
Introduction to Bayesian
Statistics

Bayesian vs frequentist debate

Pragmatic approach
both are useful



Bayes theorem

P(x | y) = P(x and y) / P(y)

= P( y | x) P(x) / P(y)



Bayes theorem

P(x | y) = P(x and y) / P(y)

= P( y | x) P(x) / P(y)
Eg Draw a coin from a jar with 99% normal 

coins and 1% double headers. In 3 tosses 
observe 3 heads.

What is probability that this is a double 
headed coin?



Bayes theorem

P(x or x’) P(y | x or x’) P(y|x)* P(x)

Fair coin 0.99 0.125 0.124
Double headeed 0.01 1.0 0.01

Total = P(y) 0.134

P(x | y) = P( y | x) P( x) / P(y)

= 1.0 * 0.01 / 0.135 = 0.075= 0.01 / (0.124 + 0.01)



Definition of probability

Frequentists Bayesians

Long run frequency Subjective

Discriminate b/t random Don’t discriminate  
variable and parameter 

Use Bayes theorem only Use Bayes theorem
with random variable for both



Estimating a parameter

Frequentist approach

y= u + s + e e ~ N(0,σ2)

L(s) = P(y | s)
ML estimate s-hat = value of s the maximizes 

L(s)



Estimating a parameter

Frequentist approach
s-hat ~ N(s, se2)

P( s- 2*se < s-hat < s + 2*se) = 0.95

P( s-hat - 2*se < s < s-hat +2*se) < 0.95
NOT  P(20 < s < 30) = 0.95



Estimating a parameter

Bayesian approach

P(s | y) α P(y | s) * P(s)



Prior distribution
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Likelihood
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Posterior
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Fixed and random effects

Frequentist approach
y= u + s + e e ~ N(0,σ2) s ~ N(0,σs

2)

s-hat = ∑(y-u) / (n+ λ) λ = σ2 /σs
2

s-hat = E(s | y)

eg = 100 *100/ 116 = 86



Fixed and random effects

Bayesian approach

P( s | y) = P(s) * P(y | s)



Fixed and random effects

Bayesian approach - Prior
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Fixed and random effects

Bayesian approach - Likelihood
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Fixed and random effects

Bayesian approach - Posterior

0
0.000001
0.000002
0.000003
0.000004
0.000005
0.000006
0.000007
0.000008
0.000009
0.00001

-300 -200 -100 0 100 200 300

Series1



Fixed and random effects

Frequentist approach
Fixed Random

E(s-hat | s) = s E( s | s-hat) = s-hat 

unbiased regressed back 
exaggerated best
summary of experiment decision making



Fixed and random effects

Bayesian approach
Fixed Random

No difference
Treat all as ‘random’ with 
appropriate prior



Estimating multiple parameters

Frequentist approach

L( µ, σ) = P( y | µ, σ)
ML estimates µ-hat, σ-hat are the joint 

maximium of L

σ2-hat = ∑(y-ybar)2/n which is biased



Estimating multiple parameters

Bayesian approach
• P(µ,σ2 | y) = P(y | µ, σ2) * P(µ,σ2).
• If the joint distribution is known, it is possible to calculate 

the marginal distribution by integrating over one of the 
variables. For instance, the marginal distribution of σ2 is

• P( σ2 | y) =  ∫ P(µ, σ2 | y) dµ 



Nuisance parameters

Frequentist approach

1. Fit in the model (eg hys effects)
2. Integrate them out (eg sire effects)
3. Restricted ML (eg REML of variances)



Nuisance parameters

Bayesian approach

Integrate them out to get marginal posterior



Statistical inference

Frequentist approach
H0 vs H1

P(lower <test statistic< upper | H0) = 0.95



Statistical inference

Bayesian approach

Posterior

P(lower < parameter < upper) = 0.95



Conclusions

Advantages of Bayesian approach

Removes fixed vs random effect distinction
Better estimates for decision making provided 

prior reasonable



Conclusions

Advantages of Frequentist approach

Summary of experiment, unpolluted
Don’t need priors
Simpler hypothesis testing



Gibbs sampling



MCMC

MCMC = Markov Chain 
Monte Carlo

Used to draw samples from posterior distribution
Numerical solutions for complex model by solving 

small simple steps
Heavy on computing time
Eg Gibbs, Metropolis-Hastings



Gibbs sampling

Sample one parameter at a time assuming the 
current values of all the other parameters 
are correct

Eg Variance components
σg

2 is easy to estimate if you know g’s



A very simple example of 
Gibbs sampling

Sire S mated to Dam D produces offspring O 
who carries a recessive lethal gene whose 
allele frequency in the population is 0.1.

What is the probability that S carries the 
lethal?

P( S | O)?



Need conditional distributions

We will sample from P(S | D, O) and P(D | S,O)

Obtain using Bayes theorem

P(S | D,O) = P(O | S,D) *P(S | D) / P(O | D)
= P(O | S,D) * P(S) / P(O | D)



D= ++

S P(S) P(O=+m | S, D) P(S)*P(O=+m | S,D) P(S | O, D)

++ 0.81 0 0 0
+m 0.18 0.5 0.09 1
total = P(O = +m | D = ++) 0.09

D = +m
++ 0.81 0.5 0.405 0.82
+m 0.18 0.5 0.09 0.18
total = P(O = +m | D = +m) 0.495



Cycle Gd Gs
1 ++ +m
2 ++ +m
3 ++ +m
4 ++ +m
5 ++ +m
6 +m ++
7 +m ++
8 +m +m
9 +m ++
10 +m +m
11 ++ +m
12 ++ +m
13 ++ +m
14 +m ++
15 +m ++
16 +m ++
17 +m ++
18 +m +m
19 ++ +m
20 ++ +m

In these 20 cycles, we sampled Gs = ++ 7times and Gs=+m 13 times. Therefore, using
these samples we would estimate that the P(Gs = +m | Go=+m) is 13/20 = 0.65.



Gibbs practicalities

• Burn-in
• Autocorrelation
• reducibility
• joint sampling
• length of chain(s)



Normally distributed data

We sample 10 observations from a 
population.

What is the mean and variance of the 
population?



Normally distributed data

y= µ + e, e ~ N(0,σ2)

What we want are the marginal posterior 
distributions

P(µ | y) and P(σ2 | y)

For gibbs sampling we need the conditional 
distributions

P(µ | y, σ2) and P(σ2 | y, µ)



Normally distributed data

For gibbs sampling we need the conditional 
distributions

P(µ | y, σ2) ∝ P(y | µ , σ2 )* P(µ)
P(σ2 | y, µ) ∝ P(y | µ , σ2 )* P(σ2)

P(y | µ , σ2 ) ∝ (σ2)-n/2 exp{-∑(y- µ)2/(2 σ2)}



Normally distributed data

P(y | µ , σ2 ) ∝ (σ2)-n/2 exp{-∑(y- µ)2/(2 σ2)}

As a funcion in µ this is a normal distribution
µ ~ N(∑y/n, σ2/n)

As a function of σ2 it is a scaled inverse chi-square 
distribution with n-2 degrees of freedom and 
scaled by ∑(y- µ)2



Normally distributed data

As a funcion in µ this is a normal distribution
µ ~ N(∑y/n, σ2/n)

As a function of σ2 it is a scaled inverse chi-square 
distribution with n-2 degrees of freedom and 
scaled by ∑(y- µ)2

So sample µ from a normal and sample σ2 by 
sampling a chi-square, inverting it and multiplying 
by ∑(y- µ)2



Gibbs in a linear model

Y= Xb + e, e ~ N(0,V)
b ~ N(0, W)
σi

2 ~ scaled inverted chi-square
(X’V-1 X + W-1)b = X’V-1 y

C b    =   z
b ~ N(C-1 z, C-1)
σa

2 ~ scaled inverted chi-square with scale 
(a’A-1a + Sa) and with (na + va) df



Conclusions

Gibbs sampling is easy to do because 
conditional distributions are usually easy

Especially if you introduce variables for 
‘missing data’

Similar to EM algorithm
Numerical problems
All variables (parameters and random 

variables) are treated alike


