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INTRODUCTION TO 
BAYESIAN MODELLING

• Basics of Bayesian Inference
• Markov chain Monte Carlo
• Introduction to BUGS
• Case studies: mixture models, meta-analysis
• Convergence diagnostics
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Let’s start at the beginning
Recall probability statements:

P(A) is probability of event A
P(AB) is joint probability of events A and B
P(A|B) is probability of A conditional on B
P(AB) = P(A|B)P(B) = P(B|A)P(A)
So, P(A|B) = P(B|A)P(A) / P(B) 

Think of: A=θ (unknown), B=y (known ‘data’)
So P(θ|y) = P(y|θ) p(θ) / p(y)

This is Bayes’ Rule!



Example
Human chromosomes: males XY, females XX
Haemophilia exhibits X-chromosome-linked recessive 

inheritance, so a male who inherits the gene on the X 
chromosome is affected but a female who carries the 
gene on only one  of the two X chromosomes is 
unaffected. The disease is usually fatal for women who 
inherit two such genes, and this is very rare, since the 
frequency of occurrence of the gene is low in human 
populations.

Source: BDA



Example: the prior distribution
A woman has an affected brother, which implies that her 

mother must be a carrier of the haemophilia gene with 
one ‘good’ and one ‘bad’ haemophilia gene. 

Her father is not affected.
Thus the woman has a 50-50 chance of having the gene.
Unknown quantity of interest: whether the woman is a 

carrier of the gene (θ=1) or not (θ=0).
Based on the information provided so far, the prior 

distribution for the unknown θ is
Pr(θ=1) = Pr(θ=1) = 1/2



Example: model and likelihood
We need some data: the woman has two sons, neither 

of whom is affected.
Let yi=1 or 0 denote affected/unaffected son.
The outcomes of the two sons are exchangeable and, 

conditional on the unknown θ, are independent: we 
assume the sons are not identical twins.

→likelihood function 
Pr(y1=0, y2=0|θ=1) = (0.5)(0.5) = 0.25

Pr(y1=0, y2=0|θ=0) = (1)(1) = 1
(OK, there is a nonzero probability due to mutation but 

we will ignore this)



Example: posterior distribution
Pr(θ=1|y)  = p(y|θ=1)p(θ=1) / p(y)

p(y) = p(y|θ=1)p(θ=1) + p(y|θ=0)p(θ=0)
= Σ p(y|θ)p(θ)

So:
Pr(θ=1|y) = (0.25)(0.5) / {(0.25)(0.5)+(1.0)(0.5)}

= 0.125 / 0.625 = 0.20
In terms of odds:
Prior odds of woman being a carrier is 0.5/0.5=1.
Likelihood ratio based on information about unaffected sons is 

0.25/1 = 0.25
So posterior odds are 0.25 × 1 = 0.25.
Converting back to a probability: 0.25/(1+0.25) = 0.2



Example: adding more data
Suppose the woman has a third son, who is also 

unaffected. 
The entire calculation does not need to be redone: we can 

use the previous posterior distribution as the new prior 
distribution to obtain:

Pr(θ=1|y)  = (0.5)(0.2) / { (0.5)(0.2)+(1)(0.8)} 
= 0.111



Example: your turn!

• Following from the last slide, if the third son is
affected, show that the posterior probability of the 
woman becoming a carrier is 1 (again ignoring the 
possibility of a mutation).

• Going back to the information from the first two 
sons, what happens if the prior probability that the 
woman is a carrier is 0.3? What about 0.9?

• What are the posterior odds corresponding to your 
calculations?



So this is Bayesian Modelling:
Posterior ∝ Prior × Data

• Likelihood for data y given unobserved  θ:   p(y|θ)
θ can be parameters, missing data, latent variables 
etc

• Prior for θ:  p(θ)
• Want posterior distribution of θ:  p(θ|y)
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Bayesian Prediction: similar logic
Before the data y are considered, the distribution of the 

unknown but observable y is
p(y) = ∫ p(y,θ) dθ = ∫ p(θ) p(y|θ) dθ

(marginal distribution, prior predictive dist.)
After the data y have been observed, we can predict an 

unknown value y-, from the same process (posterior 
predictive distribution)

p(y-|y)  = ∫ p(y-,θ|y) dθ
= ∫ p(y-|θ,y) p(θ|y) dθ
= ∫ p(y-|θ) p(θ|y) dθ

(because y and y- are conditionally independent given θ)



Example: what is the probability 
of surgical failure (death) after 

cardiac surgery on babies?
Sample size (n=148) , deaths (y=8)



Example: Estimating a proportion
• Data: y successes from n independent trials, eg 18 

‘successes’ out of 148 animals in an animal experiment
• Unobserved: θ: proportion of successes
• Likelihood: p(y | θ) has Binomial distribution

• Prior: assume we ‘know nothing’ about θ, so we set a 
uniform prior θ~U[0,1]

• Posterior:

• Form of posterior: θ|y ~ Beta(y+1, n-y+1)
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The Beta Distribution
• Continuous distribution on [0,1]
• θ ~ Beta(α,β); α,β continuous; α>0, β >0 

• p(θ) ∝ K θα-1 (1-θ)β-1

K = constant = Γ(α+β) / Γ(α)Γ(β)
(Γ is a mathematical function)

• E(θ) = α/(α+β)  (“unbiased est.”)
Var(θ) = αβ / {(α+β)2(α+β+1)} 
mode(θ) = (α−1) / (α+β−2)          (“MLE”)

• What are the posterior expected value, variance 
and mode for our example?



Check out the Beta
• Match the plots to the distributions. What are the 

posterior means, modes and variances?
Beta(1,1)   Beta(2,2), Beta(100,100), Beta(2,1), Beta(10,20)
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What about prediction?

• With a uniform prior, the prior predictive distribution 
can be evaluated explicitly: all possible values of y
are equally likely, a priori.

• What about the outcome of one new trail, rather than 
a set of n new trials?

• Let y- be result of new trial, exchangeable with the 
first n.

Pr(y- =1|y) = ∫ Pr(y- =1|θ,y)p(θ|y)dθ
= ∫ θp(θ|y)dθ
= Ε(θ|y) = (y+1)/(n+2)

What is this for our example?



Posterior as a compromise
• Look at the mean and variance of θ:

E(θ) = E(E(θ|y));   var(θ) = E(var(θ|y)) + var(E(θ|y))
• The posterior variance is on average smaller than the prior 

variance, by an amount that depends on the variation in posterior 
means over the distribution of possible data. The greater this 
variation, the more the potential for reducing uncertainty wrt θ.

• The posterior mean is a compromise between the prior mean and 
the sample proportion. 
Confirm this in our example. 
What happens as the size of the data sample increases?

• General feature of Bayesian inference: posterior distribution is
centred at a point that represents a compromise between the prior 
information and the data, and the compromise is increasingly 
controlled by the data as the sample size increases.



Does a flat prior mean that I 
know nothing?

Prior be lie f function
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Effect of reparametrisation
Change from θ (proportion) to the odds (O) where O = θ /(1- θ)
Now O ranges from 0 to infinity
A flat prior for θ gives a different picture for the odds
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And similarly a flat prior for the odds would give 
a different picture for θ
“ignorance about θ” does not imply “ignorance about O”. 
The notion of “prior ignorance” may be untenable.



Conjugate priors

• It might be reasonable to expect the 
posterior distribution to be of the same form 
as the prior distribution. This is the 
principle of conjugacy

• A conjugate prior for a Binomial likelihood 
is a Beta distribution: the posterior is then 
also a Beta distribution



Conjugate priors



Back to the hospital example
• Likelihood: 

• Prior:

• Posterior:
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Prediction
“Posterior Predictive Density” of a future observation 

binomial example, n=20, x=12, a=1, b=1

θ

y~y

What is the posterior mean for our example, with a prior:
Beta(1,1) Beta(2,1) Beta(100,100)?



Example: Building the hierarchy

θ is the probability of tumour in a population 
of female lab rats that receive a zero dose of 
a drug (control).

• 70 Previous experiments:
0/20    0/20    0/20    0/19    1/18    16/52 etc

• Current experiment:
4/14   (4 out of 14 developed the tumour)

Reference: Gelman et al, Bayesian Data Analysis



Rat model:
• Data: Assume a binomial model for the number of 

tumours, given θ.
Data from experiments j=1,..,J, J=71

yj~Bin(nj,θj)
• Priors: For convenience, choose priors 

θ~Beta(α,β) . We don’t know α, β so we’ll put
a prior on these as well: p(α,β)

• Joint posterior: 

jji yn
J

j
j

y
jj

J

j
jp

ypppyp

−

=

−

=

− ∏∏ −−
ΓΓ
+Γ

∝

∝

)1()1(
)()(
)(),(

),,|(),|(),()|,,(

1

1

1

1 θθθθ
βα
βαβα

βαθβαθβαβαθ

βα



One study: Univariate Normal Model
Assume y = N(θ, σ 2); σ 2 is known variance.

• Likelihood:  p(y|θ) = (√2πσ)-1 e-.5(y-θ)2/σ2

• Prior: θ ~ N(µ0 ,τ0
2); µ0 ,τ0

2 specified
• Posterior: 

p(θ|y) ∝ exp( -.5 [(y-θ)2/σ2 + (θ−µ0)2/τ0
2]



In terms of precisions

• Likelihood:
y ~ Normal(θ, ν); ν2 known precision, ν2 = 1/σ2

• Prior:
θ ~ Normal(µ0, ω0); µ0, ω0 specified values

• Posterior: Normal with mean
E(θ |y) = ( µ0 ν2 + y ω0 ) / (ν2 + ω0 )
Var(θ |y) = ν2 + ω0

• Suppose that y = 2  and  ν2 = 1. 
What happens to the posterior mean and variance as the 
prior changes?



Normal model, n iid observations
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Normal model, unknown variance
• Likelihood:

y1,..,yn ~ Normal(θ, σ2); θ known, σ2 unknown variance
• Conjugate Prior:

σ2 ~ Inverse Gamma IG(v0,σ0
2)

(v0 = d.f.; σ0
2 = scale; equivalent to v0 observations with average 

squared deviation σ0
2)

• Posterior: σ2|y ~ Inverse-Chi-squared
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In terms of precisions:

• Likelihood:
y ~ Normal(θ, τ2); θ known, τ unknown 

precision
• Conjugate Prior:

τ2 ~ Gamma distribution Ga(v0,τ0)

• Posterior: τ2 |y ~ Gamma



Normal, mean and var unknown
• Prior: µ|σ2 ~ N(µ0, σ2/κ0)

σ2 ~ Inv-χ2(ν0,σ0
2)

• Posterior: p(µ,σ2|y) = N-Inv-χ2(µn,σn
2/κn; νn,σn

2)
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Sample from the joint distribution:

1. Sample from the marginal posterior 
distribution for σ2

2. Sample from the conditional posterior 
distribution for µ, given σ2
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(Note: the Gamma distribution)

• For interest, if θ~Gamma(α,β), with 
parameters α,β>0, then
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Complex models
• Repeated measures (irregular spacing)
• individual heterogeneity (frailty models)
• covariates at individual and group level
• errors in measuring responses
• errors in measuring covariates
• multiple instruments
• informative censoring
• binary, ordinal, response measures
• missing data
• spatial structure (disease mapping)
• familial aggregation



Historical note
In 17th and early 18th century, focus was on the ‘pre-data’ question: given θ, what are the 

various possible outcomes of the random variable y? Bayes and Laplace received 
independent credit as the first to invert the probability statement and obtain 
probability statements about θ, given observed y. 

In his famous paper in 1763 (unpublished in his lifetime) Bayes sought Pr(θ∈θ1,θ2)|y); his 
solution was based on a physical analogy of a probability space to a billiard table.

1. (Prior) A ball W is randomly thrown (uniform). Its position on the table is θ.
2. (Likelihood) A ball is randomly thrown n times. The value of y is the number of times 

it lands to the right of W.
Bayes then obtained Pr(θ∈θ1,θ2)|y) = ∫Bin(..)/p(y) and p(y)=1/(n+1), showing all possible 

values of y are equally likely a priori.
The numerator is an incomplete beta integral with no closed-form expression for large 

values of y. This presented difficulties for Bayes.
Laplace, independently ‘discovered’ Bayes’ theorem, and developed new analytic tools for 

computing integrals. He expanded the function around its maximum and evaluated 
the integral using a normal approximation. Based on 241945 girls and 251527 boys 
born in Paris from 1745 to 1770, he was ‘morally certain’ that θ<0.5 for the 
probability that a birth is female. (He obtained Pr(θ>0.5|y)=1.15x10-42)

Source: BDA



Thomas Bayes



Imagine

Imagine you're a Bayesian

It's easy if you try,

You just adopt a prior,

And the data updates $\pi$.

Statistics is so simple

With subjective probabilityyyyy -- ah-ah! ah ah...

Now imagine you're a frequentist,

Worrying about what might have been,

Spending your whole lifetime

Analyzing data you've never seen.

And if you want an interval,

You'll need a pivotal quantityyyyy -- ah-ah! ah ah...

You may say I sound like Nozer --

But I'm not the only one:

Every four years we all get together,

To talk, drink beer, and lie in the sun.
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