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Problem 1

Consider a breeding experiment resulting in 10
‘successes’ out of 100 (independent) trials. The
researcher has no real prior opinion about the
unknown probability of success 6.

1. Why would a Beta(1,1) prior for &be reasonable?
Sketch this distribution.

2. Write down the posterior distribution for 6.
3.  What 1s the posterior mean value for &?

4. Design a Metropolis algorithm to estimate 6.
(We wouldn’t do this 1n practice with this particular
example, because we know the answer analytically,
but this might be part of a larger problem.)



Solution

Beta(a=1,=1) 1s equivalent to the Uniform distribution.
p(0)y) ~ Beta(y+a, n-y+f3) = Beta(11,91)

since y=10, n=100

Beta(11,91) o« 619(1-6)*°

Posterior mean = (y+a)/(nto+) = 11/102 = 0.108
Consider [0,1] as a ‘circle’.

Initialise: 6(M=0.5

for (11n 2:1000)¢{

sample 0°~Uniform(60-D-.1, 60-D+ 1)

adjust: if 6">1 then 6= 0"-1; if 0°<1 then 0"= 1+06"
calculate A = p(07|y) / p(60-D|y) = (6%)19(1-6*)°° / 610(1-0)°
draw u~Uniform(0,1)

if u <A, take 00=0" | otherwise take 0W= Q-1
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Prior Beta(1,1)
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Beta(11,91)




# Metropolis algorithm for estimating p~Beta(a,b)
# results in matrix p:

# p[,1] = proposed values, p[,2] = accepted values, p[,3] = acceptance ratio

a 10 # parameters of Beta distribution
b 90

N 1000 # number of iterations
p_matrix(0,nrow=N,ncol=3) # store results

p[l1,1] 0.2 # initialise

p[1,2] 0.2

for (1 1n 2:N){ # loop

pold p[i-1,2] # current p
pnew_runif(1,pold-0.1,pold+0.1) # proposed p

if (pnew<0) pnew_1+pnew # adjust if proposed p <0 or >1

if (pnew>1) pnew_pnew-1

ratio_(pnew)"a*(1-pnew)”b/((pold)*a*(1-pold)"b)

u_runif(1,0,1) # decide if accept proposed value
if (u<ratio) p[i,2] pnew

if (u>=ratio) p[i,2] pold

pli,1]_pnew # store proposed value and ratio
p[i,3] ratio

¥



proposed
[1,] 0.16236505
[2,] 0.11019663
[3,] 0.08624814
[4,] 0.16400424
[5,] 0.15311573
[6.]
[7.]
[8.]
[9.]

6,] 0.02256085
7,1 0.13300017
8,1 0.05242903
9,1 0.10375305

[10,] 0.08013098
[11,] 0.03483840
[12,] 0.06088227

accepted

0.10448786
0.11019663
0.08624814
0.08624814
0.08624814
0.08624814
0.13300017
0.13300017
0.10375305
0.08013098
0.08013098
0.08013098

ratio

2.008007e-001
9.573174e-001
9.416614e-001
2.064788e-001
3.329064¢-001
6.450435e-004
6.732727e-001
2.694898e-001
1.652981e-001
7.849518e-001
1.824909¢-002
4.133978e-001




Min. Ist Qu. Median Mean 3rd Qu. Max.
0.0397 0.0900 0.1055 0.11 0.1276 0.2196




Problem 2

We are interested in the average milk yield (in litres/day) of a
new line of dairy cattle.

One way to model this 1s as follows.
Let milk yield  y~N(u,o?), with u and o2 unknown.

Based on previous experiments, set the following priors:
b~ N(po=10, 6%/x,)
K, represents ‘the equivalent number of prior
measurements’, so here we set k,=20.
o2 ~ Inv-y? (v;=2, 0,°=1).
o, is the ‘best guess’ at G2.
v, represents the ‘degrees of freedom’ (how much

we believe our estimate of G,%); the larger the value,
the stronger the belief.



Problem 2

Priors: p~N(p,=10, 6%/x,), x,=20.

o? ~ Inv-y? (vy=2, 6,°=1).

A sample of 100 animals from the new line gives a sample mean
milk yield of 10L/day with a sample standard deviation of 2L,

Ol ) =10,5° =4

Assuming that milk yield i1s normally distributed, write down
an appropriate likelithood and prior for this problem.

Develop a Gibbs algorithm to estimate the unknown mean
and variance of the distribution.



Solution
1. Sample
2. Sample p|o* y~N(u, 0% /K)

/un: ’u0+
KO—I—n K0+n

K =K,+n, v =Vv,+n

v ol =v,o,+(n-1)s"+

n n

(V—H,)

K,+n



w = 20/(20+100)x10 + 100/(20+100)x10 = 10
K, =20+100=120
v, =2+100=102

G,2= 2x1+99x4+20(100)/(20+100)(10-10)2/102
= 398/102 = 3.9

1. Sample 62 ~ Inv-%%(102,3.9)
2. Sample pu ~ N(10,6%/120)









ISSUES IN MODELLING

Choosing a prior
Initial values
Reparametrisation
Model checking
Model averaging
Other applications



Interpretations of Prior
Distributions

1. Based on previous experiments, physical
properties etc

2. Objective representations of what 1s rational to
believe about a parameter

3. As a subjective measure of what a particular
individual, “you,” actually believes



Care with ‘noninformative’ priors

* Central problem: specifying a prior distribution for a
parameter about which nothing is known

e If Hcan only have a finite set of values, 1t seems
natural to assume all values equally likely a priori

e This can have odd consequences. For example
specifying a uniform prior on regression models:

L (1], 121, 31, [4], [12], [13], [14], [23], [24], [34], [123], [124],
[134], [234], [1234]

assigns prior probability 6/16 to 3-variable models
and prior probability only 4/16 to 2-variable models



Uniform prior = ignorance?

* Natural to use a uniform prior, but 1f 0 1s
uniform, an arbitrary function of 0 1s not.

* Eg, earlier we saw that a uniform distribution
on a probability translates to a strong

assumption about the odds. Do we really
mean this?

* “1gnorance about 0” does not 1imply
“1gnorance about y”. The notion of “prior
ignorance” may be untenable.



The Jeffreys Prior

(single parameter)

 Jeffreys prior 1s arguably an objective prior. It
corresponds to the expected Fisher Information.
All parametrizations lead to the same prior.

(see Box and Tiao, 1973, Section 1.3)

» Jeffrey’s prior for a Binomial likelihood is a Beta
density with parameters 2 , 7.

* Other Jetfreys priors: Poisson(A): m(A) oc A71/2

Normal{(p): m{p)=1,p € R

Normal(c): w{o) =1/0,0 > 0




Non-informative priors

* May not want priors to be influential
 Distinguish
- primary parameters of interest

- secondary structure used for smoothing
etc.

» [ocation parameters (eg regression
coefficients): Normal (0, 0.0001)

- standard deviation of 100
- effectively a uniform prior



Non-informative priors (cont)

e Careful! An improper prior can give an improper
posterior distribution (distribution doesn’t integrate to
one, so 1sn’t a ‘real’ distribution, so estimates can’t be
trusted)

« Eg: Scale parameters (eg precision of random effects)
- at the second level of a hierarchy a uniform prior
gives an improper distribution
e Options:
- “qust proper” eg Gamma(1E-3, 1E-3)
as on previous slide
- s.d. ~ Uniform (0, r)
- proper prior



Subjective priors

* Determination of subjective priors 1s an area
of current research. Subjective priors can be
potentially useful but difficult to elicit and
use.

e Difficult to assess the usefulness of a
subjective posterior. What does it tell us?

* Don’t be misled by the term “subjective”;
all data analyses involve appreciable
personal elements



Acceptance Rate

The desired acceptance rate of a Metropolis-Hastings algorithm has also
been a matter of recent research. Optimal rates for random walk algorithms
have been carefully investigated by Roberts et al. [84] and corresponding
guidelines have been suggested. As described and illustrated by Robert
and Casdlla ([80], pp. 252-254), high acceptance rates are desirable if the

proposal density g approximates the target f such that f =g is bounded for
uniform ergodicity. However, low acceptancerates are preferableif a random
walk proposal is adopted. These authors also propose the use of the rgected
values in a Metropolis-Hastings algorithm through Rao-Blackwellisation and

give references to other accderation methods.




Reparameterisation

* In regression problems
- rescale quantitative covariates where
appropriate: improves stability of the
parameter estimates
- standardise quantitative covariates
about their mean: makes parameters more
orthogonal, eg rats example...



Reparametrisation (cont)

* For fixed effects (‘non-informative’ priors)
- use corner point constraints,
eg, kidney...
- or eliminate grand mean and calculate
contrasts separately...

* For random effects models, try hierarchical
centring, €g:
- uncentred
- fully centred

« If prior variance of a random effect 1s large relative to the error
variance, centring reduces posterior correlation between the random
effects



Model criticism and selection

Lack of well-established techniques for Bayesian
model choice in software

Difficulty of implementing some methods (eg
cross-validation) 1n a Bayesian framework

Not interested 1n “Is model true?”” but “Do model
deficiencies affect substantive inferences?”

Compare observed statistics with values
predicted under the model

- 1f the model is adequate, replicated data generated under
the model should look similar to the observed data



Model Averaging

Instead of choosing a single modd based on the above methods, an in-
creasingly common practice is model averaging. Thisisthe practice of com-
bining expected values obtained from di®erent models (perhaps describing

di®Rerent dimensions or di®erent combinations of variables) weighted by their
corresponding posterior probabilities. Of course, adoption of this approach
depends on the aim of the analysis and achieving a balance between im-
proved estimation and easy interpretation.




Other Issues

Length of burnin

Total length of run

Number of chains

Dependence 1n chains

Choice of algorithm

Choice of proposal distribution
Subjective and expert priors

Speeding up convergence



General strategy for
complex modelling in BUGS

Start with simple models which have been used in
other software or in examples and for which
answers are known

Develop more complex models incrementally

Check final answers by starting from different
initial values, running for long periods and using
different parametrisations

Perform a few updates before undertaking long
runs, to assess timings and examine ballpark
results.
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