

GEORGIA Odlor of Activativalia

Genotyping became cheaper in 2008

- First genomic evaluation for dairy and beef cattle in 2009
 - \$300 in 2009 vs. \$30 in 2022
 - 50,000 SNP

What about statistical methods able to fit genomic information?

GEORGIA
Other of Agricultural

Statistical methods before genomics

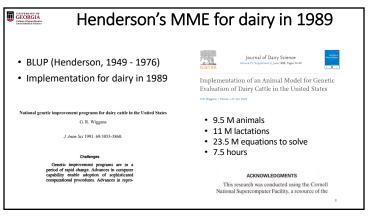
• BLUP (Henderson, 1949 - 1976)

• Best: minimizes MSE

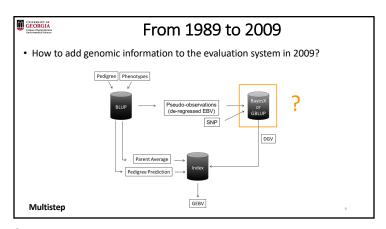
· Linear: linear function of the data

• Unbiased: $E(u) = E(\hat{u})$

• Prediction: for random effects


That BLUP is a Good Thing: The Estimation of Random Effects

$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W+A^{-1}}\frac{\sigma_{e}^{2}}{\sigma_{u}^{2}} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}$$


5

6

Henderson's MME Model $y = X\beta + Wu + e$ • Joint probability of phenotypes and EBV $p(\mathbf{y}, \mathbf{u}) = p(\mathbf{u}|\mathbf{y}) p(\mathbf{y}) = p(\mathbf{y}|\mathbf{u}) p(\mathbf{u})$ · Joint probability density function of phenotypes and EBV $\rho(\mathbf{y}, \mathbf{u}) = \rho(\mathbf{y}|\mathbf{u}) \ \rho(\mathbf{u}) = \frac{1}{\sqrt{2\pi |\mathbf{g}|}} e^{-\frac{1}{2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{W}\mathbf{u})'\mathbf{R}^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta} - \mathbf{W}\mathbf{u})} \frac{1}{\sqrt{2\pi |\mathbf{g}|}} e^{-\frac{1}{2}(\mathbf{u} - \mathbf{0})'\mathbf{G}^{-1}(\mathbf{u} - \mathbf{0})}$ $\begin{bmatrix} \mathbf{X'X} & \mathbf{X'W} \\ \mathbf{W'X} & \mathbf{W'W+A}^{-1}\frac{\sigma_e^2}{\sigma_u^2} \end{bmatrix} \begin{bmatrix} \widehat{\mathbf{p}} \\ \widehat{\mathbf{p}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{W'y} \end{bmatrix}$ $X'R^{-1}X\beta + X'R^{-1}Wu = X'R^{-1}y$ $W'R^{-1}X\beta + (W'R^{-1}W+G^{-1})u = W'R^{-1}y$

GEORGIA

UNIVERSITY OF GEORGIA College of Agricultural I

Bayesian Alphabet

- SNP effect models = outputs SNP effects
- BayesA (Meuwissen et al., 2001)
 - All SNPs have effect on the trait (few with large effect) $a_i \sim N(\mu, \sigma_{a_i}^2)$
 - Different variances for each SNP
- BayesB (Meuwissen et al., 2001)

$$\bullet \ p \left(a_i \middle| \sigma_{a_i}^2, \pi \right) = \begin{cases} t \left(0, v, \sigma_{a_i}^2 \right) or \ N \left(0, \sigma_{a_i}^2 \right) \ with \ probability \ (1 - \pi) \\ 0 \ with \ probability \ \pi \end{cases}$$

• When π = 0, BayesB becomes BayesA

9

10

GEORGIA

Bayesian Alphabet

• BayesC (Habier et al., 2011)

•
$$p(a_i|\sigma_a^2) = \begin{cases} N(0,\sigma_a^2) \text{ with probability } (1-\pi) \\ 0 \text{ with probability } \pi \end{cases}$$

• BayesR (Erbe et al., 2012)

 $\quad \quad p(a_i|\pi,\sigma_a^2) = \pi_1 \times N(0,0 \times \sigma_u^2) + \pi_2 \times N(0,10^{-4} \times \sigma_u^2) + \pi_3 \times N(0,10^{-3} \times \sigma_u^2) + \pi_4 \times N(0,10^{-2} \times \sigma_u^2)$

• BayesRC (MacLeod et al., 2016)

• BayesR using biological information to assign SNP to classes

• High computing cost and simple models

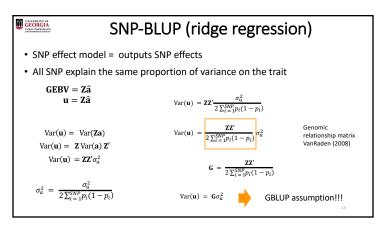
• After > 10 years, assumption of normality is good enough!

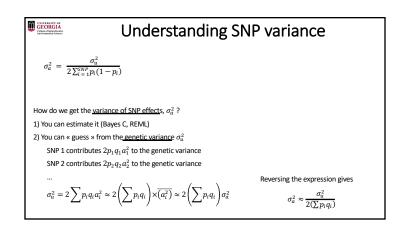
GEORGI.

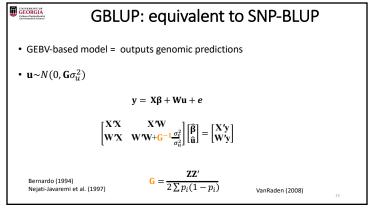
SNP-BLUP (ridge regression)

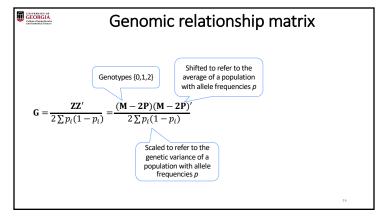
• SNP effect model = outputs SNP effects

• $a \sim N(0, \sigma_a^2)$


$$y = X\beta + Za + e$$


$$\begin{bmatrix} \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'X} & \mathbf{Z'Z} + \mathbf{I} \frac{\sigma_e^2}{\sigma_a^2} \end{bmatrix} \left[\widehat{\mathbf{a}} \right] = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix}$$


 $\textbf{GEBV} = \textbf{Z} \hat{\textbf{a}}$


• All SNP explain the same proportion of variance on the trait

11

UNIVERSITY OF GEORGIA Culture of Agriculturals Environmental Science

What are genomic relationships?

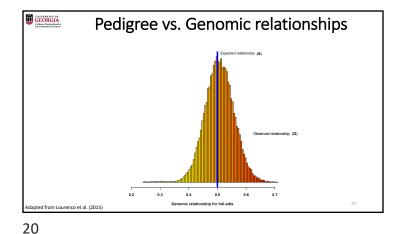
- Relationships were conceived as standardized covariances (Fisher, Wright)
 - $Cov(u_i, u_j) = R_{ij}\sigma_u^2$
 - · Rij "some" relationship
 - σ_u^2 genetic variance
- True relationships: two individuals are genetically identical (for a trait) if they carry the same genotype at the causal QTL or genes
- Genomic relationships: due to shared (Identical By State) alleles at causal genes
 - If I share the blood group A with someone, we are like twins!
 - Most of the genes are unknown
 - We use proxies (SNP markers)

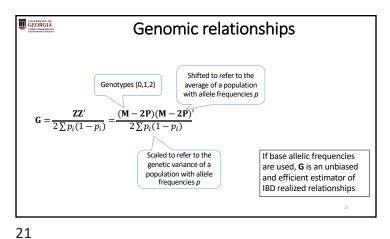
17

UNIVERSITY OF GEORGIA Callege of Agricultural a Environmental Science

Early use of markers to infer A

- A = pedigree relationships: due to shared (Identical By Descent) alleles at causal genes
- · In conservation genetics
- Gather markers, then reconstruct pedigrees, then construct A
 - Either estimates of A_{Ny}, or estimates of « the most likely relation » (son-daughter, cousins, whatever)
 Li and Horvitz 1953, Cockerham 1969, Ritland 1996, Caballero & Toro 2002, and many others
- · With abundant marker data we can do better than this


18


17

18

Pedigree vs. Genomic relationships

- Identical By Descent Relationships based on pedigree are average relationships which assume infinite loci
- « Real » IBD relationships are a bit different due to finite genome size (Hill and Weir, 2010)
- Therefore A is the <u>expectation</u> of realized or observed relationships
- SNPs more informative than A
- Two full sibs might have a correlation of 0.4 or 0.6
- Many markers needed to better estimate relationships
 - Estimators of IBD

Some "interesting" properties of G

If p are computed from the data
 This implies that E(Breeding Values)=0

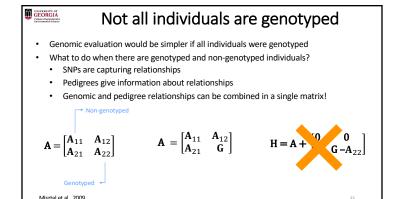
- Positive and negative inbreeding Some individuals are more heterozygous than the average of the population (OK, no biological problem)
- Positive and negative genomic relationships
 Individuals i and j are more distinct than an average pair of individuals in the data
 Fixing negative estimates of relationships to 0 is a wrong praxis

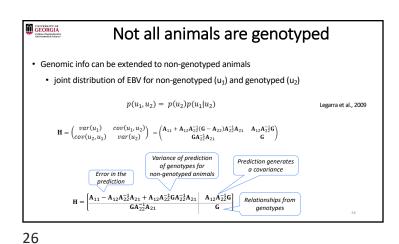
22

Some "interesting" properties of G

- VanRaden (2008)
 - **G** can be singular if few SNP or identical genotypes (twins)
 - **G** must be singular if number of individuals > number of SNP
- Stranden and Christensen (2011)
 - **G** is singular if *p's* are averages across the sample

$$\mathbf{G} = 0.95 \frac{\mathbf{ZZ'}}{2 \sum p_l (1-p_l)} + 0.05 \mathbf{I} \qquad \qquad \mathbf{G} = 0.95 \frac{\mathbf{ZZ'}}{2 \sum p_l (1-p_l)} + 0.05 \mathbf{A} \qquad \Rightarrow \qquad \mathbf{G} = \alpha \mathbf{G}_0 + \beta \mathbf{A}$$


• Blending ≈ Adding a residual polygenic effect


Some "interesting" properties of **G**

- For all matrices of the kind $\mathbf{G} = \frac{\mathbf{ZZ'}}{2\sum p_i(1-p_i)} = \frac{(\mathbf{M} \mathbf{ZZ'})}{2\sum p_i(1-p_i)}$
 - We don't need to put the same p's in the upper and and in the lower part
- ullet Changing allele frequencies in $oldsymbol{P}$ shifts EBV's by a constant
 - Irrelevant if there is an overall mean or fixed effect in the model (Stranden and Christensen, 2011)
- Changing allele frequencies in $\frac{1}{2\sum p_iq_i}$ "scales"

24

24

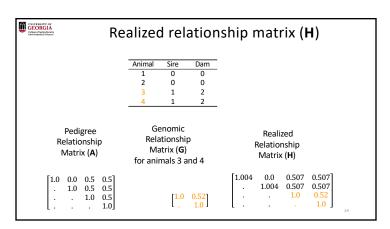
GEORGIA

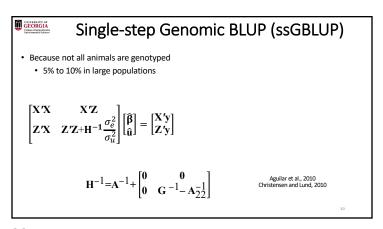
Understanding H

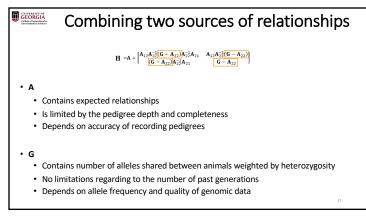
- It is a projection of ${\bf G}$ matrix on the rest of individuals "so that" ${\bf G}$ matrix makes sense
 - e.g. parents of two animals related in ${\bf G}$ should be related in ${\bf A}$
- It is a Bayesian update of the pedigree matrix based on new information from genotypes
- Typically
 - A in the millions
 - G and A_{22} in the thousands
 - Leads to a very efficient method of genomic evaluation:

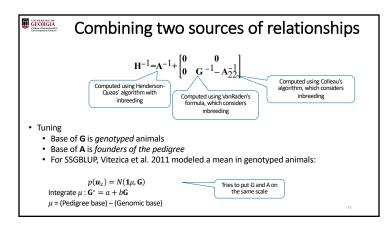
• Single Step GBLUP

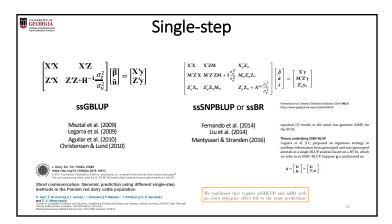
27

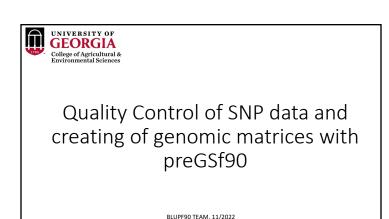

UNIVERSITY OF GEORGIA
Cullege of Agricultural in Environmental Sciences

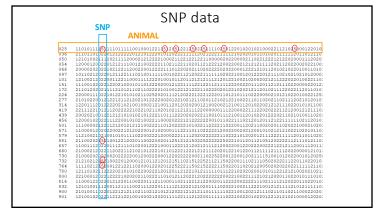

28


Some properties of **H**


- · Always semi-positive definite
- eigenvalues are always positive or zero
- Positive definite & invertible if **G** is invertible
- In practice, if ${\bf G}$ is too different from ${\bf A}_{22}$ (wrong pedigree or genotyping), this gives lots of numerical problems
- If no one is genotyped, Single-step is BLUP
- If everyone is genotyped, Single-step is GBLUP


28





Quality control

Call rate

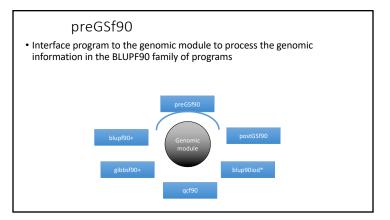
- Animals

- SNP

• Minor Allele Frequency (MAF)

• Hardy-Weinberg Equilibrium (HWE)

Which software in the


BLUPF90 family?

Non-mapped SNP

Mendelian Conflicts

Duplicate genotypes

• Linkage disequilibrium (LD)

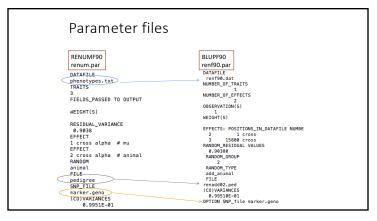
• Performs Quality Control of SNP information

- Creates the genomic relationship matrix (G)
 - and relationships based on pedigree (A₂₂)
 - Inverse of relationship matrices

37

38

preGSf90

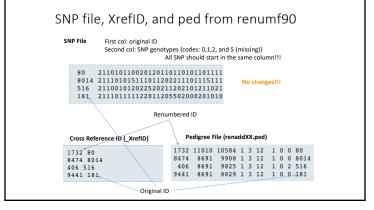

- Same parameter file as for all BLUPF90 programs
- Needs an extra OPTION in renf90.par
 - OPTION SNP_file marker.geno
- Reads 2 extra files (besides data and pedigree):
 - marker.geno
 - marker.geno_XrefID(created by renumf90)

 $_{\tt XrefID}$ has 2 columns: Renumbered ID Original ID

Run renumf90 before preGSf90

• Use renumf90 for renumbering data and creating XrefID and files

```
EFFECT
1 cross alpha
RANDOM
animal
FILE
ped3.txt
FILE_POS
1 2 3 0 0
SNP_FILE
marker.geno
PED_DEPTH
0
(CO)VARIANCES
0.30
```



New pedigree file from RENUMF90

- 1 renumbered animal ID
- 2 parent 1 number or UPG
- 3 parent 2 number or UPG
- 4 3 minus number of known parents
- 5 known or estimated year of birth
- **6** number of known parents

if animal is genotyped 10 + number of known parents

- 7 number of records
- 8 number of progenies as parent 1
- 9 number of progenies as parent 2
- 10 original animal ID

41 42

preGSf90

- Same parameter file as for all BLUPF90 programs
- Needs an extra OPTION in renf90.par
 - OPTION SNP file marker.geno
- Reads 2 extra files (besides data and pedigree):
 - marker.geno
 - marker.geno_XrefID(created by renumf90)

_XrefID has 2 columns: Renumbered ID Original ID

SNP map file - new default

- OPTION chrinfo <file>
- OPTION map_file <file>For GWAS and QC
- · Format:

45

- A header must be provided
 - Names for SNP, chromosome, and physical position are mandatory
- SNPID for SNP
- CHR for chromosome
- POS for position

Saving 'clean' files

- SNP excluded from QC are set to missing (i.e., Code=5)
 - 5 is replaced by 0 in calculations
- OPTION saveCleanSNPs
- Save clean genotype data without excluded SNP and individuals
 - For example, for a SNP_file named marker.geno
 - Clean fles will be:
 - marker.geno_clean

 - marker.geno_clean_XrefID
 Removed SNP/animals will be output in files:

 - marker.geno_SNPs_removed
 marker.geno_Animals_removed

Only QC in preGSf90

- · Quality control
- Genomic relationship matrices and inverses
 - Inverse is costly
- How to do only QC avoiding the inverses:
 - OPTION SNP_file marker.geno
 - OPTION saveCleanSNPs
 - OPTION createGInverse 0
 - OPTION createA22Inverse 0
 - OPTION createGimA22i 0

No QC in the application programs

• ONLY use:

46

- If QC was performed in a previous run
- and "clean" genotype file is used
- OPTION SNP_file marker.geno_clean
- OPTION no_quality_control

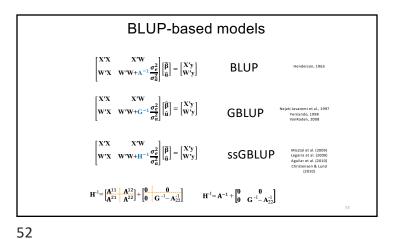
Use in application programs

• Use renumf 90 for renumbering and creation of XrefID and files

SNP_FILE
marker.geno

i cross alphi
paucon
price
peditat
price
pri

- Run preGSf90 with quality control, saving clean files
- Run further programs with clean files as needed
 - blupf90+, gibbs2f90+, ...



49 50

preGSf90

- Performs Quality Control of SNP information
- Creates the genomic relationship matrix (G)
 - and relationships based on pedigree (A₂₂)
 - Inverse of relationship matrices

PreGSf90

Created to construct the matrices using in ssGBLUP

$$\mathbf{H}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}^{-1} - \mathbf{A}_{22}^{-1} \end{bmatrix}$$

$$\mathbf{G} \qquad \mathbf{G}^{-1}$$

$$\mathbf{A}_{22} \qquad \mathbf{A}_{22}^{-1}$$

$$\mathbf{G}^{-1} - \mathbf{A}_{22}^{-1}$$

Genomic Relationship Matrix - **G**• $\mathbf{G} = \frac{\mathbf{ZZ'}}{2 \sum p_j (1 - p_j)}$ (VanRaden, 2008)

• $\mathbf{Z} = \text{matrix for SNP marker}$ • Dimension of $\mathbf{Z} = n^*i$ • n animals
• i markers

SNP file

SNP file

80 21101011002012011011010110111111211112101100
8014 211101015111011202211101115111112201100
516 2110010120225202112021151111121011122111101
181 211101111122011205502000201010222122111101

53 54

PreGSf90

• Efficient methods

55

- \bullet create the genomic relationship matrix and the relationship matrix based on pedigree
- Invert the relationship matrices
 - Computes statistics for the matrices
 - Means, Var, Min, Max
 - Correlations between diagonals
 - Correlations for off-diagonals
 - · Correlations for the full matrices
 - Regression coefficients

Genomic Matrix default options

•
$$\mathbf{G}_0 = \frac{\mathbf{ZZ'}}{2 \sum p_i (1 - p_i)}$$
 (VanRaden, 2008)

• With:

56

- ${\bf Z}$ centered using current allele frequencies

Current genotyped animals

Genomic Matrix Options

- OPTION whichfreq x
 - 0: read from file *freqdata* or other specified name (needs OPTION FreqFile)
 - 1:0.5
 - 2: current calculated from genotypes (default)
- OPTION FreqFile file
 - Reads allele frequencies from a file

Genomic Matrix default options

- Blending to avoid singularity problems $\mathbf{G} = 0.95^*\mathbf{G}_0 + 0.05^*\mathbf{A}_{22}$
 - OPTION AlphaBeta 0.95 0.05 #(default)
 - Beta may vary from 0.2 to 0.01

57

Genomic Matrix default options

• Tuning

- Adjust \boldsymbol{G} to have mean of diagonals and off-diagonals equal to \boldsymbol{A}_{22}
- OPTION tunedG 2 #(default) Chen et al. (2011)
 - Base of GBLUP is genotyped animals
 - Base of pedigree is founders of the pedigree
 - For SSGBLUP modelled as a mean for genotyped animals
 - $-p(\mathbf{u}_2) = N(\mathbf{1}\mu, \mathbf{G})$
 - Integrate μ : $\mathbf{G}^* = 11'\lambda + (1 \frac{\lambda}{2})\mathbf{G}$
 - $-\mu$ = (Genomic base) (Pedigree base)
 - Vitezica et al. 2011

Options for matching **G** to **A**₂₂

- OPTION tunedG x
 - 0: no adjustment
 - 1: mean(diag(G))=1, mean(offdiag(G))=0
 - $\bullet \ 2: mean(diag(G)) = mean(diag(A_{22})), \ mean(offdiag(G)) = mean(offdiag(A_{22})) \ \ (default)$
 - 3: mean(G)=mean(A₂₂)
 - 4: Use Fst adjustment. Powell et al. (2010) & Vitezica et al. (2011)

$$\lambda = \frac{1}{n^2} (\sum_i \sum_j \mathbf{A}_{22_{ij}} - \sum_i \sum_j \mathbf{G}_{ij}) \qquad \qquad \mathbf{G}^* = 11' \lambda + (1 - \frac{\lambda}{2}) \mathbf{G}$$

59

Storing and Reading Matrices

- preGSf90 saves $\,G^{-1}-A_{22}^{-1}\,\,$ by default (file: GimA22i)

To save 'raw' genomic matrix:

- OPTION saveG [all]
 - If the optional all is present all intermediate **G** matrices will be saved!!!

To save G-1

- OPTION saveGInverse
 - Only the final **G**, after blending, scaling, etc. is inverted !!!

To save \boldsymbol{A}_{22} and inverse

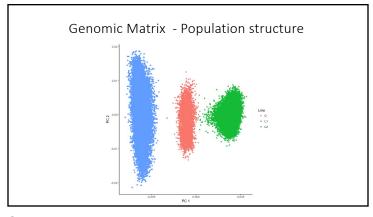
• OPTION saveA22 and OPTION saveA22Inverse

Storing and Reading Matrices

- OPTION saveG [all], OPTION saveGInverse, ...
 - · Saves in binary format
 - "Dumped" format to save space and time
 - To save as row, column, value:
 - OPTION no_full_binary
 - Still binary, but can be easily read and converted to text

61 62

Storing with Original IDs


- Some matrices could be stored in text files with the original IDs extracted from renaddxx.ped created by the RENUMF90 program (col #10)
- For example:
 - OPTION saveGOrig
 - OPTION saveDiagGOrig
 - OPTION saveHinvOrig
- Values
 - origID_i, origID_j, val

OPTION plotpca

Plot first two principal components to look for stratification in the population.

OPTION extra_info_pca file col

Reads from file the column col to plot with different colors for different classes.

Tricks to setup **G** for GBLUP #1

- Tricks are needed because preGSf90 is set up for ssGBLUP
- 1) Use a dummy pedigree
- 2) Use PED_DEPTH 1 in renumf90
- 3) Change blending parameters
 - OPTION AlphaBeta 1.00 0.00 → G = 1.00*G + 0.00*I
 - OPTION AlphaBeta 0.95 0.05 → G = 0.95*G + 0.05*I
- 4) No adjustment for compatibility with A₂₂
 OPTION tunedG 0

65 66

Tricks to setup **G** for GBLUP #2

1) In renum.par, remove any information about the pedigree. Example:

FILE pedigree.txt
FILE_POS
1 2 3 0 0
PED_DEPTH

- 3) Change blending parameters
 - OPTION AlphaBeta 1.00 0.00 → G=1.00*G+0.00*I • OPTION AlphaBeta 0.95 0.05 → G=0.95*G+0.05*I
- 4) No adjustment for compatibility with \boldsymbol{A}_{22}
 - OPTION tunedG 0

PreGSf90 inside BLUPF90 ??

- $\bullet \ \ \text{Almost all programs from BLUPF90 support creating genomic relationship matrices}$
- OPTION SNP_file xxxx
- Why preGSF90 ?
 - Same genomic relationship matrix for several models, traits, etc.
 - Just do it once and store $\operatorname{\mathsf{GimA22i}}$ or $\operatorname{\mathsf{Gi}}$ and $\operatorname{\mathsf{A22i}}$ separate

Use in application programs

- Use renumf90 for renumbering and creation of XrefID and files ${\tt SNP_FILE}$

marker.geno

- Run preGSf90 with quality control, saving clean files
- Option 1:
- run blupf90 with clean files
- Option 2:

run preGSf90 with clean files (program saves **GimA22i**) run blupf90 with option to read **GimA22i** from the file

Reading external matrices

- BLUPF90 programs accept external matrices created outside
- http://nce.ads.uga.edu/wiki/doku.php?id=user_defined_files_for_covariances_of_random_effects
- File should be row, column, value in plain text format (lower OR upper triangular)

- user_file: if providing the inverse of the covariance structure
- \bullet user_file_inv: if the program has to invert the covariance structure