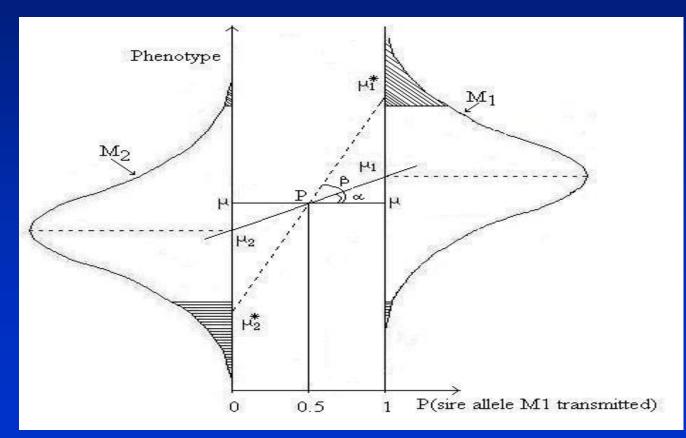

Optimising the design of linkage experiments to detect QTL

- Key parameters are:
 - distribution of QTL effects (how QTL are potentially detectable in a mapping experiment)
 - population structure
 - significance thresholds
 - precision of QTL mapping (width of confidence interval)
 - efficient genotyping strategies

Individuals most deviating from mean are most informative for linkage, as their QTL genotypes can be inferred from their phenotypes more clearly than progeny with average phenotypes



- In fact, not necessary to genotype more than 50% of a population to get maximum power from a design.
- Selective genotyping: only genotype progeny within a half sib family with extreme high and low phenotypes
- Either
 - increase the power for a given number of total genotypes,
 - or reduce cost for a total number of phenotypes (progeny)

• But recommend selection be at least 10% in either tail, data may contain artefacts

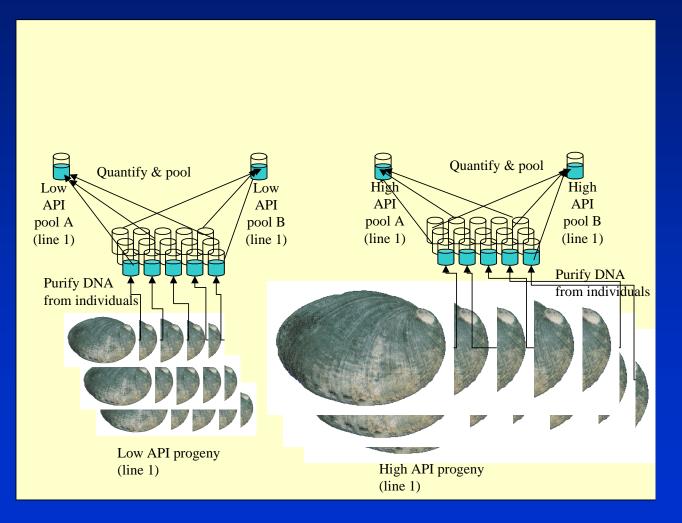
• Problem: QTL variance is over-estimated with selective genotyping

• will erode advantage of subsequent MAS

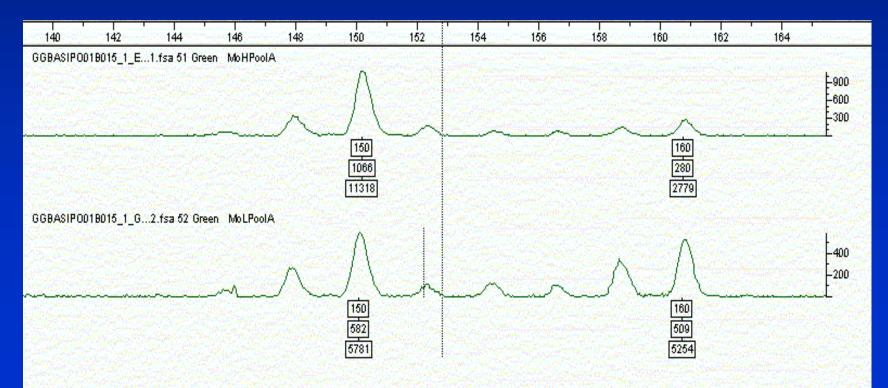
- Solution: include pedigree and phenotypes of ungenotyped animals in a variance component analysis
 - assumes each every animal carries two unique QTL alleles
 - sire alleles A, B
 - progeny 1 sire allele A, progeny 2 sire allele A, progeny 3 sire allele B, progeny 4 is not genotyped
 - IBD (or G) matrix, assuming QTL at marker and tracing sire alleles only, is:

	P 1	P2	P3	P4
P 1	1			
P2	1	1		
P3	0	0	1	
P4	0.5	0.5	0.5	1

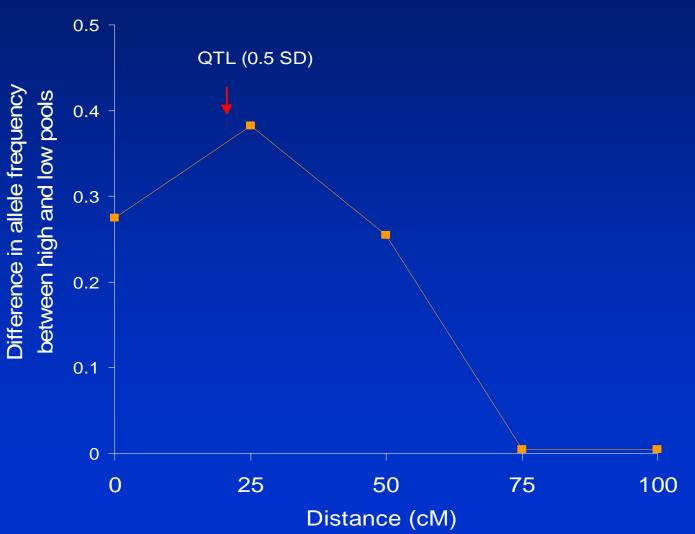
• Solution: include pedigree and phenotypes of ungenotyped animals in a variance component analysis

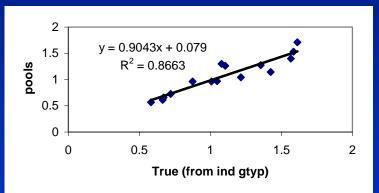

 $Y = \mu + Zu + Zv + e$

- Y = vector of phenotypes, μ = mean, Z a design matrix, u a vector of polygenic effects, v a vector of QTL allele effects, e a vector of random residuals, where
- $u \sim (0, \mathbf{A}\sigma_{u}^{2}), v \sim (0, \mathbf{G}\sigma_{v}^{2}), e \sim \sim (0, \mathbf{I}\sigma_{e}^{2})$
- QTLs as random regresses effect back towards zero


Strategy	QTL size
True	0.32
100% genotyped	0.30 ± 0.02
20% genotyped	0.93 ± 0.02
20% genotyped, ungenotyped	0.31 ± 0.02
animals included in the analysis	

Selective DNA pooling (Darvisi and Soller 1994)

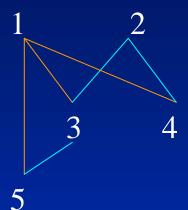

• Pool DNA of high and low phenotype animals


- Determine linkage by distribution of sire alleles between pools of DNA of high and low phenotypes
- For marker BMS12, sire 1 150--Q 160--q

• Genome scan.....

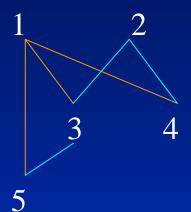
- Three difficulties with DNA pooling
 - Very accurate quantification of amount of DNA from each animal required (kits available?) to estimate allele frequency differences with any precision

- With microsatellite markers, estimates of allele frequencies confounded by stutter bands, but correction procedures have been devised
- Only has power to detect QTL for the trait on which the pools were based


- Has been used to detect QTL affecting protein% in milk from Israeli-Holstein Friesian cattle (Lipkin et al 1998)
- Accessed 80.6% and 48.3% of power available from selective and full genotyping, respectively
- Statistical power of 45 600 of individual genotypings obtained from 328 pool genotypings (5 significant effects were detected)
- "The DNA pooling methodology can make genome wide mapping of QTL accessible to moderately sized breeding organisations"
- Need good people in the lab though!

- In some species it is difficult or expensive to create large half-sib families or line crosses (eg. humans).
- An alternative is to use linkage information from existing pedigree (genotype existing animals)
 - potentially a large number of recombination events can be accessed
 - In practise, the large number of missing genotypes can reduce the power of complex pedigrees for QTL mapping

- A two stage approach for linkage mapping in complex pedigrees
 - 1. For each putative QTL position, calculate QTL (co) variance matrix. Also called the **IBD** or **G** matrix, has elements G_{ij} =Prob(QTL alleles i and j are identical by descent or IBD)
 - 2. For each position considered in step 1, construct a linear model to estimate QTL variances and other parameters, test for presence of QTL


- Calculating the IBD matrix
 - Dimensions (2 x number of animals) x (2 x number of animals), 2 QTL alleles for each animal
 - If marker information was complete, would contain 0s and 1s only.
 - The more marker genotypes are missing, the more the IBD matrix looks like the A matrix

			Marker 1				
Id	Sire	Dam	Allele 1	Allele 2			
1	0	0	А	В			
2	0	0	С	D			
3	1	2	А	С			
4	1	2	В	D			
5	1	3	А	С			

	Sire 1		Dam 2		Prog 3		Prog 4		Prog 5	
Sire 1	1									
	0	1								
Dam 2	0	0	1							
	0	0	0	1						
Prog 3	1	0	0	0	1					
	0	0	1	0	0	1				
Prog 4	0	1	0	0	0	0	1			
	0	0	0	1	0	0	0	1		
Prog 5	1	0	0	0	1	0	0	0	1	
	0	0	1	0	0	1	0	0	1	1

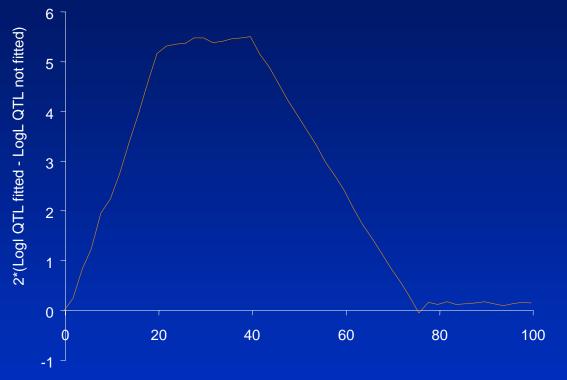
			Marker 1				
Id	Sire	Dam	Allele 1	Allele 2			
1	0	0	А	В			
2	0	0	С	D			
3	1	2	0	0			
4	1	2	В	D			
5	1	3	0	0			

	Sii	re 1	1 Dam 2		Prog 3		Prog 4		Prog	g 5
Sire 1	1									
	0	1								
Dam 2	0	0	1							
	0	0	0	1						
Prog 3	0.5	0.5	0	0	1					
	0	0	0.25	0.25	0	1				
Prog 4	0	1	0	0	0.5	0.5	1			
	0	0	0	1	0.5	0.5	0	1		
Prog 5	0.5	0.5	0	0	0.5	0	0	0	1	
	0.25	0.25	0.25	0.25	0.5	0.25	0	0.25	0.25	1

• Variance component model for estimation of QTL parameters

$$y_i = u_i + v_i^p + v_i^m + e_i$$

- y_i=phenotype of animal i
- u_i=polygenic effect of animal i
- v^p_i=effect of paternal allele for animal i
- v^m_i=effect of maternal allele for animal i


• Model

 $Y = \mu + Xb + Zu + Zv + e$

Y = vector of phenotypes, μ = mean, X, Z and W are design matrices, b is a vector of fixed effects, u a vector of polygenic effects, v a vector of QTL allele effects, e a vector of random residuals, where

- $u \sim (0, \mathbf{A}\sigma_{u}^{2}), v \sim (0, \mathbf{G}\sigma_{v}^{2}), e \sim \sim (0, \mathbf{I}\sigma_{e}^{2})$

For each putative QTL position compare LogL from above model and animal model only
Y = µ + Xb + Zu + e

Position (cM)

• Under null hypothesis of no QTL

- 2*(LogL QTL fitted - LogL QTL not fitted) is distributed as a $\chi^2_{1,2\alpha}$ where α is the desired significance level (eg. at α =0.1 is 2.71)

- Advantages/disadvantages of complex pedigrees
 - can use existing animals
 - inferring missing genotypes can be complicated, alleles tracked over multiple generations
 - difficult in livestock pedigrees, where inbreeding and marriage loops are common
 - Simulation based methods (MCMC) most often used
 - UNE tools for segregation analysis?
 - Considerable advantage is that marker assisted breeding values (MEBV) are produced from the analysis
 - select from the current generation of candidates

Take home messages for today

- 10 or so QTL explain majority of total genetic variance
- Need experiments that can detect $QTL =>0.2\sigma p$
- Make the half-sib families >> large!!!!

otherwise a waste of time

- Use efficient genotyping strategies to increase the power and decrease the cost of your experiment
 - selective genotyping
 - DNA pooling
 - complex pedigrees
- Work closely with people in the lab!