step, the likelihood Pr(Y) cannot de-
crease (and generally increases, except at stationary points of Pr(Y)).

• BEWARE:
1) Goal is to maximise Pr(Y) NOT the ECDLL. Do not confuse.
2) Local maxima, saddle points, etc. esp. in high dimensions.
3) logPr(Z,Y) may not be a simple function of Z:

we want the ECDLL NOT E(Z | Y) (see later).
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4. A NON-HMM EXAMPLE:

• Data Y1, ...., Yn a sample from a mixture of Poisson distributions:
Pr(Yi = y) = (p exp(−λ)λ

y
+ (1− p) exp(−µ)µ

y
)/y!

• L(p,λ, µ) =
�

n

i=1
Pr(Yi = yi) is easy to evaluate for given

data yi, but hard to maximize w.r.t (p,λ, µ).

• Let Zi = 1 if Yi is from Po(λ) and Zi = 0 if Yi is from Po(µ).

• Note, if Zi = zi observed, estimation is easy: �p =
�

i
zi/n,

�λ =
�

i∈Sλ
yi / (#i ∈ Sλ), �µ =

�
i∈Sµ

yi / (#i ∈ Sµ)

• Pr(Zi, Yi) ∝ (p exp(−λ)λ
Yi)

Zi((1− p) exp(−µ)µ
Yi))

1−Zi

logPr(Zi, Yi) = (Zi log p+ (1− Zi) log(1− p))

+(−λZi+YiZi logλ)+(−µ(1−Zi)+Yi(1−Zi) logµ)

• ECDLL: E(logPr(Z,Y)|Y) =
�

n

i=1
E(logPr(Zi, Yi|Yi))

and we require only E(Zi | Yi) = Pr(Zi = 1 | Yi).
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5. EM EXAMPLE contd.:
• E-step: Given parameters, p0, λ0, µ0,

ηi = Pr(Zi = 1 | Yi = y) = Pr(Yi = y | Zi = 1)Pr(Zi) / Pr(Yi = y)

= exp(−λ0)λ
y

0
p0/(p0 exp(−λ0)λ

y

0
+ (1− p0) exp(−µ0)µ

y

0
)

• ECDLL is (
�

i
ηi log p+ (n−

�
i
ηi) log(1− p)) +

(−λ
�

i
ηi+

�
i
Yiηi logλ)+(−µ(n−

�
i
ηi)+(

�
i
Yi−

�
i
Yiηi) logµ)

• M-step: p1 =
�

i
ηi/n, λ1 =

�
i
ηiyi /

�
i
ηi,

µ1 = (
�

i
yi −

�
i
yiηi) / (n−

�
i
ηi).

• Y = (0,1,2,6,7), n = 5;
�

i
Yi = 16.

One-sample; �λ = 16/5;
�

i
logPr(Yi;λ = 16/5) = −13.18.

p λ µ η3

�
i
ηi

�
i
ηiyi ECDLL logPr(Y)

0.5 1 5 0.686 2.59 2.31 -4.74 -3.72
0.518 0.89 5.67 0.760 2.71 2.49 -4.36 -3.56
0.542 0.92 5.89 0.806 2.77 2.59 -4.23 -3.53
0.553 0.94 6.00 0.827 2.79 2.64 -4.18 -3.53
0.559 0.95 6.05 0.836 2.80 2.66 -4.16 -3.53
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6. BACK TO HMM EXAMPLE:

• The complete-data log-likelihood is

log(Pr(Z1)) +

��

j=2

log(Pr(Zj | Zj−1)) +

��

j=1

log(Pr(Yj | Zj))

• The ECDLL is E(logPr(Z,Y) | Y); often this is a simple function
of Pr(Zj | Y) and Pr(Zj−1 = z, Zj = z

∗ | Y)

= R
∗
j−1

(z)Pr(Yj|Zj = z
∗
)Pr(Zj = z

∗|Zj−1 = z)R
†
j
(z

∗
)/Pr(Y).

• Recall for HMM we can compute:

Pr(Zj = z | Y) =
Pr(Y, Zj = z)

Pr(Y)
=

R
∗
j
(z)R

†
j
(z)

Pr(Y)and

Pr(Zj−1 = z
∗
, Zj = z | Y) = Pr(Y, Zj=1 = z

∗
, Zj = z) / Pr(Y)

= R
∗
j−1

(z
∗
)Pr(Yj|Zj = z)P (Zj = z | Zj−1 = z

∗
)R

†
j
(z) / Pr(Y)

• For indicator Zi this is often enough to compute the ECDLL.
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7. THE McPeek and Strahs (1999) EXAMPLE:

ha

hobs

0 1 2 3 4 5 6 7 8 9-1-2-3-4-5-6-7

• Recall here Zj = 1 if hobs is ancestral at marker j, and Zj = 0 if
not. Ancestral segment is (−k, j).

• Note, if Z known, e.g.Z = 1 from −3 to +8, we would know the
chance matches at −5,−4 and mutation/errors at +4, and could
estimate parameters.

• Recall have simple HMM for Z = (..., Z−1, Z1, Z2, ...).
Z0 = 1, and can only switch 1 → 0 going from −k left or j right, at
a rate depending on parameter τ−1.

• Thus for given parameters, can compute Pr(Zj, Zj+1 | hobs) and
Pr(Z−k, Z−k−1 | hobs) (E-step).

• Give (probabilities of ) Z for each haplotype, can estimate ha, τ and
mutation/error probabilities (M-step).
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MCMC and Bayesian sampling

1. SAMPLING THE LATENT HMM STATE (iid)
2. MCMC: THE GIBBS SAMPLER
3. SAMPLING THE LATENT HMM STATE (MCMC)
4. MCEM ESTIMATION OF PARAMETERS
5. BAYESIAN SAMPLING OF PARAMETERS
6. COALESCENT MCMC FOR FINE-SCALE MAPPING
7. FRAMEWORK FOR INFERENCE
8. SAMPLING THE COALESCENT, & MARKERS, GIVEN G

9. THE TRAIT LIKELIHOOD ON THE LOCAL COALESCENT
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1. SAMPLING THE LATENT HMM STATE (iid):
Z1

Zj−1 Zj Zj+1 Z�

Y1 Yj−1 Yj Yj+1 Y�

Y
∗(j−1)

Y
†(j+1)

• Sometimes we would like to know Z jointly across loci, not just
pairwise (Zj, Zj−1). If � large, cannot compute, but can sample.

• Compute R
∗
j
(z) = Pr(Y ∗(j)

, Zj = z), j = 1,2,3, ...� as before.

• First, Z� is sampled from ∝ R
∗
�
(z).

(All sampling probabilities will be normalized over M z-values.)

• Then, given a realization of (Zj = z
∗
, Zj+1, . . . , Z�),

Pr(Zj−1 = z | Zj = z
∗
, Zj+1, . . . , Z�,Y) =

Pr(Zj−1 = z | Zj = z
∗
, Y

(j−1)
) ∝ Pr(Zj = z

∗ | Zj−1 = z)R
∗
j−1

(z)

• Normalizing these probabilities, we realize each Zj−1, for j =

�, � − 1, . . . ,4,3,2 in turn, providing an overall realization Z =

(Z1, . . . , Z�) from Pr(Z | Y).
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2. MCMC: The GIBBS SAMPLER:

• Sometimes M is too large to compute R
∗
j
(z) and Pr(Y). Then,

we also cannot do the i.i.d. sampling of previous slide.

• MCMC is a way of sampling from Pr(Z | Y) when Pr(Y,Z) is
easy, but we cannot compute Pr(Y).

• The Gibbs sampler is a special case of MCMC; at each step, a
subset Zu of the components of Z are “updated” from the “full condi-
tionals” Pr(Zu | Y,Zf) where Zf are the “fixed” components.

• Suppose the current Z is from Pr(Z | Y), and Z∗
= (Z∗

u
,Zf) is

result of resampling Zu. Then P
∗
(Z∗

) = P
∗
(Z∗

u
| Zf)P

∗
(Zf)

= Pr(Z∗
u
| Zf ,Y)Pr(Zf | Y) = Pr(Z∗ | Y). That is, the

required distribution is equlibrium distribution of this Markov process.

• Subject to various conditions, the average of g(Z) over the chain is
E(g(Z) | Y).

• Do NOT confuse the Markov chain of MCMC sampling with the
Markov chain of the HMM.
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3. SAMPLING THE LATENT HMM STATE (MCMC):
Z1

Zj−1 Zj Zj+1 Z�

Y1 Yj−1 Yj Yj+1 Y�

Y
∗(j−1)

Y
†(j+1)

• One usually easy option is to update a single Zj at each step:
Pr(Zj | Zi (i �= j),Y) = Pr(Zj | Zj−1, Zj+1, Yj)

∝ Pr(Zj+1 | Zj)Pr(Zj | Zj−1)Pr(Yj | Zj)

• Compute this for each of M possible values of Zj, and normalize
the probabilities for sampling.
• For example: take a random permutation of {1,2, ..., �}, and up-
date each Zj in order of the permutation: this is a random scan.
• Note, changes in Zj may be small if successive Zj are highly de-
pendent. Then we have “poor MCMC mixing”. Better samplers up-
date a block of contiguous Zj together, but computations get harder.
• In any event, we get a collection of realizations of Z, from Pr(Z |Y)

(at least approximately).
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4. MCEM ESTIMATION OF PARAMETERS:

• Back to EM: computing the ECDLL or even Pr(Zj, Zj−1 | Y), may
be hard or impossible if M is too large to compute R

∗
j
(z) etc.

• But we can always do MCMC at current parameter values to get
our realizations of Z, and use then to estimate the ECDLL.

• In the McPeek and Strahs (1999) example, we needed
Pr(Zj = 1, Zj+1 = 0 | Y = hobs) and
Pr(Z−k−1 = 0, Z−k = 1 | Y = hobs) to estimate breakpoints
(−k, j) from the ancestral haplotype to each current haplotype hobs.

• Given a set of realizations of Z from Pr(Z | Y), we can just count
the proportion that have the breakpoints at each particular (−k, j).
This is an estimate of the required probabilities, for every pair (−k, j).

• The M-step, estimating ha,τ and any mutation parameters is as
before.

• Generally MCEM behaves just as well as EM, but care and large
samples needed near convergence.
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5. BAYESIAN SAMPLING OF PARAMETERS:

• Suppose θ is a parameter of Pr(Z) or Pr(Zj | Zj−1), and γ is a
parameter of Pr(Y|Z) or Pr(Yj | Zj).

• MCMC is NOT “Bayesian”; nothing so far is Bayesian.

• However, in very complex multi-parameter problems, a Bayesian
approach is useful. That is our parameters (θ and γ) have prior dis-
tributions π(θ) and π(γ).

• Extend the MCMC:
Resample Z given Y, θ, γ (one scan)
Resample θ given Z: π(θ | Z) ∝ π(θ)Pr(Z | θ).
Resample γ, give Y and Z: π(γ | Y,Z) ∝ π(γ)Pr(Y | Z, γ).

• Usually more general MCMC methods (Metropolis-Hastings sam-
plers) are needed.

• We obtain a large set of realizations of θ and γ; these provide an
estimate of the posterior distribution of these parameters.
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6. COALESCENT MCMC FOR FINE-SCALE MAPPING:

Zöllner and Pritchard (2005); implemented TreeDL.

0x0-0x- - 0x0-

0x11 0x11 0x01 0x00

- - -0

- - -1

- -11

0x11

0x01

• Samples coalescent Tx at position
x by MCMC, given marker haplotypes
G.
• Not full ARG, but local coalescent at
x with extent of haplotype present in
current sample of haplotypes.
• Under the null hypothesis (no trait
association) phenotypes are randomly
distributed to the tips of the tree.
• The method looks for groups of simi-
larity of phenotype clustered within the
coalescent at specific locations; inte-
grates across allelic heterogeneity.
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7. FRAMEWORK FOR INFERENCE:

• Because they sample coalescent of all chromosomes,
—- binary trait: cases and controls; more information extracted.
—- quantitative trait, can be accommodated; population samples.

• Φ = (φi) vector of phenotypes, individuals i.
G = (Gij) = set of multilocus marker genotypes of i, locus j.

• Adopts a “standard” linkage LR perspective:

LR =
Pr(Φ, G;x, Px)

Pr(Φ, G;P0)
=

Pr(Φ |G;x, Px)

Pr(Φ;P0)

where Px and P0 are penetrances under x and unlinked ”null”.

• Adopts a Bayesian sampling view w.r.t x (also Px or P0);

Pr(x|Φ, G) =
Pr(Φ, G | x)π(x)�

x� Pr(Φ, G | x�)π(x�)
∝ Pr(Φ, G | x)π(x)

(However, priors are uniform, so posterior ∝ likelihood.)
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8. SAMPLING THE COALESCENT, & MARKERS, GIVEN G:

• Estimating Pr(Φ | G;x);

Pr(Φ | G;x) ∝
�

Tx

Pr(Φ | x, Tx)Pr(Tx|G)

(G provides information about Tx; given Tx, G and Φ independent.)

• At positions x, sample trees Tx given G. Focus is on shared
coancestry of haplotypes (backwards) rather than decay of ancestral
haplotype (forwards) (cf. McPeek and Strahs (1999)).

• Marker model incorporates mutation per marker per unit coal.time.
and recombination per unit distance per unit coalescent time.

• Samples recombination and mutation events, given G, Tx and hence
haplotypes at internal and external nodes.
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9. THE TRAIT LIKELIHOOD ON THE LOCAL COALESCENT:

• Hypothetical disease alleles A and B. Single chromosome proba-
bilities:

PA(φ) = Pr(A|φ), PB(φ) = Pr(B | φ)
• Sum over assignment of A and B:
Under Tx: by placing mutations (rate ν) on the tree ⇒ alleles cluster.
Under the null; by random (independent) assignment according to
mutation model.

• M is branches of coalescent Tx that contain mutations, and γ is
collection of current chromosomes carrying A (M , γ unobservable).

Pr(Φ | x, Tx, ν) =

�

M



(

�

i∈γ
PA(φi))(

�

i∈γc

φB(φi))Pr(M | x, Tx, ν)





• Parameters of penetrances φB(), φA() are sampled, or for binary
data computed on grid, but summation over M is by peeling (as in
pedigrees).
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Association mapping in structured
populations

1. CONTROL FOR POPULATION STRUCTURE
2. INFERRING POPULATION STRUCTURE
3. MCMC SAMPLING: ADDING ADMIXTURE
4. MCMC SAMPLING: INFERENCE
5. ASSOCIATION MAPPING IN STRUCTURED POPULATIONS
6. THE TEST STATISTIC AND TEST
7. COMPARISONS: χ2, STRAT, and TDT
8. EIGENSTRAT AND MORE
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1. CONTROL FOR POPULATION STRUCTURE:

• Recall LD results from population heterogeneity and structure.

• For subdivided population, proportions αi and frequency pi in sub-
population i, p =

�
i
αipi and

σ
2

F
= Pr(AA)− p

2
=

�
i
αi(pi − p)

2

• Recall FST = σ
2

F
/p(1 − p) is correlation between alleles within

subpopulations, and standard measure of structure.

• For 2 populations (e.g. case and control) we can use standard 2×2

table χ
2

1
to test allele frequency differences.

• We can sum many of these χ
2

1
to test genome-wide for structure

Pritchard and Rosenberg (1999).

• Two general approaches: correct for structure (genomic control) or
model the structure.
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2. INFERRING POPULATION STRUCTURE:

• Model-based clustering of individuals on basis of genome-wide un-
linked markers. Pritchard et al. (2000a); program STRUCTURE.

• Assume K (sub)populations. Y are genotypes of individuals.
Z are latent indicators of population of origin of individuals.
P are (unknown) allele frequencies in all populations..

• Assume HWE and absence of LD within subpopulations;
so Pr(Y (i,a)

j
| Zi = k, Pk,j) for allele a = 1,2 of indivdual i, is

allele frequency in subpopulation Zi = k of relevant allele at locus j.

• Bayesian approach: Pr(Z, P | Y) ∝ π(Z)π(P )Pr(Y | Z, P ).

• Choice of priors: simplest case:
π(Zi = k) = 1/K, k = 1,2, ...,K.
π(Pk,jl) uniform on

�
l
Pk,jl = 1 for each locus j in each sub-

population k (For SNPs, minor allele frequency U(0,0.5) for each
locus in each subpopulation.)
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3. MCMC SAMPLING: ADDING ADMIXTURE:

• MCMC approach for new realization (Z�
, P

�
):

Step 1: Sample P
� from distribution given Y, Z.

Step 2: Sample Z� from distribution given Y, P �.

• Once we sample Z
(i,a), then we can make its value k locus-specific:

Z
(i,a)

j
= k if allele a = 1,2 of individual i at locus j comes from

population k.

• Additional latent B (note Q in papers): β(i)

k
proportion of i’s genome

that is from population k.

• As before: Pr(Y (i,a)

j
| Z(i,a)

j
= k, P,B) is allele frequency in sub-

population k of relevant allele at locus j,
but now Pr(Z(i,a)

j
= k | B) = β

(i)

k
.

• Prior for (β1, ....,βK) for each locus and each individual is Dirichlet
D(α,α, ...,α);

α large: each individual an equal mix of populations
α small: each individual from one population, all equally prob.
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4. MCMC SAMPLING: INFERENCE:

• MCMC Sampling of (P �
, B

�
,Z�

,α
�
):

Step 1: Sample (P
�
, B

�
) from Pr(P,B | Y,Z),

Step 2: Sample Z� from Pr(Z | Y, P
�
, B

�
).

Step 3: Update α given Z�.

• Inference for B is primary interest: the labeling problem.
With K populations, there will be K! symmetric modes.
By symmetry, overall average is uniform regardless of data!

• Fortunately, the MCMC normally explores one mode
– but care is required:

The labeling of the populations is irrelevant;
we do not want to average over these labelings!

• Inference for K:
In theory, we could put a prior on K and sample also.
Pritchard et al. (2000a) propose an ad hoc estimate.
In practice, users run structure program with different K.
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5. ASSOCIATION MAPPING IN STRUCTURED POPULATIONS:

Pritchard and Donnelly (2001) Pritchard et al. (2000b) ; STRAT

• Recall Pritchard and Rosenberg (1999) provided test for structure
using genome-wide markers not in LD; but what if structure is found?

• Pritchard et al. (2000a) uses inferred ancestry to subdivide popula-
tion (as in Pritchard et al. (2000a)); then do association testing within
subpopulations.

• Use the admixed version: β
(i)

k
is proportion of i’s genome from

population k. Estimate �B, for all individuals, cases and controls.

• H0 : no within-population association: i.e. subpopulation allele
frequencies at candidate locus are independent of phenotype.
H1: there is within-subpopulation association with phenotype.

• Assess significance of test statistics by simulation under H0.
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6. THE TEST STATISTIC AND TEST:

• LR statistic: Λ = Pr(Y ;�P1,
�B)/Pr(Y ;�P0,

�B)

where Y = (y
(i,a)

, a = 1,2) are observed genotypes at candidate
marker locus.

• At candidate locus:
Under H0: P0 = (pkj) frequencies of alleles j in subpop k.
Under H1: P1 = (p

(φ)

kj
) frequencies of alleles j in subpop k among

individuals of phenotype φ.

Pr(y(i,a) = j;P0, B,Φ) =

�

k

β
(i)

k
pkj regardless of Φ

Pr(y(i,a) = j;P1, B,Φ) =

�

k

β
(i)

k
p
(φ(i))

kj

• Use structure (Pritchard et al., 2000a) to estimate B.
Use EM to estimate P0 and P1; recall latent variables Z

(i,a)

j
with

probabilities Pr(Y (i,a)

j
| Z(i,a)

j
= k, P,B) = pkj.
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7. COMPARISONS: χ2, STRAT, and TDT:
Nominal size 0.01 Power

STRAT TDT χ
2 STRAT TDT

2 Discrete Populations 1 model **
0.1, 0.1 0.009 0.010 0.009 0.16 0.06
0.5, 0.1 0.009 0.010 0.260 0.39 0.22
0.9, 0.1 0.010 0.009 0.649 0.07 0.03
Admix of 2 Populations
0.1, 0.1 0.010 0.009 0.010 0.47 0.41
0.5, 0.1 0.008 0.010 0.370 0.98 1.00
0.9, 0.1 0.005 0.010 0.979 0.76 1.00

• STRAT and TDT
give approx correct
type-1 error; (χ2 not!)
STRAT conservative
in admixed popula-
tions; estimation of B
not great.

• Same allele associated in both populations; For given number cases
TDT wins over STRAT, but not if account for genotyping of parents.

• (Not shown) Different alleles associated in the two populations;
STRAT retains power, but TDT does not.

• ** Association in one population only; STRAT often wins over TDT,
but not in admixed populations where allele freqs differ widely.
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8. EIGENSTRAT AND MORE:

• structure is a model-based clustering procedure; can be slow.

• Other methods (EIGENSTRAT) rely on Principal Component Anal-
ysis of individuals, to cluster into subpopulations. β

(i)

k
replaced by

coefficients on the k first principal components.

• This is much faster, but does not yield estimates of individual ad-
mixture. However, it is popular, because much faster.

• Recently, Alexander et al. (2009) have proposed a new model-
based algorithm, that is comparable to EIGENSTRAT for speed, us-
ing the model of structure.

• Uses same model as structure, but focuses on maximizing likeli-
hood Pr(Y | B,P ) w.r.t B and P , not on sampling from posterior.

• Uses optimization techniques to update B and P iteratively: much
faster than EM (and probably more reliable for a high-dimensional
multimodal likelihood).
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Association mapping in admixed
populations

1. THE BASIS OF LD ADMIXTURE MAPPING
2. BASICS OF ADMIXTURE MAPPING
3. MARKOV MODEL FOR ADMIXTURE
4. HMM FRAMEWORK: FOR EACH INDIVIDUAL i

5. HMM COMPUTATIONS AND MCMC
6. ANCESTRY INFORMATIVE MARKERS (AIMs)
7. ADMIXTURE MAPPING: LOCUS-GENOME TEST
8. ADMIXTURE MAPPING: CASE-CONTROL TEST
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1 THE BASIS OF LD ADMIXTURE MAPPING:
McKeigue (2005) and references therein.

• Some traits are more frequent in some ethnic groups (or breeds of
cattle?). So at a trait locus, the allele frequencies will differ. At marker
loci, the allele frequencies likely differ.

• LD is created by admixture, if allele frequencies differ:
∆0 = m(1−m)δ1δ2

where m is the mixing proportion, and δj is the difference in allele
frequency at locus j. (Recall the effects of admixture on LD is one
reason for Genomic Control!)

• LD is maintained by linkage: in absence of further mixing
∆t = (1− ρ)

t
∆0 (see “DECAY OF LD”).

• In this framework, admixture LD mapping is simply LD mapping,
using the substantial LD that can be caused by admixture, and finding
regions where this is high.

• This approach does not use all the available information.
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2 BASICS OF ADMIXTURE MAPPING:

• Associate the trait with the degree of ancestry at a locus (2,1,0
copies from high-risk population, say).

• Individuals vary in their degree of admixture; we need some form
of “genomic control”. Condition on “parental admixture proportions”
– parents not observed – in effect, on the genome-wide proportion in
the individuals.

• Only linkage results in locus-ancestry associations that are inde-
pendent of parental admixture, regardless of degree/continuation of
admixture. (see “structured association’; Pritchard and Donnelly (2001)).

• Most single loci convey little infomation; these are not fixed differ-
ences. So we use an HMM to combine information over the chromo-
some to estimate the local ancestry.

• STRAT uses correlations within subpopulations at independent mark-
ers. ADMIX uses correlations in ancestry over linked loci; inheritance
of segments.
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3 MARKOV MODEL FOR ADMIXTURE:
Adapted from Patterson et al. (2004).

• For individual i; βi = Pr(allele from Pop1) and αi = rate of
ancestry “break-points” (per Morgan) along chromosome. (# genera-
tions since admixture).

• Latent state Zij = 0,1,2 is number of alleles at locus j deriving
from Pop1.

• Prior: ηi,0 = Pr(Zij = 0) = (1− βi)
2
,

ηi,1 = Pr(Zij = 1) = 2βi(1− βi),

ηi,2 = Pr(Zij = 2) = β
2

i
.

• For markers at distance d Morgans;

0 breaks : exp(−2αid) : Zj+1 = Zj.

2 breaks : (1− exp(−αid))
2
; Zj+1 from prior

1 break : 2 exp(−αid)(1− exp(−αid)); “average”
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4 HMM FRAMEWORK: FOR EACH INDIVIDUAL i:
Z1

Zj−1 Zj Zj+1 Z�

Y1 Yj−1 Yj Yj+1 Y�

Y
∗(j−1)

Y
†(j+1)

• Hidden state is Zj, j = 1,2, ..., �, Zj = 0,1,2.

• Data Yj is genotype of individual i at locus j.

• Allele frequencies for SNP allele A q1j and q2j in Pops 1 and 2
(assumed estimated from parental populations).

• For given individual, at given locus (drop i, j subscripts):
Z = 0 Z = 1 Z = 2

Y = AA q
2

2
q1q2 q

2

1

Y = AB 2q2(1− q2) q1(1− q2) + (1− q1)q2 2q1(1− q1)

Y = BB (1− q2)
2

(1− q1)(1− q2) (1− q1)
2
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5 HMM COMPUTATIONS AND MCMC:

• For given parameter values we can compute

γi,k(j) = Pr(Zij = k | (Yi1, ...., Yi�)), k = 0,1,2

• MCMC is used to sample all parameters:
αi, βi for all i; q1j, q2j for all j.

• Initial values: αi = 6, βi estimate from data on i treating loci as
unlinked, allele freqs. from “parent” populations.

• Prior on βi; Beta dsn with mean/spread 0.2± 0.12.
Prior on αi; Gamma dsn with mean/spread 6± 2.
Allele frequencies; centred on modern “parental” populations, with

dispersion hyperparameter τ .

• MCMC provides posterior realizations of all parameters.
Estimates used are posterior means.
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6 ANCESTRY INFORMATIVE MARKERS (AIMs):

• Instead of correcting for structure, we use structure.

• We want markers with substantial differences among populations,
i.e. geographic differentiation (but we may not want strong selection).

• Informativeness for ancestry (Rosenberg et al., 2003):
Suppose SNP has allele frequencies pk and (1 − pk) in population
k = 1,2, ...,K, and p = (1/K)

�
k
pk. Information is

−p log p − (1 − p) log(1 − p) + (1/K)
�

k
(pk log pk + (1 −

pk) log(1− pk). If all pk = p, information is 0; otherwise positive.

• Example 1: African-American Smith et al. (2004);
Require few missing data, and HWE within parent populations.
Require high informativeness, and homogeneity within parent popu-
lations. Remove markers within 50kbp or in LD.
Result is 3,011 SNP markers across the human autosomal genome.

Example 2: European populations; Price et al. (2008); Panel of 300
markers sufficient to correct for stratification of European populations.
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7. ADMIXTURE MAPPING: LOCUS-GENOME TEST:

• Compare locus-specific estimates of proportion of genome from
Pop1, with genome-wide average.

• ψk is increase in disease risk due to having k alleles from Pop1,
relative to ψ0 = 1. Note, population risks are smaller than allelic
risks, since it averages over alleles.

• Use a LR test to compare H1: disease locus associated with locus
j, vs H0: no disease locus near j.

• The locus-genome statistic (for case individual i at locus j):

Lij =
Pr(case;H1)

Pr(case;H0)
=

γi,0(j) + γi,1(j)ψ1 + γi,2(j)ψ2

ηi,0 + ηi,1ψ1 + ηi,2ψ2

• Robustness to choice of ψ1, ψ2.

• Pointwise, or average, or maximum over the genome.
Significance thresholds detemined by parametric simulation.
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8. ADMIXTURE MAPPING: CASE-CONTROL TEST:

• Compare cases with controls at each locus j in the genome.

• Protects against stratification; a deviation from genome-wide aver-
age of population ancestry seen in cases but not controls provides
evidence.

• For individual i at locus j: yi(j) = 2βi − (2γi,2(j) + γi,1(j)).
Use t-statistic Tj to test differences in yi(j) between cases and con-
trols.

• Advantages: t-test is robust to heterogeneity of variance (over i).
No specific trait model (i.e. ψ1,ψ2) required.
No simulation to determine significance thresholds required.

• Disadvantage: “Randomness” in controls contributes to uncertainty.

• Advantage of admixture mapping in general:
Segments are much larger than LD – many fewer markers required.
Problems of multiple testing reduced – 1,000 tests vs 10

6.
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Inferring ibd segments; two
chromosomes

1. THE AIM OF ibd MAPPING (SB ibd slide)
2. APPLICATIONS OF ibd MAPPING (SB ibd slide)
3. ibd MAPPING: WILL IT BE USEFUL? (SB ibd slide)
4. LATENT ibd MARKOV MODEL FOR 2 CHROMOSOMES
5. THE DATA MODEL
6. ibd AND PARAMETER ESTIMATION
7. LEUTENEGGER (2003) RESULTS: ESTIMATING f OR β

8. LEUTENEGGER (2003) DETECTION OF INDIVIDUAL ibd
9. ERROR MODELLING IN HBD SEGMENTS (SB ibd slide)
10. GENOMIC CONTROL

Slides from Sharon Browning are removed for the web version of
these lecture notes. I am very grateful to Sharon Browning for send-
ing me these slides for use in giving the lectures.
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1,2,3: Three Browning IBD-talk slides:

These three slides removed for web version as requested by Sharon
Browning.
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4. LATENT ibd MARKOV MODEL FOR 2 CHROMOSOMES:
(Leutenegger et al., 2003)

• Two-parameter Markov model: marginal prob β, rate change α.
In reality, ibd is not Markov and expected segment length depends on
# meioses to the common ancestor.

• Markov rate matrix between non-ibd (0) and ibd (1) is

Q =

�
−αβ αβ

α(1− β) −α(1− β)

�
= α(−I +

�
1

1

�
(1− β,β))

Model of “segments” of exponential length (mean α
−1) each inde-

pendently of type 1 (ibd) with probability β.

• Thus ibd segments are exponential with expected length
(α(1− β))

−1 and the equilibrium marginal probability of ibd is β.
The relative rate of gain vs loss of ibd is β/(1− β).

• Estimation of β and α (see later) or ad hoc choice depending
on overall ibd level (β), and typical segment length (e.g α = 1 ×
10

−6bp).
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5. THE DATA MODEL:

ibd 0/1

allele-1

allele-2

• Allele frequencies qi of alleles ai assumed known: in reality they
can be well estimated from genotypic samples.
• ibd ⇒ same allele; non-ibd ⇒ independent alleles.

Allow error so different alleles can still be ibd.

non-ibd ibd
ai, ai q

2

i
(1− ε)qi + εq

2

i

ai, aj(i < j) 2qiqj ε2qiqj

• Given a model, a standard HMM forward-backward algorithm gives
Pr(ibd(j) | Y), at each positions j where Y are allele types on the
chromosomes over all loci.
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6. ibd AND PARAMETER ESTIMATION:
• Suppose Zc,j = ibd(j) at locus j on chrom. c; we can compute
Pr(Zj−1, Zj | Y). If Zc,j “observed”; the log-likelihood would be

�
c,j

logPr(Yc,j | Zc,j; ε,qc,j) +
�

c
(Pr(Zc,1;β)+

�
j
logPr(Zc,j | Zc,j−1;α,β, dj)

�

• First term estimates ε, from those Zc,j = 1.
Next, {Zc,1} is binomal sample Pr(Zc,1 = 1) = β (ignore).

• For simplicity, suppose markers equidistant, and counts of transi-
tions are T0,1, T0,0, T1,0 and T1,1; Let h = (1− exp(−αd)). So

probs from Zc,j−1 to Zc,j are
�

1− hβ hβ

h(1− β) (1− h(1− β))

�
.

• ĥβ̂ = T0,1/(T0,0+T0,1) and ĥ(1−β̂) = T1,0/(T1,1+T1,0). With
N0 = (T0,0 + T0,1), N1 = (T1,1 + T1,0), ĥ = T0,1/N0 + T1,0/N1

and β̂ = T0,1/ĥN0.
• EM algorithm;
E-step: compute E(Ti,k|Y) from Pr(Zc,j−1 = i, Zc,j = k | Yc).
M-step: restimate parameters from current E(Ti,k|Y).
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7. LEUTENEGGER (2003) RESULTS: ESTIMATING f (OR β)
:

0.00 0.05 0.10 0.15 0.20

0.
00

0.
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0.
15

0.
20

f̂ true

f̂

Offspring of 1000 first
cousin pairs:

Estimation of f using 5cM
microsatellite map

(630 markers)

f = 1/16 = 0.0625

At most 50 “indep” ibd events.
The human genome is short.
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8. LEUTENEGGER (2003) DETECTION OF INDIVIDUAL ibd:
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9. Another Browning IBD-talk slide:

This slide removed for web version as requested by Sharon Brown-
ing.
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10. GENOMIC CONTROL:

• Individuals vary in their degree of inbreeding; we need some form
of “genomic control”.

• Standard MLE methods also give an individual-based confidence
interval for the genome-wide estimate of βi for individual i.

• To assess significance of a region, within an individual, compare
the estimated conditional Pr(Zc,j = 1 | Yc), with the genome-wide
confidence interval for this individual.

• Unequal spacing etc.; need more numerical methods to implement
the EM algorith, but idea is same.

• Method implemented in FEstim program (Leutenegger et al., 2006).

• Methods were first used (Leutenegger et al., 2006) to enhance ho-
mozygosity mapping when there is cryptic relatedness.

• Now being used in mapping of rare recessives, where case parents
are not known to be related. (See IGES abstracts 2009, 2010).
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BEAGLE: Haplotype and ibd imputation

1. SHOULD WE MODEL LD IN ibd INFERENCE?
2. PUTTING LD INTO THE HMM
3-11. THE BEAGLE LD MODEL (SB hap slides)
12-14. THE BEAGLE LD MODEL (SB imput slides)
15. ADVANTAGES OF BEAGLE MODEL (SB hap slides)
16-17. ibd INFERENCE WITH LD (SB ibd slides)

Slides from Sharon Browning are removed for the web version of
these lecture notes. I am very grateful to Sharon Browning for send-
ing me these slides for use in giving the lectures.
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1. SHOULD WE MODEL LD IN ibd INFERENCE?:

• Do we want to? Recall LD is a reflection of coancestry.
By conditioning out the LD we are conditioning out this coancestry.
But if we do not, we get many “false-positive” ibd signals when using
dense markers.

• LD is also caused by stratification/admixture. This can cause long-
range LD. However, this is not much of a problem in inferring ibd seg-
ments, so long as there is plenty of variation within subpopulations.

• If we do want to, then how?

ibd 0/1

allele-1

allele-2

• We want a Markov model for the alleles along a haplotype, to super-
impose on our ibd HMM.
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2. PUTTING LD INTO THE HMM:

• Combined HMM for alleles and ibd.

ibd 0/1

allele-1

allele-2

Pr(Yj, Zj | Yj−1, Zj−1) = Pr(Yj | Zj, Yj−1)Pr(Zj | Zj−1)

• Can compute under this augmented HMM, but the simple 1st-order
HMM LD model does not fit; see e.g. Fu and Thompson (2007).

• Condition each Yj on preceeding SNP with highest LD,
may be better. See e.g. Albrechtsen et al. (2009).

• Variable length Markov chains of BEAGLE (Browning, 2008)– works
well. Note, for ibd Browning (2008) deals only with pair of chromo-
somes (Z = 0,1). Browning and Browning (2010) deals with pair of
individuals, but still only uses 2-state ibd
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3-11. Nine Browning slides:

These slides from Sharon Browning’s haplotyping talk.

These slides removed for web version as requested by Sharon Brown-
ing.
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12,13,14. Three Browning imputation slides:

These slides from Sharon Browning’s imputation talk.

These slides removed for web version as requested by Sharon Brown-
ing.
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15. Browning haplotyping slide:

This slides from Sharon Browning’s haplotype talk.

This slide removed for web version as requested by Sharon Brown-
ing.
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16,17. Browning ibd slide:

These two slides from Sharon Browning’s ibd talk.

These slides removed for web version as requested by Sharon Brown-
ing.
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ibd between two individuals

1. THE FOUR GENES OF TWO INDIVIDUALS
2. ibd OF TWO NON-INBRED RELATIVES
3. FROM KINSHIP TO ibd PROBABILITIES
4. HMM FOR ibd BETWEEN NON-INBRED INDIVIDUALS
5. THE PLINK MODEL FOR GENOTPYES
6. ibd ONLY BETWEEN INDIVIDUALS IS OVER-SIMPLIFICATION
7. MODELS FOR GENOMIC IBD ESTIMATION
8. THE FOUR GENES OF TWO INDIVIDUALS– AGAIN
9. MODEL FOR POPULATION ibd AT ONE LOCUS
10. POPULATION ibd OVER THE GENOME (Thompson, 2008)
11. INFERRING ibd FROM POPULATION DATA
12. INFERRING ibd FROM POPULATION DATA: RESULTS
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1. THE FOUR GENES OF TWO INDIVIDUALS:
ibd pattern ibd label ibd group state description
B1 B2 individuals genes

p m p m ibd within shared
• • • • 1 1 1 1 1 1 1 1 B1, B2 4 genes ibd
• • • ◦ 1 1 1 2 1 1 1 2 B1 3 genes ibd
• • ◦ • 1 1 2 1
• ◦ • • 1 2 1 1 1 2 1 1 B2 3 genes ibd
• ◦ ◦ ◦ 1 2 2 2
• • ◦ ◦ 1 1 2 2 1 1 2 2 B1, B2 none
• • ◦ † 1 1 2 3 1 1 2 3 B1 none
• ◦ † † 1 2 3 3 1 2 3 3 B2 none
• ◦ • ◦ 1 2 1 2 1 2 1 2 none 2 genes
• ◦ ◦ • 1 2 2 1 shared
• ◦ • † 1 2 1 3 1 2 1 3 none 1 gene
• ◦ † • 1 2 3 1 shared
• ◦ ◦ † 1 2 2 3
• ◦ † ◦ 1 2 3 2
• ◦ † � 1 2 3 4 1 2 3 4 none none
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2. ibd OF TWO NON-INBRED RELATIVES:
• For two non-inbred relatives, 7 states, 3 classes, 2 probs
κi = Pr(i genes ibd), κ2 + κ1 + κ0 = 1. Also
ψ =

1

2
κ2 +

1

4
κ1 + 0κ0 =

1

4
(2κ2 + κ1). If κ2 = 0, κ1 = 4ψ.

• Computing kinship ψ in known pedigrees:
Provided B is not C nor an ancestor of C
ψ(B,C) = (ψ(MB,C) + ψ(FB,C))/2

ψ(B,B) = (1+ fB)/2

= (1+ ψ(MB,FB))/2

Boundary conditions:
If A is a founder, and not an ancestor of C,
ψ(A,A) = 1/2 and ψ(A,C) = 0

FB MB

B C
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3. FROM KINSHIP TO ibd PROBABILITIES:
The following equations relate ψ and κi, i = 0,1,2.

ψ = (1/2)κ2 + (1/4)κ1 = (1/4)(1 + κ2 − κ0)

ψ(B1, B2) = (1/4)(ψ(M1,M2) + ψ(M1, F2)

+ ψ(F1,M2) + ψ(F1, F2))

κ2(B1, B2) = ψ(M1,M2)ψ(F1, F2) + ψ(M1, F2)ψ(F1,M2)

κ1(B1, B2) = 4ψ(B1, B2)− 2κ2(B1, B2)

κ0(B1, B2) = 1− κ1(B1, B2)− κ2(B1, B2)

• Example: Quadruple-half-first-cousins.
Then all four of ψ(M1,M2), ψ(F1, F2),
ψ(M1, F2) and ψ(F1,M2) are non-zero
without the children being inbred.
ψ(M1,M2) = ψ(F1, F2) =

ψ(M1, F2) = ψ(F1,M2) = 1/8

so κ2 = 1/32, ψ = 1/8,
κ1 = 4ψ − 2κ2 = 7/16,
κ0 = 1− κ2 − κ1 = 17/32

Dr Elizabeth A Thompson UNE-Short Course Feb 2011



Identity by descent in pedigrees and populations Session 15 - 4

4. HMM FOR ibd BETWEEN NON-INBRED INDIVIDUALS:
Z1

Zj−1 Zj Zj+1 Z�

Y1 Yj−1 Yj Yj+1 Y�

Y
∗(j−1)

Y
†(j+1)

• Purcell et al. (2007) use an HMM to estimate locus-specific proba-
bilities of sharing Zj = 0,1,2 ibd at locus j.

• For one pair haplotypes a: Pr(ibd) = (1/2)
m−1.

Recall half-sib ibd; R = 1− (ρ
2
+ (1− ρ)

2
)

Pr(1 → 0) = a10 = 1− (1− ρ)
m−2

(1−R).
Pr(0 → 1) = a01 = a10/(2

m−1 − 1).

For 2 pairs haplotypes a,b:

Pr(Zj+1 = 0 | Zj) =




a00b00

(a00b10 + a10b00)/2

a10b10





and similarly for other transitions.
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5. THE PLINK MODEL FOR GENOTPYES:

• Now need a model for Pr(Yj | Zj) where Yj is pair of genotypes at
locus j.

• Instead of the usual allele-frequency model, Purcell et al. (2007)
treat alleles as sampled without replacement from the set of alleles
of the individuals in the study.

• This has consequence that one allele being of type A decreases
the probability that another (non-ibd) allele is type A.

• This might make sense if the sample was the whole population:
Example 1: in an endangered species, what is the allele frequency?
Example 2: in the pedigree of a genetic isolate; when infer some
copies of an allele are ibd, this reduces the number of “independent
copies” of this allele.

• It does not make sense (to me) in context of a sample from a large
population.
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6. ibd ONLY BETWEEN INDIVIDUALS IS OVER-SIMPLIFICATION:

• BEAGLE: Divides into state of any-ibd or no-ibd between the indi-
viduals.

• PLINK: Allows only 0,1,2 ibd-between. No-ibd within.

• Am I as related to any of you
as my parents are related to eachother?

ibd within is at least as great as between
Prior screening for ibd within??– and cnv/deletions?

• PLINK: m, the “minimum number of meioses to coancestry”. is
estimated from considering genotypes as two “haplotype” pairs with
independent ibd, and fitting genome-wide sharing estimates of Z =

0,1,2 obtained from SNP-by-SNP method of moments??
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7. MODELS FOR GENOMIC IBD ESTIMATION:

Leut. PLINK Brow Thom
Data structure 1 ind 2 ind 2 chr/ind more!
Phased chromosomes No No Yes/No Yes
Genotypic data Yes Yes No/Yes Yes
Error allowed Yes No No/Yes Yes
Linkage disequilibrium No No Yes No?
Multiple chromosomes jointly No No∗ No∗∗ Yes
•Leut is Leutenegger et al. (2003); less dense data.

ibd model and error model of Leut can be extended to multiple
genomes. HMM structure can be extended to include LD, but ....

• PLINK is Purcell et al. (2007)
∗Models 2 individuals, but allows only 2,1,0 ibd between, not within.

•Brow is Browning (2008) and Browning and Browning (2010).
**: 2 ibd states only. Includes LD, but LD reflects coancestry;
Do we want to condition out this LD ??

•Thom is Thompson (2008) and Thompson (2009)
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8. THE FOUR GENES OF TWO INDIVIDUALS– AGAIN:
ibd pattn ibd ibd state descriptions
B1 B2 label group partition ibd within “Ewens”
1 2 3 4 of genes & between (a1, a2, a3, a4)

• • • • 1 1 1 1 1 1 1 1 (1,2,3,4) 1, 1, 1 (0,0,0,1)
• • • ◦ 1 1 1 2 1 1 1 2 (1,2,3)(4) 1, 0, 1 (1,0,1,0)
• • ◦ • 1 1 2 1 (1,2,4)(3) (1,0,1,0)
• ◦ • • 1 2 1 1 1 2 1 1 (1,3,4)(2) 0, 1, 1 (1,0,1,0)
• ◦ ◦ ◦ 1 2 2 2 (1)(2,3,4) (1,0,1,0)
• • ◦ ◦ 1 1 2 2 1 1 2 2 (1,2)(3,4) 1, 1, 0 (0,2,0,0)
• • ◦ † 1 1 2 3 1 1 2 3 (1,2)(3)(4) 1, 0, 0 (2,1,0,0)
• ◦ † † 1 2 3 3 1 2 3 3 (1)(2)(3,4) 0, 1, 0 (2,1,0,0)
• ◦ • ◦ 1 2 1 2 1 2 1 2 (1,3)(2,4) 0, 0, 2 (0,2,0,0)
• ◦ ◦ • 1 2 2 1 (1,4)(2,3) (0,2,0,0)
• ◦ • † 1 2 1 3 1 2 1 3 (1,3)(2)(4) 0, 0, 1 (2,1,0,0)
• ◦ † • 1 2 3 1 (1,4)(2)(3) (2,1,0,0)
• ◦ ◦ † 1 2 2 3 (1)(2,3)(4) (2,1,0,0)
• ◦ † ◦ 1 2 3 2 (1)(2,4)(3) (2,1,0,0)
• ◦ † � 1 2 3 4 1 2 3 4 (1)(2)(3)(4) 0, 0, 0 (4,0,0,0)
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9. MODEL FOR POPULATION ibd AT ONE LOCUS:

• At least, we must consider the genotypes of two individuals, and
hence ibd among 4 genomes.

• Marginal multigene ibd probabilities from Ewens’ sampling formula.
(Balding and Nichols, 1994). Model for allelic variation, in which
genes descended from the same mutation event are same allele: the
mutation defines the ibd set of genes.

• In a sample size n, let ai be the number of ibd groups of size i.
Then the number of ibd groups is k =

�
ai, n =

�
iai

πn(a1, ..., an) =
n!β

n−k
(1− β)

k−1

(1 + β)(1 + 2β)....(1 + (n− 2)β)

n�

j=1

(j
ajaj!)

−1

• Here π2(a2 = 1) = P (2 genes ibd) = β = 1/(1 + θ):
“Ewens’ θ”.

Dr Elizabeth A Thompson UNE-Short Course Feb 2011



Identity by descent in pedigrees and populations Session 15 - 10

10. POPULATION ibd OVER THE GENOME (Thompson, 2008):

• Generalization to n chromosomes of Leutenegger et al. (2003)
model. (Without details, as we will see a better model soon.)

• For a given chromosome, in relation to others, let rate of gain of ibd
be g and rate of loss be h, as proceed along the chromosome.
Let g/h = β/(1− β).

• Permitted transitions limited; for n = 4, 15 × 15 ‘transition rate
matrix Q has many 0s

• Allow all transitions by combining with ”random changes” model:

Q
†
= (1− δ)Q+ δα(−I + 1π�

)

• If Q has the equilibrium dsn π, so does Q
†. Allowing any transition,

but with small probability, will let the data speak. Want to approx real
process, but real process is complex.

• Model is still Markov when reduced to 9 × 9 matrix for genotypic
states.
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11. INFERRING ibd FROM POPULATION DATA
A simulation study: Glazner et al. (2010):
• Simulated descent of founder chromosomes in ∼ random mating
population of 7000 individuals over 200 generations.
• Output: FGL segments in current individuals over a 2 × 10

8bp
chromosome. Gives many small (∼ 0.5Mbp) segments of ibd among
current individuals, and larger ones among closer relatives.
• Real data: 1900 unrelated male X-chromosomes of Framingham
Heart Study (FHS). Naturally phased, Good size chromosome.
• Take out SNPs with MAF ≤ 0.05. Take out 3Mbp around cen-
tromere. Result: 7000 SNPs over 140 Mbp (avg. 50 per Mbp), real
LD, real freq., real locations.
• For sample of current individuals, assign a different random FHS
X-chromosome to each FGL appearing in the sample.
• Run the ibd estimation program on sets of 4 chromosomes (2 in-
dividuals). Output ibd probs by SNP; Call criterion ≥ 0.9 for one
state.
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12. INFERRING ibd FROM POPULATION DATA: RESULTS:

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mbp

Fr
ac

tio
n 

of
 m

ar
ke

rs
 c

or
re

ct
 w

ith
in

 s
eg

m
en

ts

0 0.5 1 1.5 2 2.5 3

Genotypic

Haplotypic

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mbp

Fr
ac

tio
n 

of
 m

ar
ke

rs
 c

or
re

ct
 w

ith
in

 s
eg

m
en

ts

0 0.5 1 1.5 2 2.5 30 0.5 1 1.5 2 2.5 3

Genotypic

Haplotypic

●

●
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45 pairs.
≈900 ibd segs.

By length of true ibd seg-
ment in simulated popu-
lation, the proportion of
markers within each seg-
ment that:
(a) Detect any ibd among
the 4 haplotypes.
(b) Detect correct state of
ibd.
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ibd among multiple chromosomes

1. MODELS FOR GENOMIC IBD ESTIMATION
2. MODEL FOR POPULATION ibd AT ONE LOCUS
3. SPECIFICATION OF ibd STATES AS PARTITIONS
4. A MODEL FOR PARTITIONS ALONG A CHROMOSOME
5. ibd via COALESCENT OF THE SAMPLE
6. COMPARISON: COALESCENT vs ibd PROCESS
7. MCMC OVER PARTITIONS
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1. MODELS FOR GENOMIC IBD ESTIMATION:

Leut. PLINK Brow Thom
Data structure 1 ind 2 ind 2 chr/ind more!
Phased chromosomes No No Yes/No Yes
Genotypic data Yes Yes No/Yes Yes
Error allowed Yes No No/Yes Yes
Linkage disequilibrium No No Yes No
Multiple chromosomes jointly No No∗ No∗∗ Yes
•Leut is Leutenegger et al. (2003); less dense data.

ibd model and error model of Leut can be extended to multiple
genomes. HMM structure can be extended to include LD, but ....

• PLINK is Purcell et al. (2007)
∗Models 2 individuals, but allows only 2,1,0 ibd between, not within.

•Brow is Browning (2008) and Browning and Browning (2010).
**: 2 haplotypes only. Includes LD, but LD reflects coancestry;
Do we want to condition out this LD ??

•Thom is Thompson (2008) and Thompson (2009)
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2. MODEL FOR POPULATION ibd AT ONE LOCUS:

• At least, we must consider the genotypes of two individuals, and
hence ibd among 4 genomes.

• Marginal multigene ibd probabilities from Ewens’ sampling formula.
(Balding and Nichols, 1994). Model for allelic variation, in which
genes descended from the same mutation event are same allele: the
mutation defines the ibd set of genes.

• In a sample size n, let ai be the number of ibd groups of size i.
Then the number of ibd groups is k =

�
ai, n =

�
iai

πn(a1, ..., an) =
n!β

n−k
(1− β)

k−1

(1 + β)(1 + 2β)....(1 + (n− 2)β)

n�

j=1

(j
ajaj!)

−1

=
θ
k

(1 + θ)(2 + θ)...(n− 1+ θ)

n�

j=1

(j
ajaj!)

−1

• Here π2(a2 = 1) = P (2 genes ibd) = β = 1/(1 + θ):
“Ewens’ θ”.
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3. SPECIFICATION OF ibd STATES AS PARTITIONS:

• For n chromosomes, simpler to specify as partitions:
Z = {1,2,4}, {3,7}, {5,9,10}, {6}, {8}

• Since for a given (a1, ..., an), the aj groups of size j may be per-
muted and the j elements of each of the aj groups of size j may
be permuted, the number of unordered labeled partitions with given
(a1, ..., an) is n!/

�
j
(j!)

ajaj!. Hence the probability of each un-
ordered labeled partition z of the n chromosomes is Ewens (1972)

πn(z) = πn(a1, ..., an)

�

j

(j!)
ajaj!/n!

= (Γ(θ)θ
k
/Γ(θ + n))

�

j

Γ(j)
aj

=
θ
k

(1 + θ)(2 + θ)...(n− 1+ θ)

�

j

((j − 1)!)
aj
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4. A MODEL FOR PARTITIONS ALONG A CHROMOSOME:

• Changing ibd along a chromosome: model of Chaozhi Zheng (a
version of the Chinese Restaurant Problem Tavare and Ewens (1997)):
need to maintain the constant n chromosomes.

• Changes in ibd occur at some rate per bp along the chromosome –
a normalized recombination rate ρ.

• First, a supplementary chromosome is proposed as a singleton with
probability θ/(θ+n), and to join each group of size j with probability
j/(θ + n).

• Next, one of the n+1 chromosomes is selected for deletion, and,
if not deleted, the supplementary chromosome is given the identity of
the deleted chromosome.

• A wider class of transitions.
Maintains the equilibrium distribution.
Remains Markov when reduced to genotypic states.
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5. ibd via COALESCENT OF THE SAMPLE:

0

1 2 3 4 5 6

t1

t2

• An alternative (more exact) way to
view ibd of a sample of chromosomes is
through the coalescent Hudson (1991).
• At any point in the genome the coa-
lescent is simply the ancestral tree of the
chromosomes, and we can measure ibd
relative to some past time.

At t1: {{1,2,3}, {4,5}, {6}}
At t2 {{1}, {2,3}, {4,5}, {6}}

Varying time, changes the ibd groups.
• Along a chromosome, the coalescent
changes due to recombination events,
and we have the ancestral recombina-
tion graph (ARG); this has been approxi-
mated by a Markov process (McVean and
Cardin, 2005).
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6. COMPARISON: COALESCENT vs ibd PROCESS:

• Given the number of ibd groups, the partition among groups in co-
alescent and Ewens’ sampling formulae are the same.

• The number of ibd groups, at any past time, has smaller variance
than the number given by Ewens’ sampling formula; ok as prior?

• Partitions under ibd model:

If {{1,4,5}, {2}, {3,6,7}, {8,11,12}, {9,10}} is state 1. Then
{{1,4,5}, {2,3,6,7}, {8,11}, {9,10,12}} is 2-step change,

Either of these steps could occur as changes in the ARG.

• Consider {{1,2,6,7}, {3,4,9}, {5,8,10}} and
{{1,2,6,7}, {3,4,5,8,9,10}}.

These are only one coalescent event away, but are result of three
chromosomes moving (3 steps) in ibd process.

• If ibd levels low, not so much a problem; for high levels of ibd ... ??
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7. MCMC OVER PARTITIONS:

• Data are SNP alleles along n haplotypes (phased).

• For larger numbers of chromosomes (e.g. n = 20) cannot do
HMM computations; far too many ibd states!

• Chaozhi Zheng has implemented MCMC over partitions over (small
regions) of chromosome (200 SNPs), updating ibd state at 5-SNP
blocks of SNP positions, conditional on flanking states.

• He uses same error model as Leutenegger et al. (2003): an ibd
group of chromosomes will have some allelic type. Each chromo-
some in the group may be observed as of independent allelic type
with probability ε.

• Priors on θ (= (1− β)/β), ε, and “recombination rate” ρ.

• Update ibd partition Z over chromosome, in blocks, given ρ,θ,ε.
Update ρ,θ,ε given Z over chromosome and data.
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Pedigrees in populations

1. WHY PEDIGREES?
2. ibd IN PEDIGREES
3. ONE LARGE PEDIGREE OR THREE FAMILIES?
4. THE ibd GRAPH ON A PEDIGREE: ONE LOCUS
5. CHANGES IN ibd GRAPH ALONG A CHROMOSOME
6. ibd GRAPHS WITHIN AND BETWEEN FAMILIES
7. MARKER AND TRAIT DATA ON PEDIGREES
8. UKNOWN ANCESTRY IN PEDIGREES
9. ibd IN PEDIGREES: MEIOSIS INDICATORS
10. ibd IN PEDIGREES: THE MARKOV MODEL
11. ibd IN PEDIGREES: THE HMM
12. ibd IN PEDIGREES: THE MARKER MODEL
13. THE FACTORED HMM: INDEP MEIOSES
14. ibd IN LARGE PEDIGREES: MCMC
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1. WHY PEDIGREES?:

• The issue is not pedigrees vs population, but whether the pedigree
is known.

*-2mm • A pedgree simply provides a prior for the ibd among a set of
individuals.

• Compared to our population priors on ibd, it is a very informative
prior, but a very constraining prior.

• Where the pedigree is known, and individuals observed, we should
use it.

• If there are multiple generations unobserved, it is likely more effec-
tive to use a population model (even if we think we know the pedi-
gree).

• Pedigrees can provide useful phase information, and so improve
population-based ibd inferences.
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2. ibd IN PEDIGREES:

• In a pedigree: ibd is well-defined, relative to the founders, and can
be inferred by pedigree analysis methods.

• In a population: ibd is defined, relative to some founder population
or time-point (??) and can be inferred using a population model for
changing ibd along a chromosome.

• Whether in pedigrees or populations. allelic similarity is a reflection
of ibd.

• Whether in a pedigree or a population, (closer) relatives are similar
because they have (more) ibd genome

• Pedigree-based ibd inferred within pedigrees can be combined with
population-based ibd inferred between pedigrees,
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3. ONE LARGE PEDIGREE OR THREE FAMILIES?:

• Details of the ancestral pedigree are surely wrong/biased.
We want to use the ibd information, but not the ancestral pedigree.
• 1990s data were insufficient for between-family inference of ibd.

With modern data, we could infer ibd among families
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4. THE ibd GRAPH ON A PEDIGREE: ONE LOCUS:

FGL = founder genome label.1,2 3,49,1513,14

5,6 11,12

G

7,16

K V

8,10

A B JD F

E H U W

C

13 2 9

6 4 8

15 1 7 10

B,J A

E D G

C

FH

K W

VU

(C has two copies of FGL ”6”)
•Nodes are (unlabeled) ibd genome.
•Edges are (labeled) observed individuals.

•Only ibd matters, not (labeled) founder origins (FGL), and no longer
the pedigree once ibd is known/inferred from marker data!
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5. CHANGES IN ibd GRAPH ALONG A CHROMOSOME:
13 2 9

6 4 8

15 1 7 10

B,J A

E D G

C

FH

K W

VU

13 2 9

6 4 8

15 7 10

B,J A

E D G

C

FH K

W

VU

13 2 93

6 4 8

15 7 10

BJ A

E D G

C

FH K

W

VU

Recomb in meiosis to K. Recomb in meiosis to J.
• Recombination events change the nodes present in observed indi-
viduals, and hence the structure of the ibd graph. The edges are the
same, but may connect different nodes. Nodes may appear/disappear.
(Nodes labeled for convenience only.)

• Changes are few (on bp scale); recall in any 1 meiosis, crossovers
occurs at ∼ 10

8 bp, or once per 100 Mbp per meiosis.

• Components of the ibd graph tend to be small, when only current
generation(s) observed for trait.
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6. ibd GRAPHS WITHIN AND BETWEEN FAMILIES:

• Within families, recombinations
change the gene ibd graph along a
chromosome.
• There may be ibd between
founders in a given family,
• ... and/or between founders of dif-
ferent families.

• Generally, such links will be few and sparse, but, with ascertain-
ment, several families might share ibd at some points.

• Again components of these graphs are not large/complex.

• Again, the component graphs are slowly varying (on bp scale).
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7. MARKER AND TRAIT DATA ON PEDIGREES:

A B

C D E F

M1

M2

M3

M4

Trt?

M5

M6

M7

• 22 kids in 6 sibships, observed for markers and trait.
• Markers at known locations. Where is DNA affecting trait?
• Simulate ibd, trait data, and marker sets (all with same ibd).
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8. UKNOWN ANCESTRY IN PEDIGREES:

A B

C D E F

A B

C D E F

• Instead of knowing the whole pedigree, we might know only the
three pairs of cousinships, or maybe even only the six sibships.
• How much information is lost knowing only the subpedigrees?
• Can we regain lost information by inferring the ibd between sub-
pedigrees?
• How dense/informative do we need the markers to be to do this?
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9. ibd IN PEDIGREES: MEIOSIS INDICATORS:

For multiple loci, j, j = 1, . . . , l, it is hard to work directly with ibd.
Instead we define:

Si,j = 0 if gene at meiosis i locus j is parent
�
s maternal

= 1 if gene at meiosis i locus j is parent
�
s paternal.

For convenience, we define

S•,j = {Si,j; i = 1, . . . ,m}, j = 1, . . . , l

Si,• = {Si,j; j = 1, . . . , l}, i = 1, . . . ,m

where m is the number of meioses in the pedigree, and l the number
of loci along the chromosome.

Dependence of the {Si,j}
Si,• are independent over i, i = 1, ...,m.
Si,j are independent for loci on different chromosome pairs
S•,j are dependent among loci j on the same chromosome pair
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10. ibd IN PEDIGREES: THE MARKOV MODEL:

• Note S•,j are Markov (approx); ibd is not.

• When we switch from ibd we are still ”close”
to a configuration that gives ibd.
• When we have been non-ibd over many
markers, likely we have several recombination
switches that must get reset to the lineage in
order to regain ibd.
• ibd segments are clustered (Donnelly,
1983).
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11. ibd IN PEDIGREES: THE HMM:
S•,1 S•,j−1 S•,j S•,j+1 S•,!

Y•,1 Y•,j−1 Y•,j Y•,j+1 Y•,!

Y
∗(j−1)

Y
†(j+1)

Pr(S) = Pr(S•,1)

l�

j=2

Pr(S•,j | S•,j−1)

Pr(Y | S) =

��

j=1

Pr(Y•,j | S•,j).

Note that, given S•,j,
Y

∗(j−1)
, Y•,j, and Y

†(j+1) are mutually independent.

Also, given S•,j, Y
∗(j−1)

, Y•,j, and S•,j+1 are independent.
Also, given S•,j, Y

†(j+1)
Y•,j, and S•,j−1 are independent.
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12. ibd IN PEDIGREES: THE MARKER MODEL:
Sobel and Lange (1996); Kruglyak et al. (1996)

• Pr(Y | J(S)) is the sum over all possible assignments A of allelic
types to genes of the product of allele frequencies qa(k) of assigned
alleles a(k): Pr(Y | J(S)) =

�
A

�
k
qa(k).

• Pr(Y•,j | S) =
�

Pr(Aj): sum over all Aj consistent with Y•,j.

13 2 9

6 4

15

B,J A

E D G

C

FH

• Suppose A, B, J are all a1a4, G is a1a6,
D is a4a6, E is a4a2, C is a2a2, F is a3a6,
and H is a2a3.
• Then 2 is a1; 9, 13 are a4; 4 is a6; 6 is a2;
15 is a3. The probability is q1 q2 q3 q

2

4
q6.

• There are always 2, 1, or 0 possible Aj.
• Probabilities multiply over disjoint components.
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13. THE FACTORED HMM: INDEP MEIOSES:

If there are m meioses on the pedigree, then S•,j can take 2
m val-

ues. Computations involve, for each locus, transitions from the 2
m

values of S•,j to the 2
m values of S•,j+1. Computation is order L22m.

For Genehunter, for a pedigree with n individuals, f of whom are
founders, m = 2n − 3f , and m ≤ 16. Additionally, for each lo-
cus and for each value of S•,j, we must compute Pr(Y•,j | J(S•,j)).
Although this is easy for given S•,j, this limits size of pedigree.

Actually better algorithms using independence of meioses give us a
factored HMM which means we can get an algorithm of order mL2

m

but is is still exponential in pedigree size.
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14. ibd IN LARGE PEDIGREES: MCMC:

• The independence of meioses Si,• and Markov dependence of in-
heritance vectors S•,j provide good MCMC block Gibbs samplers:

meioses

loci

data ij• • •
•

• •
Y• ,j

L-sampler: resample S•,j given
Y and S•,j �, j �= j

� Heath (1997).
Uses pedigree peeling.

M- (or MM-) sampler: resample
{Si,•; i ∈ I

∗} given Y
and {Si�,•; i

� �∈ I
∗}

Uses HMM peeling.
Tong and Thompson (2008)

• Computations practical if assume S•,j Markov over chromosome.
Pr(Y•,j | S•,j) is trivial for markers observed without error.

• L-sampler irreducible; M-sampler mixes with tight linkage: use in
combination!!.
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Lod scores within and between
pedigrees

1. THE LINKAGE LOD SCORE VIA ibd
2. MONTE CARLO LOD SCORES
3. LOD SCORES FOR A QUANTITATIVE TRAIT
4. THE LOD SCORES FROM 1000 REALIZATIONS OF S | YM

5. UNKNOWN COANCESTRY IN PEDIGREES
6. 1000 LOD SCORES CONTRIBUTIONS ON SUBPEDIGREES
7. PED-CD SWITCHING AT MARKERS 53-62
8. WITHIN- VS BETWEEN-PEDIGREE INFORMATION
9. BETWEEN-PEDIGREE CONTRIBUTIONS TO THE LOD SCORE
10. BETWEEN COUSINSHIP true AND INFERRED inferred ibd
11. PUTTING THE ibd TOGETHER
12. ibd GRAPHS AND LOD SCORES AT MARKER 100
13. ibd GRAPHS AND LOD SCORES AT MARKER 160
14. CONCLUSIONS
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1. THE LINKAGE LOD SCORE VIA ibd:

• The lod score is a tool to map the genes affecting a trait against a know
genetic marker map. For trait data YT and marker data YM

lod = log10

Pr(YT ,YM ;Γ)

Pr(YT ,YM ;Γ0)

where Γ0 is Γ with no T/M linkage

= log10

Pr(YT ,YM ;Γ)

Pr(YT ;Γ)Pr(YM ;Γ)
= log10

Pr(YT | YM ;Γ)

Pr(YT ;Γ)

• Compute by summing over ibd pattern among individuals observed
for trait at each hypothesized trait location:

Pr(YT | YM ;Γ) =

�

ibdj

Pr(YT | ibdj;ΓT)Pr(ibdj | YM ;ΓM)

• Note ibd is inferred at location (or locations) hypothesized as affect-
ing the trait, but conditional on marker data jointly at all locations.
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2. MONTE CARLO LOD SCORES:

• Exact computation infeasible: instead, sample multiple realizations
of ibd across all locations j, given all marker data YM .
• Estimate of Pr(YT | YM ;Γ) is given by averaging Pr(YT | ibd)
over the sampled realizations of ibd.

• Computation of Pr(YT | ibd) is simple
using the ibd-graph.
• Components of ibd graphs are small,
relative to pedigrees.
• In fact, we can compute Pr(YT | ibd)
over joint ibd-graphs for several genome
locations– complex trait models.

13 2 9

6 4 8

15 1 7 10

B,J A

E D G

C

FH

K W

VU
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3. LOD SCORES FOR A QUANTITATIVE TRAIT:

Position (Mbp)

lo
d 

sc
or

e

0 20 40 60 80 100

−2
0

2
4

6 T
50 SNPs
201 SNPs
13 STR

13 STR
50 SNPs

201 SNPs

• Each based on 1000 realizations of chromosomal ibd sampled at
spacing 30 MCMC scans.
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4. THE LOD SCORES FROM 1000 REALIZATIONS OF S |YM :

Position (Mbp)

lo
d 
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or

e
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1000 lod contributions on dataset 50 SNPs

Position (Mbp)
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1000 lod contributions on dataset 13 STR

Position (Mbp)
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1000 lod contributions on dataset 201 SNPs

Position (Mbp)
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d 
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e
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−2
0

2
4

6

Lod score for the true ibd

• 50 SNPs; not enough precision • 13 STR; not enough resolution
• 201 SNPs still some uncertainty, but close to ”true” lod score.
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5. UNKNOWN COANCESTRY IN PEDIGREES:

A B

C D E F

A B

C D E F

• Instead of knowing the whole pedigree, we might know only the
three pairs of cousinships, or maybe even only the six sibships.
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6. 1000 LOD SCORES CONTRIBUTIONS ON SUBPEDIGREES:

Position (Mbp)
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1000 lod contributions on Ped EF for 201 SNPs
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7. PED-CD SWITCHING AT MARKERS 53-62:

Marker 34 to 58.

C2,C4

C1

C3

D1,D3

D2D4,

Single switch in D4 causes
lod score change from -0.45
to +0.47; D4 has low trait
value, as do cousins C1,
and lowish C2, C4. But C3,
D2, and D3 have high val-
ues. D1 intermediate.

Marker 59 to 80

C2,C4

C1

C3

D1,D3

D2

D4

• Left ibd is clear to marker 52. Right ibd is clear from marker 62.
• SNP markers 53 to 61 uninformative about this ibd
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8. WITHIN- VS BETWEEN-PEDIGREE INFORMATION:

Position (Mbp)

lo
d 

sc
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6 Sum of Subpedigree lods

Position (Mbp)
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6 1000 lod contributions on dataset 201 SNPs
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9. BETWEEN-PEDIGREE CONTRIBUTIONS TO THE LOD
SCORE:

Consider 4 positions at which there is almost no uncertainty in ibd:
• SNPs 65, 100, 125, 160
• Positions 32, 50, 62, 80 Mbp.

marker Overall Sum of cousinships
SNP-65 1.342 1.336 ∼ no ibd
SNP-100 3.793 3.103 ibd concordant with trait
SNP-125 0.908 0.907 ∼ no ibd
SNP-160 -0.089 1.416 ibd discordant with trait
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10. BETWEEN COUSINSHIP true AND INFERRED inferred
ibd:
• Using the 201-SNP marker data to infer ibd between cousinships.
• Require a 0.9 probability of ibd state to call the ibd.

 

 

A−1 A−2 A−3 B−1 B−2 B−3
C−1

C−2

C−3

C−4

D−1

D−2

D−3

D−4
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11. PUTTING THE ibd TOGETHER:

A B

C D E F

A B

C D E F

marker Overall Sum of Sum of Combined
Pedigree 3 cousinships 6 sibships using inferred ibd

SNP-65 1.342 1.336 0.5774 1.340
SNP-100 3.793 3.103 1.4934 3.794
SNP-125 0.908 0.907 0.8603 0.911
SNP-160 -0.089 1.416 0.2425 -0.080
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12. ibd GRAPHS AND LOD SCORES AT MARKER 100:

A3
A1

A2

B3B2

B1C3

C1

C2,C4

D2

D3

D4

D1

e.g. A3 is kid-3 in sibship A
high/normal/low trait values

1.493

3.10

A

0.146

B

0.250

C

0.325

D

0.271

E

0.217

F

0.283

A B

0.396

0.979

C D

0.596

1.10

E F

0.500

1.02

3.10

3.79
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13. ibd GRAPHS AND LOD SCORES AT MARKER 160:

A3
A1

A2

B3

B1,B2

C1,C3,C4

D3

D1

D4

D2

C2

e.g. A3 is kid-3 in sibship A
high/normal/low trait values

0.242

1.42

A

0.146

B

0.227

C

-0.329

D

-0.377

E

0.240

F

0.335

A B

0.373

0.938

C D

-0.706

-0.632

E F

0.675

1.11

1.42

-0.086
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14. CONCLUSIONS:

• In analyzing the genetics of a trait only the ibd matters.

• ibd is ibd whether in pedigrees or in populations.

• ibd in pedigrees and in populations can be inferred from marker
data.

• SNPs at a density of 0.5 Mbp leave little uncertainty in ibd in pedi-
grees, and permit inference of ibd between pedigrees.

• For more remote coancestry (smaller ibd segments) we need more
SNPs (e.g. 50 per Mbp), but still 10 times less than what exists.

• ibd in populations is NOT a nuisance (cf. association studies).

• Inferred ibd can be used to give increased power for linkage detec-
tion, and increased resolution of causal loci.
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Identity by descent in pedigrees and populations Software - 0

Available software and documentation

1. PLINK
2. BEAGLE
3. ibd INFERENCE WITH BEAGLE
4. MORGAN 2.9
5. MORGAN 3.0.1 with IBD HAPLO
6. UPCOMING: IBDgraph and IBD Merge
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1. PLINK:

• PLINK Download site
http://pngu.mgh.harvard.edu/ purcell/plink/gplink.shtml

• PLINK documentation link
http://pngu.mgh.harvard.edu/ purcell/plink/dist/plink-doc-1.07.pdf

• Problem with PLINK is that source is not available: what is im-
plemented is not always what is in published papers (e.g. for ibd
inference using pairs of individuals).
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2. BEAGLE:

• BEAGLE download site:
http://faculty.washington.edu/browning/beagle/beagle.html

• BEAGLE documentation:
http://faculty.washington.edu/browning/beagle/beagle 3.326Dec10.pdf

• Great package, well documented, but again no source.
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3. ibd INFERENCE WITH BEAGLE:

• This information was supplied by Brian Browning.

• Example command:
java -Xmx1000m -jar beagle.jar unphased=ibd.region.bgl
markers=ibd.region.markers ibdpairs=ibd.region.ibd.pairs missing=N
gprobs=false out=ibd verbose=true

• To generate IBD probabilities,
1) You must include a markers file (specified with the with genetic dis-
tances in cM positions (markers file format is described in the Beagle
docs).
2) The .bgl file must contain a sample identifier line (”I id ...”).
3) You must include the ibdpairs= argument.
4) The specified ibd pairs file must contain two white-space-delimited
sample identifiers per line.
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4. MORGAN 2.9:

• Main software page:
http://www.stat.washington.edu/thompson/Genepi/pangaea.shtml

• MORGAN 2.9 download link
.../Genepi/MORGAN/Morgan.shtml

• MORGAN 2.9 tutorial and examples
Download tutorial /examples:

.../Genepi/MORGAN/Morgan.shtml#tut
Online tutorial with link to examples file:

.../Genepi/MORGAN/morgan-tut-html-v29/morgan-tut.html

• With MORGAN source code is freely available.
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5. MORGAN 3.0.1 with IBD HAPLO:

• MORGAN 3.0.1 download site
http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml

• MORGAN 3 changes; documented, but no tutorial. (tlocs etc.)
MORGAN-3 is MUCH better.

• MORGAN-3 includes IBD HAPLO.
.../thompson/Genepi/MORGAN/ibd haplo.tar.gz

• IBD Haplo README:
.../thompson/Genepi/MORGAN/README ibdhap
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6. UPCOMING: IBDgraph and IBD Merge:

• IBDgraph download site and README file
See main software page:
http://www.stat.washington.edu/thompson/Genepi/pangaea.shtml

• IBDgraph examples,

• IBD Merge – not released yet, but ...
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