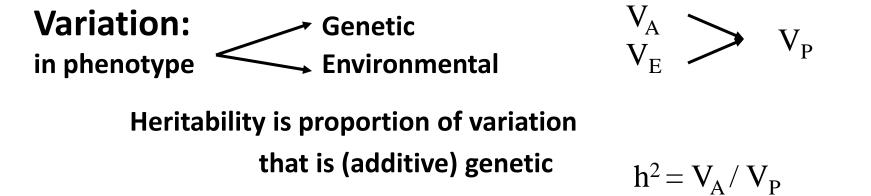
Estimating Breeding Values

- Principle
 - how is it estimated?
- Properties
 - Accuracy
 - Variance
 - Prediction Error
- Selection Response
 - select on EBV


GENE422/522 Lecture 2

Observed	Phen. Dev.	Genetic Value	Env. Effects
Underlying Model	Р	G	E
315	+15	+ 3	+12
307	+ 7	+ 7	0
303	+ 3	- 2	+ 5
294	- 6	+ 8	-14
287	-13	- 6	- 7
Standard Deviation	12	6	10

	Phen. Dev.	Genetic Value	Env. Effects
	Р	G	E
	+15	+3	+12
Genetic variance	+7	+7	0
	+3	-2	+5
SD SD	-6	+8	-14
Environmental	-13	-6	-7
variance SD	12	6	10

	Phen. I	Dev. Genetic Value	Env. Effects
	Р	G	E
	+27	+3	+24
Genetic variance	+7	+7	0
SD	+8	-2	+10
	-20	+8	-28
Environmental variance	-20	-6	-14
SD	21	6	20

Components of variation (phenotypic)

When do we use heritability?

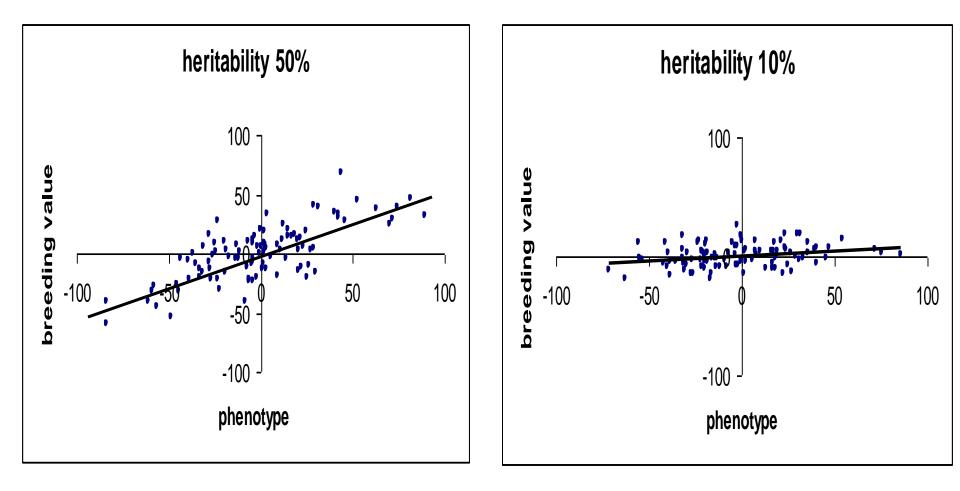
- Predicting Breeding Values from phenotypic differences
 - Weighting the value of phenotypic information on various relatives
 - Breeding values are used to rank and select animals in order to achieve genetic improvement
- Predict the result of selection

IN REAL LIFE

We can only see P We want to estimate A.

need a model

Phenotype=Genetics+ Environment(Phenotypic differenceis due toAdditive Genetic Effect + Residual Effect)

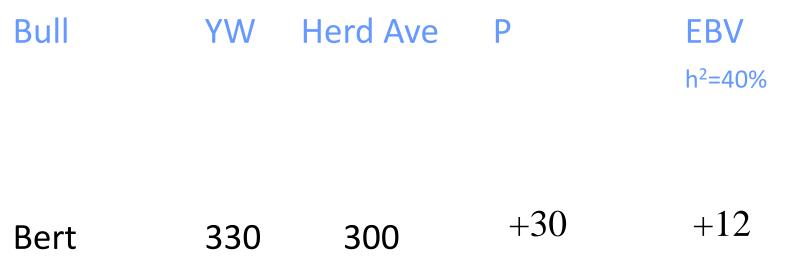

P = A + E

Estimated Breeding Value = $EBV = h^2$.P

(if based on own performance)

... is that part of the phenotypic difference that you believe is due to breeding value!

The larger heritability, the more of phenotypic differences are due to (additive) genetic value


Principle of estimating breeding value

- Based on regression
- Predicting difference in breeding value from phenotypic differences

Correction for fixed effects

- We use a phenotypic deviation from a <u>contemporary mean</u>
 - population mean
 - herd or flock mean
 - mean of all animals born in 2009 in herd A
 - Management group
 - All males who are born in November in the flock
- is a way to correct for non-genetic effects

Example of contemporary groups

Folssy 300 260 +40 +16

Note that the ranking in P differs from ranking in EBVNeed to assume that herd differences are non-genetic

One fixed effect: A model for fixed effect correction

$Y = \mu + BT + A + E$

Birth Type	Mean Weaning Weight Kg.
Single	25
Twin	23
Triple	21

<u>Strategy:</u> Express phenotypes as deviations from their group means.

A 25 Kg. twin:	25 - 23 = +2Kg.
A 25 Kg triple:	25 - 21 = +4Kg.

Several fixed effects: A model for fixed effect correction $Y = \mu + BT + Herd + A + E$

Additive model

Birth Type	Mean Weaning Weight Kg.		
	Herd A	Herd B	Overall
Single	23	27	25
Twin	21	25	23
Triple	19	23	21
Overall	21	25	23

Strategy:

Correct phenotype for each class effect separately.

25 Kg. Twin in herd A:25 Kg Triple in herd B:

25 - 23 - 0 - (-2) = +4Kg. 25 - 23 - (-2) - (+2) = +2Kg.Correction for birth type Correction for herd

A model for fixed effect correction

 $Y = \mu + BT * Herd + A + E$

Interaction model

Birth Type	Mean Weaning Weight Kg.		
	Herd A	Herd B	Overall
Single	23	27	25
Twin	21	25	23
Triple	19	23	21
Overall	21	25	23

<u>Strategy:</u> Express phenotypes as deviations from their group means.

25 Kg. Twin in herd A: 25 - 21 = +4Kg. 25 Kg Triple in herd B: 25 - 23 = +2Kg. A model for fixed (continuous)effect correction

 $Y = \mu + b.age + A + E$

	Age (mo)	Mean Weaning Weight Kg.
A	11	280
B	13	295

Strategy: Correct phenotypes to a 'constant' age

Need: the growth per month (= 12kg/mo) $\rightarrow =b$

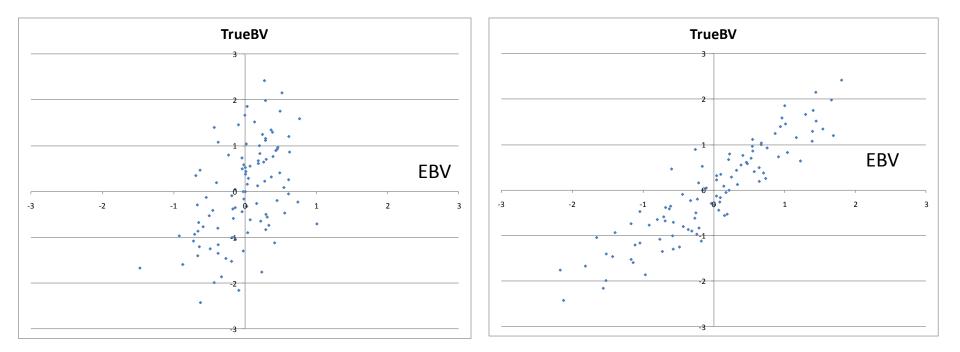
Corrected weights

A: 280 + 12 = 292 kg B: 295 - 12 = 283 kg

Conclusion about fixed effects

- Need to correct for Fixed Effect to avoid bias in EBV, taking out non-genetic effects
- In real life there may be several FE
- They may not all be balanced
- Need a (statistical) model to correct for FE (see Lecture 4, 5)

Further EBV properties


- 1. Accuracy of EBV's
- 2. Variance of EBV
- 3. Prediction Error
- 4. Predicting Response

EBV properties:1. Accuracy of EBV's

Symbol: $r_{IA} = correlation$ between estimated and true breeding value

EBV = (Index = "I")True BV = ("A") (sometimes we use r_{IH} instead of r_{IA} where H is for a multi trait breeding value \rightarrow aggregate genotype)

accuracy of EBV = correlation with True BV

Accuracy = 45%

Accuracy = 90%

Accuracy of EBV's - some examples

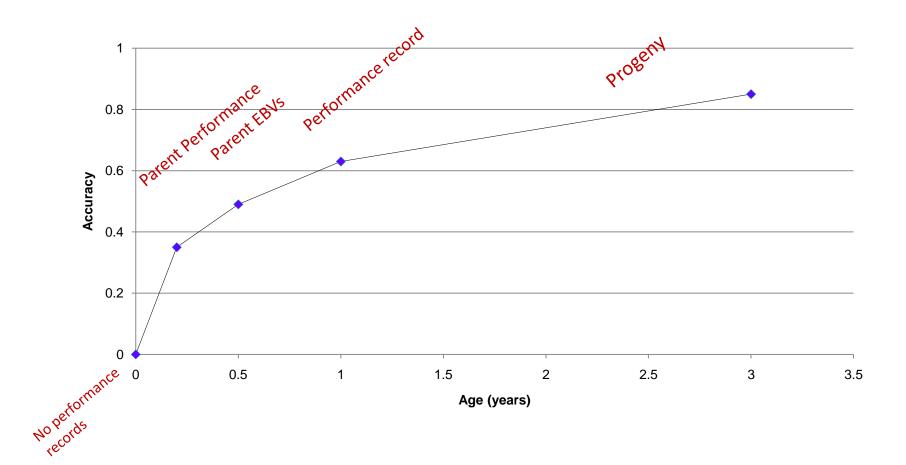
Information Used Index (=EBV) Accuracy

Own Performance $EBV = h^2 P$ h

Progeny EBV_{sire} = 2n/(n+α). ProgMean $\sqrt{n/(n+\alpha)}$.

Generic
$$EBV = b_1P_{1+}b_2P_2 + \dots$$
 Use Selection
Index Theory

Look at the idea, not at the maths!

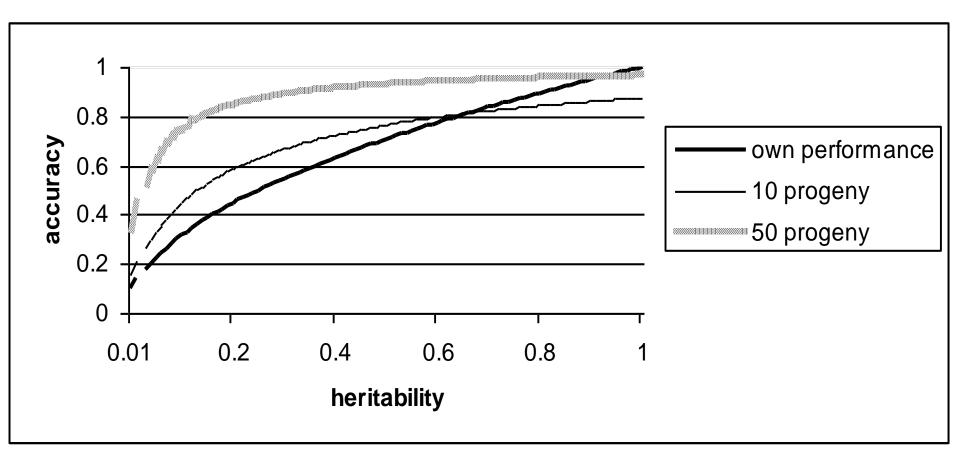

Examples of accuracies

	h²=0.1	h ² =0.3	
own information	0.32	0.55	equal to sqrt h ²
mean of 10 half sib	0.23	0.33	
mean of 1000 half-sibs	0.49	0.50	max is sqrt 0.25 = 0.5
mean of 1000 full-sibs	0.70	0.71	max is sqrt 0.5 = 0.71
mean of 100 progeny	0.85	0.94	max approaches 1.0

Accuracies of animal increase as they get older \rightarrow (more info)

Accuracy of predicting a breeding value

increases as an animal gets older


Example: Accuracy of progeny test

	Nr	r of progeny	
	5	50	100
h²			
0.1	0.34	0.75	0.85
0.5	0.91	0.99	0.995

Progeny test is the only way to get a very high (near 1) accuracy

But more progeny are needed when heritability is low

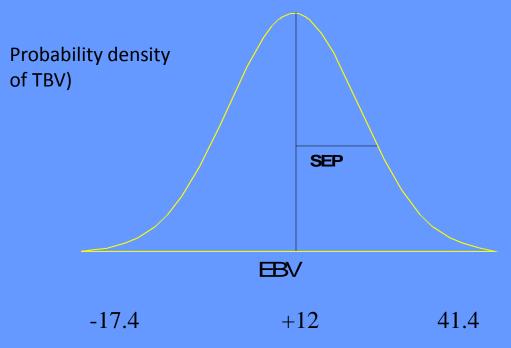
Accuracy of own performance vs progeny test

Progeny test gives usually more accurate EBV then own performance

EBV properties: 2.Variance of EBV's - how much they differ

• Var(EBV) =
$$r_{IA}^2 V_A$$

• SD(EBV) = $r_{IA} \sigma_{A=}$ Standard deviation of EBVs

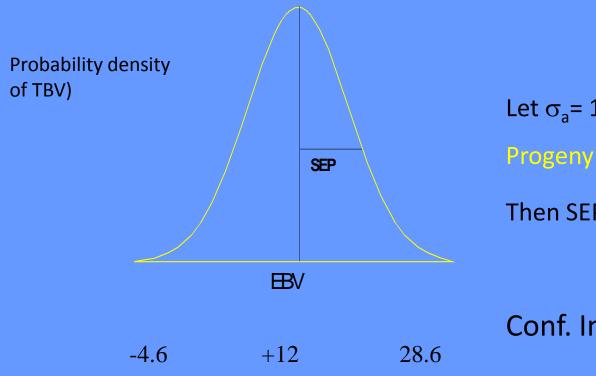

Simply a function of accuracy

Note the extremes of Var(EBV) if $r_{IA} = 0 vs r_{IA} = 1$

Observed	Phen. Dev.	Genetic Value	Env. Effects	EBV (h ² =0.3)
	Р	G	E	$r_{IA} = 0.55$
315	+15	+ 3	+12	4.5
307	+ 7	+ 7	0	2.1
303	+ 3	- 2	+ 5	0.9
294	- 6	+ 8	-14	-1.8
287	-13	- 6	- 7	-3.9
SD	11	6 V _A	10	3.3 V _{EBV}

	Phen. Dev. C	Genetic Value	Env. Effects	EBV (h ² =0.09)
	Р	G	Ε	$r_{IA = 0.32}$
	+27	+3	+24	2.4
	+7	+7	0	0.6
	+8	-2	+10	0.7
	-20	+8	-28	-1.8
	-20	-6	-14	-1.8
SD	21	6 V _A	20	1.8 V _{EBV}

EBV properties: Prediction Error Variance - how much they still may change • PEV = var(EBV-TBV) = $(1-r_{|A}^2)V_A$ Prediction Error Variance • SEP = sqrt(PEV) = $\sqrt{(1-r_{|A}^2)\sigma_A}$ Standard Error of Prediction



Let σ_a = 19 Kg, EBV = +12 Kg, Own record: Accuracy² = h² = 0.4 Then SEP = $\sqrt{(1-0.4).19} = 14.7$

Conf. Interval: EBV± 2.SEP

Prediction Error Variance - how much they still may change

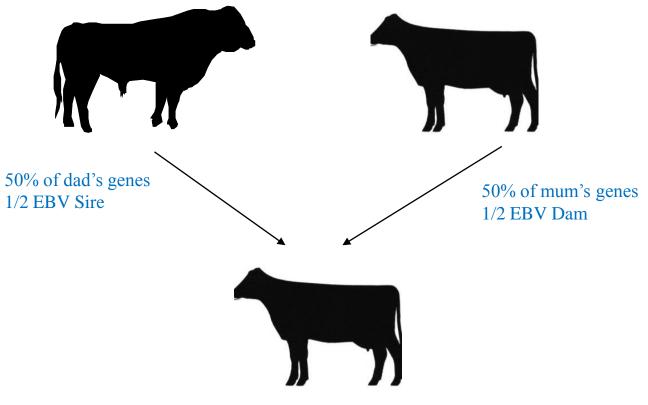
• $PEV = var(EBV-TBV) = (1-r_{IA}^2)V_A$

Let σ_a = 19, EBV = +12, **Progeny Test:** Accuracy² = 0.81 Then SEP = $\sqrt{(1-0.81).19} = 8.3$

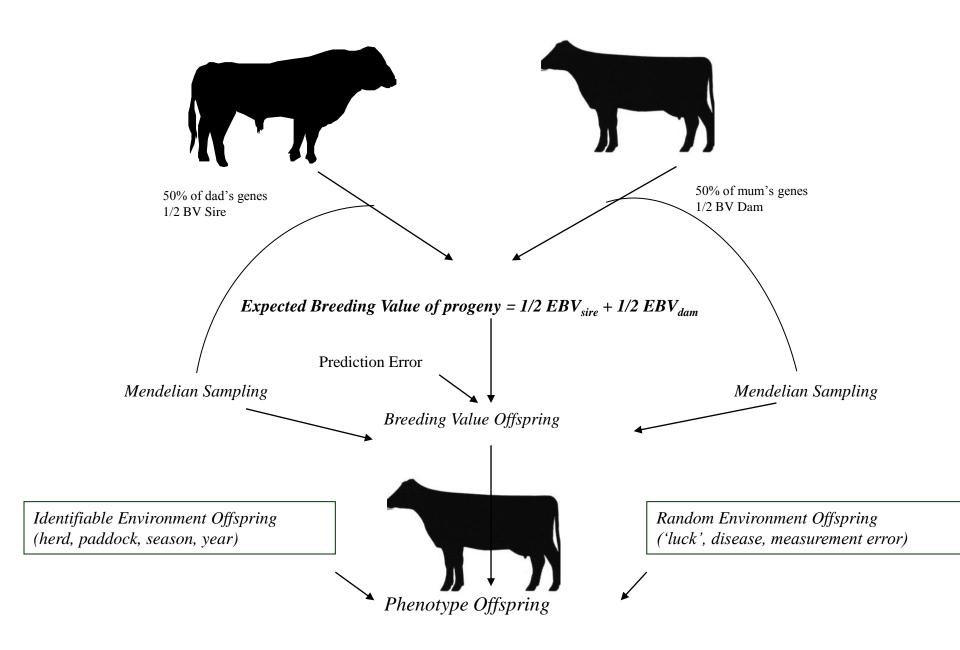
Conf. Interval: EBV± 2.SEP

Prediction Error Variance - how much they still may change

Consider Yearling weight EBV ($h^2 = 0.4$; $\sigma_a = 19$)


EBV = +12

Information for EBV	Accuracy	SEP	95%CI_EBV
	(r _{IH})		
None	0	19	
Own performance	0.63	14.7	-17.4 - 41.2
Progeny Test n=40	0.90	8.3	-4.6 - 28.6
Progeny Test n=200	0.98	3.8	4.4 - 19.6

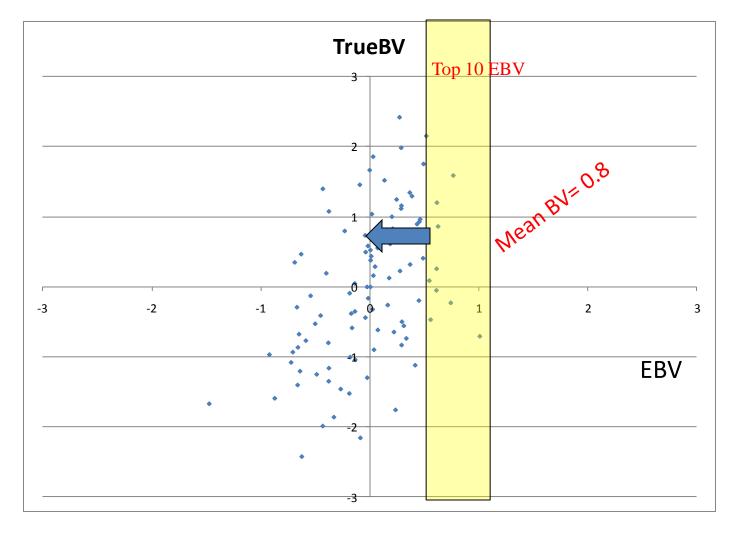

So Conf.Interval still quite large, even for very accurate EBVs

So in individual cases, variation around EBV can be quite large, but less so in selected groups.

Selection on EBV

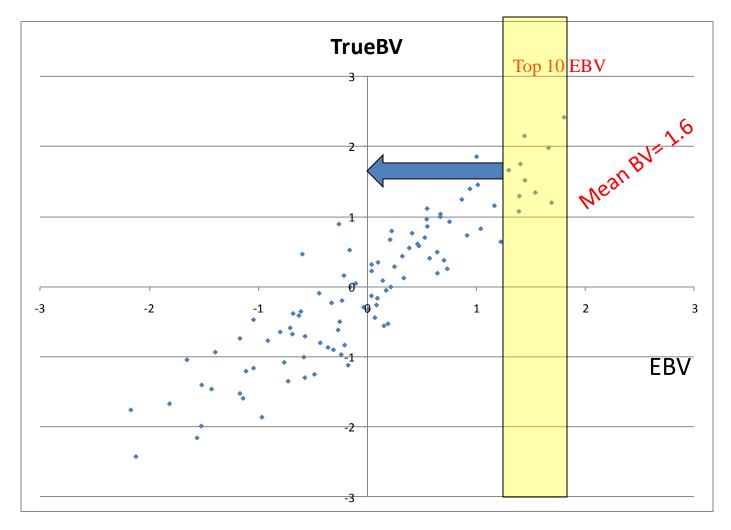
Expected Value of progeny = $1/2 EBV_{sire} + 1/2 EBV_{dam}$

Figure 4.2. Genetic and environmental factors influencing a progeny's genotype

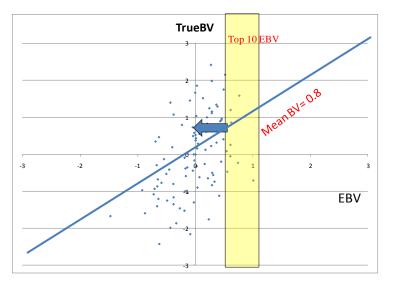

Some things to note

- EBV's on parents are additive
- Predicted performance of offspring does <u>not</u> depend on <u>accuracy</u> of the parents' EBVs

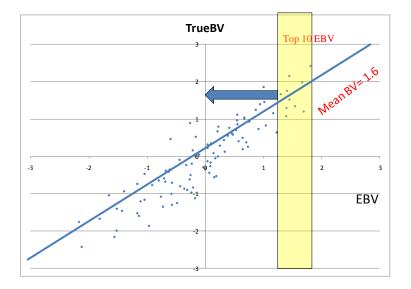
Suppose EBV_A +56 r = 0.50
EBV_B +56 r = 0.95
select A or B?


Answer: should not matter (if one is risk neutral)

Select on EBV: accuracy related to response



Accuracy = 45%

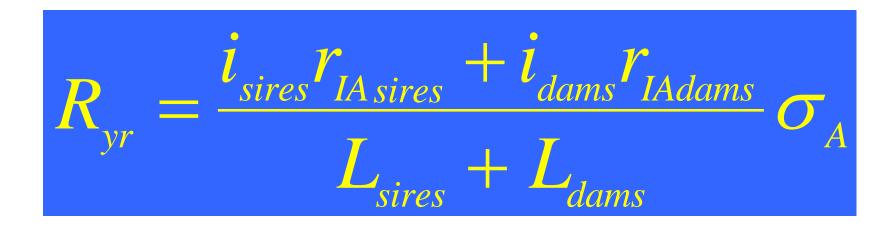

Double accuracy gives double selection response!

Accuracy = 90%

Accuracy = 45%

Predicted Response

i = selection intensity (standard normal)


Regression of A on EBV = 1 i.e. slope is the same for accurate and inaccurate EBVs, see left

select on EBV's:

Response = i * SD(EBV)

R=i*r* σ_a

General to predict response per year

Should optimize i and L

Should <u>maximize</u> r_{IA}

Information from correlated traits

Information from relatives