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Problem 1
Consider a breeding experiment resulting in 10 
‘successes’ out of 100 (independent) trials. The 
researcher has no real prior opinion about the 
unknown probability of success θ.

1. Why would a Beta(1,1) prior for θ be reasonable? 
Sketch this distribution.

2. Write down the posterior distribution for θ.
3. What is the posterior mean value for θ?
4. Design a Metropolis algorithm to estimate θ.

(We wouldn’t do this in practice with this particular 
example, because we know the answer analytically, 
but this might be part of a larger problem.) 



Solution
1. Beta(α=1,β=1) is equivalent to the Uniform distribution.
2. p(θ|y) ~ Beta(y+α, n-y+β) = Beta(11,91)

since y=10, n=100
Beta(11,91) ∝ θ10(1-θ)90

3. Posterior mean = (y+α)/(n+α+β) = 11/102 = 0.108
4. Consider [0,1] as a ‘circle’.

Initialise: θ(1)=0.5
for (i in 2:1000){
sample θ*~Uniform(θ(i-1)-.1, θ(i-1)+.1)
adjust: if θ*>1 then θ*= θ*-1; if θ*<1 then θ*= 1+θ*

calculate A = p(θ*|y) / p(θ(i-1)|y) =  (θ∗)10(1-θ∗)90 / θ10(1-θ)90

draw u~Uniform(0,1)
if u < A, take θ(i)=θ* , otherwise take θ(i)= θ(i-1)

}



Beta(11,91)

0.0 0.05 0.10 0.15 0.20 0.25 0.30

0
2

4
6

8
10

12

Prior Beta(1,1)



# Metropolis algorithm for estimating p~Beta(a,b)

# results in matrix p: 

# p[,1] = proposed values, p[,2] = accepted values, p[,3] = acceptance ratio

a_10 # parameters of Beta distribution

b_90

N_1000 # number of iterations

p_matrix(0,nrow=N,ncol=3) # store results

p[1,1]_0.2 # initialise

p[1,2]_0.2

for (i in 2:N){ # loop

pold_p[i-1,2] # current p

pnew_runif(1,pold-0.1,pold+0.1) # proposed p

if (pnew<0) pnew_1+pnew # adjust if proposed p <0 or >1

if (pnew>1) pnew_pnew-1

ratio_(pnew)^a*(1-pnew)^b/((pold)^a*(1-pold)^b)

u_runif(1,0,1) # decide if accept proposed value

if (u<ratio) p[i,2]_pnew

if (u>=ratio) p[i,2]_pold

p[i,1]_pnew # store proposed value and ratio

p[i,3]_ratio

}



proposed     accepted       ratio

[1,] 0.16236505 0.10448786 2.008007e-001

[2,] 0.11019663 0.11019663 9.573174e-001

[3,] 0.08624814 0.08624814 9.416614e-001

[4,] 0.16400424 0.08624814 2.064788e-001

[5,] 0.15311573 0.08624814 3.329064e-001

[6,] 0.02256085 0.08624814 6.450435e-004

[7,] 0.13300017 0.13300017 6.732727e-001

[8,] 0.05242903 0.13300017 2.694898e-001

[9,] 0.10375305 0.10375305 1.652981e-001

[10,] 0.08013098 0.08013098 7.849518e-001

[11,] 0.03483840 0.08013098 1.824909e-002

[12,] 0.06088227 0.08013098 4.133978e-001
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Problem 2
We are interested in the average milk yield (in litres/day) of a 
new line of dairy cattle. 
One way to model this is as follows.
Let milk yield y~N(µ,σ2), with µ and σ2 unknown. 
Based on previous experiments, set the following priors:

µ ~ N(µ0=10, σ2/κ0) 
κ0 represents ‘the equivalent number of prior
measurements’, so here we set κ0=20.

σ2 ~ Inv-χ2 (ν0=2, σ0
2=1).

σ0
2 is the ‘best guess’ at σ2.  

ν0 represents the ‘degrees of freedom’ (how much
we believe our estimate of σ0

2); the larger the value,
the stronger the belief.



Problem 2
Priors: µ ~ N(µ0=10, σ2/κ0),  κ0=20.

σ2 ~ Inv-χ2 (ν0=2, σ0
2=1).

A sample of 100 animals from the new line gives a sample mean 
milk yield of 10L/day with a sample standard deviation of 2L, 
so  

• Assuming that milk yield is normally distributed, write down 
an appropriate likelihood and prior for this problem.

• Develop a Gibbs algorithm to estimate the unknown mean 
and variance of the distribution.

4,10 2 == sy



Solution
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µn= 20/(20+100)x10 + 100/(20+100)x10 = 10
κn = 20+100=120
νn = 2+100 = 102
σn

2 = 2x1+99x4+20(100)/(20+100)(10-10)2/102 
= 398/102 = 3.9

1. Sample σ2 ~ Inv-χ2(102,3.9)
2. Sample µ ~ N(10,σ2/120)
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ISSUES IN MODELLING

• Choosing a prior
• Initial values
• Reparametrisation
• Model checking
• Model averaging
• Other applications



Interpretations of Prior 
Distributions

1. Based on previous experiments, physical 
properties etc

2. Objective representations of what is rational to 
believe about a parameter

3. As a subjective measure of what a particular 
individual, “you,” actually believes



Care with ‘noninformative’ priors
• Central problem: specifying a prior distribution for a 

parameter about which nothing is known
• If  θ can only have a finite set of values, it seems 

natural to assume all values equally likely a priori
• This can have odd consequences. For example 

specifying a uniform prior on regression models:

[], [1], [2], [3], [4], [12], [13], [14], [23], [24], [34], [123], [124], 
[134], [234], [1234]

assigns prior probability 6/16 to 3-variable models 
and prior probability only 4/16 to 2-variable models



Uniform prior = ignorance?
• Natural to use a uniform prior, but if θ is 

uniform, an arbitrary function of θ is not.
• Eg, earlier we saw that a uniform distribution 

on a probability translates to a strong 
assumption about the odds. Do we really 
mean this?

• “ignorance about θ” does not imply 
“ignorance about γ”. The notion of “prior 
ignorance” may be untenable.



The Jeffreys Prior
(single parameter)

• Jeffreys prior is arguably an objective prior. It 
corresponds to the expected Fisher Information.
All parametrizations lead to the same prior.
(see Box and Tiao, 1973, Section 1.3)

• Jeffrey’s prior for a Binomial likelihood is a Beta 
density with parameters ½ , ½.

• Other Jeffreys priors: 



Non-informative priors
• May not want priors to be influential
• Distinguish

- primary parameters of interest
- secondary structure used for smoothing 

etc.
• Location parameters (eg regression 

coefficients): Normal (0, 0.0001)
- standard deviation of 100
- effectively a uniform prior



Non-informative priors (cont)
• Careful! An improper prior can give an improper 

posterior distribution (distribution doesn’t integrate to 
one, so isn’t a ‘real’ distribution, so estimates can’t be 
trusted)

• Eg: Scale parameters (eg precision of random effects)
- at the second level of a hierarchy a uniform prior 

gives an improper distribution
• Options:

- “just proper” eg Gamma(1E-3, 1E-3)
as on previous slide

- s.d. ~ Uniform (0, r)
- proper prior



Subjective priors
• Determination of subjective priors is an area 

of current research. Subjective priors can be 
potentially useful but difficult to elicit and 
use.

• Difficult to assess the usefulness of a 
subjective posterior. What does it tell us?

• Don’t be misled by the term “subjective”;    
all data analyses involve appreciable 
personal elements



Acceptance Rate

The desired acceptance rate of a Metropolis-Hast ings algorithm has also
been a mat ter of recent research. Opt imal rates for random walk algorithms
have been carefully invest igated by Roberts et al. [84] and corresponding
guidelines have been suggested. As described and illust rated by Robert
and Casella ([80], pp. 252-254), high acceptance rates are desirable if the
proposal density g approximates the target f such that f =g is bounded for
uniform ergodicity. However, low acceptanceratesarepreferable if a random
walk proposal is adopted. Theseauthors also propose the use of the rejected
values in a Metropolis-Hast ings algorithm through Rao-Blackwellisation and
give references to other accelerat ion methods.

y



Reparameterisation
• In regression problems

- rescale quantitative covariates where 
appropriate: improves stability of the 
parameter estimates

- standardise quantitative covariates 
about their mean: makes parameters more 
orthogonal, eg rats example...



Reparametrisation (cont)
• For fixed effects (‘non-informative’ priors)

- use corner point constraints,
eg, kidney…

- or eliminate grand mean and calculate 
contrasts separately…

• For random effects models, try hierarchical 
centring, eg:

- uncentred
- fully centred

• If prior variance of a random effect is large relative to the error 
variance, centring reduces posterior correlation between the random 
effects



Model criticism and selection
• Lack of well-established techniques for Bayesian 

model choice in software
• Difficulty of implementing some methods (eg 

cross-validation) in a Bayesian framework
• Not interested in “Is model true?” but “Do model 

deficiencies affect substantive inferences?”
• Compare observed statistics with values

predicted under the model
- if the model is adequate, replicated data generated under 

the model should look similar to the observed data



Model Averaging

Instead of choosing a single model based on the above methods, an in-
creasingly common practice is model averaging. This is the pract ice of com-
bining expected values obtained from di®erent models (perhaps describing
di®erent dimensionsor di®erent combinat ionsof variables) weighted by their
corresponding posterior probabilit ies. Of course, adopt ion of this approach
depends on the aim of the analysis and achieving a balance between im-
proved est imat ion and easy interpretat ion.



Other Issues
• Length of burnin
• Total length of run
• Number of chains
• Dependence in chains
• Choice of algorithm
• Choice of proposal distribution
• Subjective and expert priors
• Speeding up convergence



General strategy for 
complex modelling in BUGS

• Start with simple models which have been used in 
other software or in examples and for which 
answers are known

• Develop more complex models incrementally
• Check final answers by starting from different 

initial values, running for long periods and using 
different parametrisations

• Perform a few updates before undertaking long 
runs, to assess timings and examine ballpark 
results.
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