The University of Newcastle

Kerrie Mengersen

Introduction to
Bayesian Modelling - 4

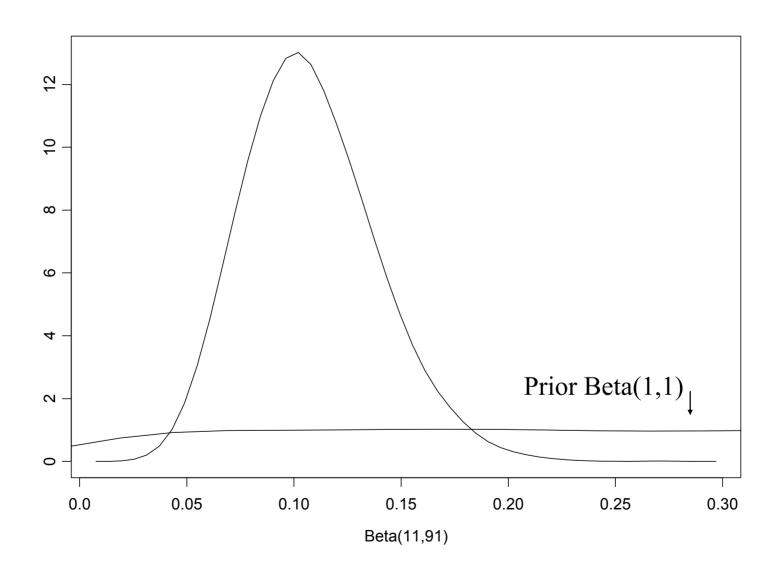
Problem 1

Consider a breeding experiment resulting in 10 'successes' out of 100 (independent) trials. The researcher has no real prior opinion about the unknown probability of success θ .

- 1. Why would a Beta(1,1) prior for θ be reasonable? Sketch this distribution.
- 2. Write down the posterior distribution for θ .
- 3. What is the posterior mean value for θ ?
- 4. Design a Metropolis algorithm to estimate θ . (We wouldn't do this in practice with this particular example, because we know the answer analytically, but this might be part of a larger problem.)

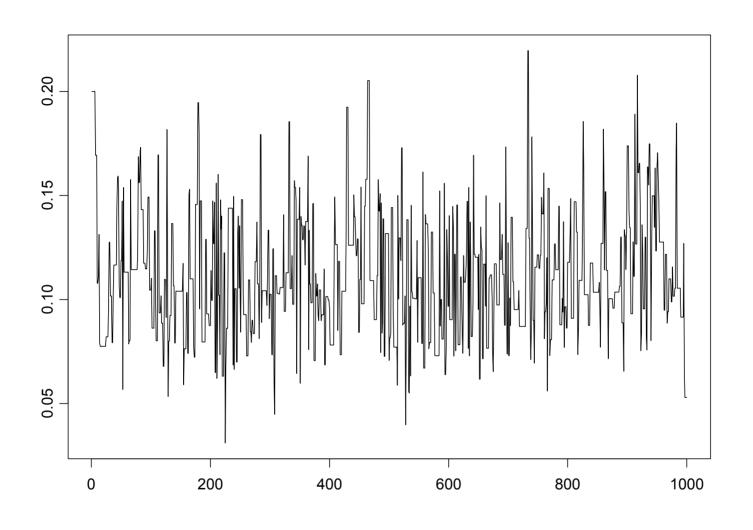
Solution

- 1. Beta($\alpha=1,\beta=1$) is equivalent to the Uniform distribution.
- 2. $p(\theta|y) \sim \text{Beta}(y+\alpha, n-y+\beta) = \text{Beta}(11,91)$ since y=10, n=100 $\text{Beta}(11,91) \propto \theta^{10}(1-\theta)^{90}$
- 3. Posterior mean = $(y+\alpha)/(n+\alpha+\beta) = 11/102 = 0.108$
- 4. Consider [0,1] as a 'circle'. Initialise: $\theta^{(1)}=0.5$ for (i in 2:1000) { sample $\theta^* \sim \text{Uniform}(\theta^{(i-1)}-.1, \theta^{(i-1)}+.1)$ adjust: if $\theta^*>1$ then $\theta^*=\theta^*-1$; if $\theta^*<1$ then $\theta^*=1+\theta^*$ calculate $A = p(\theta^*|y) / p(\theta^{(i-1)}|y) = (\theta^*)^{10}(1-\theta^*)^{90} / \theta^{10}(1-\theta)^{90}$ draw u~Uniform(0,1) if u < A, take $\theta^{(i)}=\theta^*$, otherwise take $\theta^{(i)}=\theta^{(i-1)}$



```
# Metropolis algorithm for estimating p~Beta(a,b)
# results in matrix p:
\# p[,1] = \text{proposed values}, p[,2] = \text{accepted values}, p[,3] = \text{acceptance ratio}
                                                   # parameters of Beta distribution
a 10
b 90
N 1000
                                                    # number of iterations
p matrix(0,nrow=N,ncol=3)
                                                    # store results
                                                    # initialise
p[1,1]_0.2
p[1,2] 0.2
for (i in 2:N){
                                                    # loop
pold p[i-1,2]
                                                    # current p
pnew runif(1,pold-0.1,pold+0.1)
                                                    # proposed p
if (pnew<0) pnew 1+pnew
                                                    # adjust if proposed p <0 or >1
if (pnew>1) pnew pnew-1
ratio (pnew)^a*(1-pnew)^b/((pold)^a*(1-pold)^b)
                                                   # decide if accept proposed value
u runif(1,0,1)
if (u<ratio) p[i,2] pnew
if (u \ge ratio) p[i,2] pold
                                                   # store proposed value and ratio
p[i,1] pnew
p[i,3]_ratio
```

proposed	accepted	ratio
[1,] 0.16236505	0.10448786	2.008007e-001
[2,] 0.11019663	0.11019663	9.573174e-001
[3,] 0.08624814	0.08624814	9.416614e-001
[4,] 0.16400424	0.08624814	2.064788e-001
[5,] 0.15311573	0.08624814	3.329064e-001
[6,] 0.02256085	0.08624814	6.450435e-004
[7,] 0.13300017	0.13300017	6.732727e-001
[8,] 0.05242903	0.13300017	2.694898e-001
[9,] 0.10375305	0.10375305	1.652981e-001
[10,] 0.08013098	0.08013098	7.849518e-001
[11,] 0.03483840	0.08013098	1.824909e-002
[12,] 0.06088227	0.08013098	4.133978e-001



Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0397 0.0900 0.1055 0.11 0.1276 0.2196

Problem 2

We are interested in the average milk yield (in litres/day) of a new line of dairy cattle.

One way to model this is as follows.

Let milk yield $y\sim N(\mu,\sigma^2)$, with μ and σ^2 unknown.

Based on previous experiments, set the following priors:

 $\mu \sim N(\mu_0 = 10, \sigma^2/\kappa_0)$

 κ_0 represents 'the equivalent number of prior measurements', so here we set κ_0 =20.

 $\sigma^2 \sim \text{Inv-}\chi^2 \ (v_0 = 2, \sigma_0^2 = 1).$

 σ_0^2 is the 'best guess' at σ^2 .

 v_0 represents the 'degrees of freedom' (how much we believe our estimate of σ_0^2); the larger the value, the stronger the belief.

Problem 2

Priors: $\mu \sim N(\mu_0=10, \sigma^2/\kappa_0), \kappa_0=20.$ $\sigma^2 \sim Inv-\chi^2 (v_0=2, \sigma_0^2=1).$

A sample of 100 animals from the new line gives a sample mean milk yield of 10L/day with a sample standard deviation of 2L,

$$\bar{y} = 10, s^2 = 4$$

- Assuming that milk yield is normally distributed, write down an appropriate likelihood and prior for this problem.
- Develop a Gibbs algorithm to estimate the unknown mean and variance of the distribution.

Solution

1. Sample
$$\sigma^2 \mid y \sim Inv - \chi^2(v_n, \sigma_n^2)$$

2. Sample
$$\mu \mid \sigma^2, y \sim N(\mu_n, \sigma^2 / \kappa_n)$$

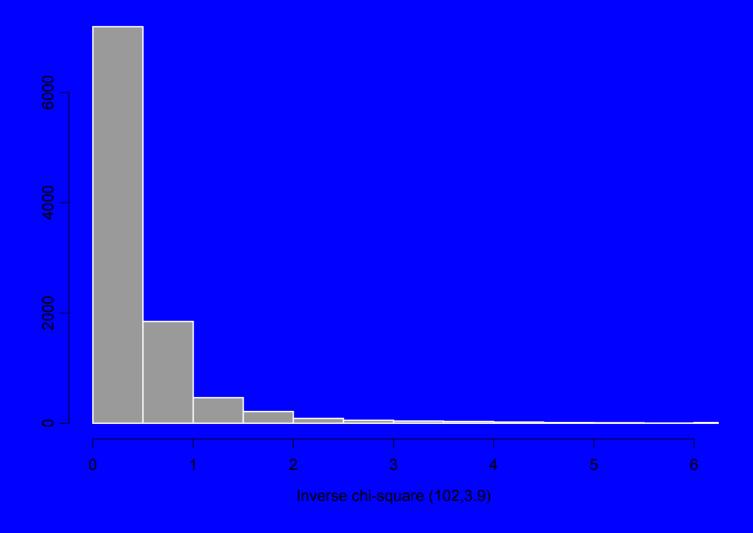
$$\mu_{n} = \frac{\kappa_{0}}{\kappa_{0} + n} \mu_{0} + \frac{n}{\kappa_{0} + n} \overline{y}$$

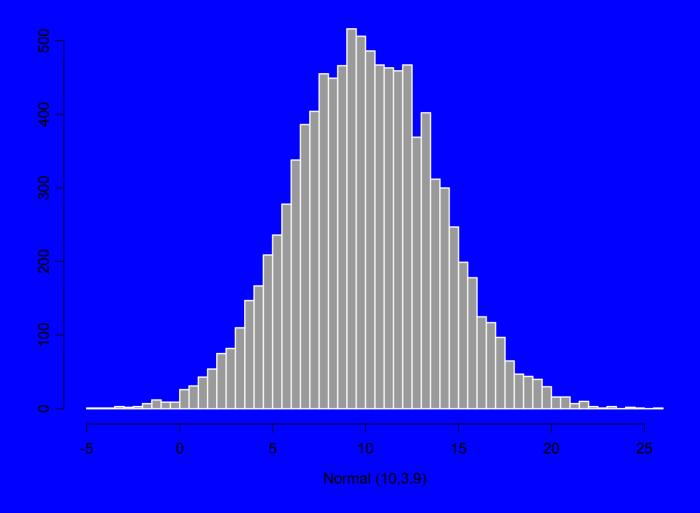
$$\kappa_{n} = \kappa_{0} + n; \quad v_{n} = v_{0} + n$$

$$v_{n} \sigma_{n}^{2} = v_{0} \sigma_{0}^{2} + (n - 1)s^{2} + \frac{\kappa_{0} n}{\kappa_{0} + n} (\overline{y} - \mu_{0})^{2}$$

$$\begin{split} \mu_n &= 20/(20+100)x10 + 100/(20+100)x10 = 10 \\ \kappa_n &= 20+100=120 \\ \nu_n &= 2+100 = 102 \\ \sigma_n^2 &= 2x1+99x4+20(100)/(20+100)(10-10)^2/102 \\ &= 398/102 = 3.9 \end{split}$$

- 1. Sample $\sigma^2 \sim \text{Inv-}\chi^2(102,3.9)$
- 2. Sample $\mu \sim N(10, \sigma^2/120)$





ISSUES IN MODELLING

- Choosing a prior
- Initial values
- Reparametrisation
- Model checking
- Model averaging
- Other applications

Interpretations of Prior Distributions

- 1. Based on previous experiments, physical properties etc
- 2. Objective representations of what is rational to believe about a parameter
- 3. As a subjective measure of what a particular individual, "you," actually believes

Care with 'noninformative' priors

- Central problem: specifying a prior distribution for a parameter about which nothing is known
- If θ can only have a finite set of values, it seems natural to assume all values equally likely *a priori*
- This can have odd consequences. For example specifying a uniform prior on regression models:

[], [1], [2], [3], [4], [12], [13], [14], [23], [24], [34], [123], [124], [134], [234], [1234]

assigns prior probability 6/16 to 3-variable models and prior probability only 4/16 to 2-variable models

Uniform prior = ignorance?

- Natural to use a uniform prior, but if θ is uniform, an arbitrary function of θ is not.
- Eg, earlier we saw that a uniform distribution on a probability translates to a strong assumption about the odds. Do we really mean this?
- "ignorance about θ " does not imply "ignorance about γ ". The notion of "prior ignorance" may be untenable.

The Jeffreys Prior

(single parameter)

- Jeffreys prior is arguably an objective prior. It corresponds to the expected Fisher Information. All parametrizations lead to the same prior. (see Box and Tiao, 1973, Section 1.3)
- Jeffrey's prior for a Binomial likelihood is a Beta density with parameters $\frac{1}{2}$, $\frac{1}{2}$.
- Other Jeffreys priors: Poisson(λ): $\pi(\lambda) \propto \lambda^{-1/2}$

Poisson(
$$\lambda$$
): $\pi(\lambda) \propto \lambda^{-1/2}$

Normal(
$$\mu$$
): $\pi(\mu) = 1, \mu \in \Re$

Normal(
$$\sigma$$
): $\pi(\sigma) = 1/\sigma, \sigma > 0$

Non-informative priors

- May not want priors to be influential
- Distinguish
 - primary parameters of interest
 - secondary structure used for smoothing etc.
- Location parameters (eg regression coefficients): Normal (0, 0.0001)
 - standard deviation of 100
 - effectively a uniform prior

Non-informative priors (cont)

- Careful! An improper prior can give an improper posterior distribution (distribution doesn't integrate to one, so isn't a 'real' distribution, so estimates can't be trusted)
- Eg: Scale parameters (eg precision of random effects)
 - at the second level of a hierarchy a uniform prior gives an *improper* distribution
- Options:
 - "just proper" eg Gamma(1E-3, 1E-3) as on previous slide
 - s.d. \sim Uniform (0, r)
 - proper prior

Subjective priors

- Determination of subjective priors is an area of current research. Subjective priors can be potentially useful but difficult to elicit and use.
- Difficult to assess the usefulness of a subjective posterior. What does it tell us?
- Don't be misled by the term "subjective"; all data analyses involve appreciable personal elements

Acceptance Rate

The desired acceptance rate of a Metropolis-Hastings algorithm has also been a matter of recent research. Optimal rates for random walk algorithms have been carefully investigated by Roberts et al. [84] and corresponding guidelines have been suggested. As described and illustrated by Robert and Casella ([80], pp. 252-254), high acceptance rates are desirable if the proposal density g approximates the target f such that f =g is bounded for uniform ergodicity. However, low acceptance rates are preferable if a random walk proposal is adopted. These authors also propose the use of the rejected values in a Metropolis-Hastings algorithm through Rao-Blackwellisation and give references to other acceleration methods.

Reparameterisation

- In regression problems
 - rescale quantitative covariates where appropriate: improves stability of the parameter estimates
 - standardise quantitative covariates about their mean: makes parameters more orthogonal, eg rats example...

Reparametrisation (cont)

- For fixed effects ('non-informative' priors)
 - use *corner point* constraints, eg, kidney...
 - or eliminate grand mean and calculate contrasts separately...
- For random effects models, try hierarchical centring, eg:
 - uncentred
 - fully centred
- If prior variance of a random effect is large relative to the error variance, centring reduces posterior correlation between the random effects

Model criticism and selection

- Lack of well-established techniques for Bayesian model choice in software
- Difficulty of implementing some methods (eg cross-validation) in a Bayesian framework
- Not interested in "Is model true?" but "Do model deficiencies affect substantive inferences?"
- Compare observed statistics with values predicted under the model
 - if the model is adequate, replicated data generated under the model should look similar to the observed data

Model Averaging

Instead of choosing a single model based on the above methods, an increasingly common practice is model averaging. This is the practice of combining expected values obtained from di®erent models (perhaps describing di®erent dimensions or di®erent combinations of variables) weighted by their corresponding posterior probabilities. Of course, adoption of this approach depends on the aim of the analysis and achieving a balance between improved estimation and easy interpretation.

Other Issues

- Length of burnin
- Total length of run
- Number of chains
- Dependence in chains
- Choice of algorithm
- Choice of proposal distribution
- Subjective and expert priors
- Speeding up convergence

General strategy for complex modelling in BUGS

- Start with simple models which have been used in other software or in examples and for which answers are known
- Develop more complex models incrementally
- Check final answers by starting from different initial values, running for long periods and using different parametrisations
- Perform a few updates before undertaking long runs, to assess timings and examine ballpark results.