Principles of breeding value estimation

- $\sqrt{\text{Principles}}$
- $\sqrt{\rm Properties}~{\rm of}~{\rm EBV's}$
- Use of relative's information lect 3
- Selection Index lect 3
- Accounting for fixed effects
- BLUP

lect 4 lect 4-5

How to combine information from relatives?

	<u> </u>	X2	EBV
	own	sire's	
Animal	perform.	perform.	Index
1	3.6	9.2	?
2	-8.3	3.2	?
3	3.5	-15.4	?
4	16.7	7.1	?
5	-14.4	-4.9	?
6	6.6	16.1	?
7	-1.4	-12.2	?
8	-6.2	8.7	?
9	6.2	7.4	?
10	15.0	-4.0	?

Who should we select, animal 10 or animal 6?

Principle of EBV estimation

 Regression of breeding value on phenotype

Р

How much do we expect the BV to be better if we know that P is one unit better

Slope = cov(A,P)/var(P)

EBV estimation: regression

• If P = Own Performance

Slope = cov(A, P)/ var(P)

 $= V_A / V_P$

$$= h^2$$

EBV estimation: regression

• If P = Performance of Sire

Α

Slope = $cov(A, P_{sire})/ var(P_{sire})$

$$= \frac{1}{2} V_{A} / V_{P}$$

 $= \frac{1}{2} h^2$

Ρ

Now we need some basic Quantitative Genetic theory P = A + F \rightarrow General Model $Var(P) = var(A) + var(E) = V_{\Delta} + V_{E}$ no cov. between A and E $cov(A_i, P_i) = cov(A_i, A_i) + cov(A_i, E_i) = V_{\Delta}$ if A same animal as P $cov(A_i, P_i) = cov(A_i, A_i) + cov(A_i, E_i) = a_{ii}V_A$ aij = additive genetic relationship between i and j $cov(P_i, P_i) = a_{ii}V_A$ as E's are uncorrelated if not same animal

Finding the optimal index weights $EBV = b \cdot P$

Regression of A on P_i Regression coefficient = $\frac{\text{cov}(P_i, A)}{\text{var}(P_i)}$

Examples:

if P = Own Performance

 $\mathbf{b} = \frac{V_A}{V_A + V_E} = h^2$

if P = Sire Performance

b =

$$\frac{\frac{1}{2}V_A}{V_A + V_E} = \frac{1}{2}h^2$$

What does this all mean?

Regression of x on y :

– If we know x, what does that tell us about y?

if we know an animal performed well, what does that tell us about his breeding value? A: Depends on heritability

 $b = h^2$

if we know an animal's sire performed well, what does that tell us about his breeding value? A: It carries only half of Sire's genes + it depends on heritability

 $b = \frac{1}{2} h^2$

if we know an animal's great granddam performed well, what does that tell us about his breeding value? A: It carries even less of great grandma's genes

 $b = 1/8 h^2$

Some more basic Quantitative Genetics theory

var(mean) =common variance + specific/nequal to allSpecific bit is averaged out

e.g.: Performance of one progeny: $P = \frac{1}{2} A_{sire} + \frac{1}{2} A_{dam} + Mendelian Sampling term + Residual$ breeding value

e.g.: Mean performance of n progeny (= HS mean):

 $P_{HS} = \frac{1}{2} A_{sire} + \left\{ \frac{1}{2} A_{dam} + Mendelian Sampling term + Residual \right\} / n$

 $Var(P_{HS}) = \frac{1}{4} V_A + (\frac{3}{4} V_A + V_E)/n$

Weight for Mean of n Half Sibs

$$\frac{\frac{1}{4} \mathbf{V}_{A}}{\frac{1}{4} \mathbf{V}_{A} + (\frac{3}{4} \mathbf{V}_{A} + \mathbf{V}_{E})/\mathbf{n}} \quad \frac{\text{Cov}}{\text{Var}}$$

Some more basic Quantitative Genetics theory

 $Var(P_{HS}) = \frac{1}{2} V_A + V_{common env} + \left\{ \frac{1}{2} V_A + V_{specific env} \right\} / n$

Weight for Mean of n Full Sibs

n Full Sibs

$$\frac{\frac{1}{2}\mathbf{V}_{A}}{\frac{1}{2}\mathbf{V}_{A} + \mathbf{V}_{ce} + (\frac{1}{2}\mathbf{V}_{A} + \mathbf{V}_{se})/n} \qquad \frac{Cov}{Var}$$

Progeny Testing

 $\hat{A}_{sire} = b PM$ PM = Mean of n progeny b = Index Weight = "heritability of progeny test

*b*₁ depends on the number of progeny and on the heritability

$$\mathbf{b}_{1} = \frac{\frac{1}{2} \mathbf{V}_{A}}{\frac{1}{4} \mathbf{V}_{A} + (\mathbf{V}_{P} - \frac{1}{4} \mathbf{V}_{A})/\mathbf{n}} \qquad \frac{\frac{\text{Cov}(A_{\text{sire}}, \text{PM})}{\text{Var}(\text{PM})}$$
$$= \frac{2\mathbf{n}}{\mathbf{n} + 4/\mathbf{h}^{2} - 1} \qquad = \frac{2\mathbf{n}}{\mathbf{n} + \frac{4 - \mathbf{h}^{2}}{\mathbf{h}^{2}}} = \frac{2\mathbf{n}}{\mathbf{n} + \alpha}$$

You can work these through with examples (in Excel), see below

						Index Weight b
Vp	100	nr of FS	4	COV	12.5	
h2	0.25					0.308
c2	1.5			var	40.625	
VA	25	nr of HS	20	COV	6.25	
VE-common	15					0.629
VE-specific	40			var	9.9375	
		nr of Prog	20	COV	12.5	
						1.258
				var	9.9375	

Combining different sources of information

Selection Index (multiple regression)

 $EBV = Index = b_1P_1 + b_2P_2 + b_3P_3 + \dots + b_nP_n$

Selection index with more information sources (multiple regression: Index = $b_1 X_1 + b_2 X_2$)

Need to account for covariance between various sources of information X = vector with information sources (phenotypic deviation, or P_i = Sel. Criteria, we call these now X = [X₁ X₂] A = True breeding Value $var(X) = P - matrix = P = \begin{bmatrix} var(X_1) & cov(X_1, X_2) \\ cov(X_2, X_1) & var(X_2) \end{bmatrix}$ or = G = $\begin{bmatrix} \operatorname{cov}(X_1, A) \\ \operatorname{cov}(X_2, A) \end{bmatrix}$ $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = P^{-1}G \text{ is like "cov(X, A)/var_X"}$ cov(X, A) = G - vector = G =Index weights

Again: Best to do an example

X1 = Own X2 = Sire's	Performance Performanc	e e									
h2	0.3		Р		-1	G				b	
varP	100		100	15		30		=		0.284	
varA	30		15	100		15				0.107	
varE	70					-	-		-		-
			Selec	tion index X1 own	weights for X2 sire's						
			heritability	perform.	perform.	_					
			0.1	0.098	0.045						
			0.3	0.284	0.107						
			0.5	0.467	0.133	_					

How do we use such weights?

		X1	X2		EBV	
		own	sire's			
	Animal	perform.	perform.		Index	
	1	3.6	9.2		2.00	
	2	-8.3	3.2		-2.01	
	3	3.5	-15.4		-0.67	
	4	16.7	7.1		5.50	
	5	-14.4	-4.9		-4.63	
	6	6.6	16.1		3.60	
	7	-1.4	-12.2		-1.72	
	8	-6.2	8.7		-0.82	
	9	6.2	7.4		2.54	
	10	15.0	-4.0		3.83	
•						
		98	17			
			104		his is liko tho	D matrix but
	Var-c	ovar of actual	x1 and x2	bi	ased on reali	zed values

Another example of weights

	Own Performance	Mean of 3 FS	Own Performance	Mean of 3 FS
h ²	b ₁	b ₂	b ₁	b ₂
0.10	0.09	0.12	0.08	0.32
0.30	0.26	0.26	0.22	0.49
0.50	0.43	0.29	0.38	0.48
0.70	0.62	0.24	0.57	0.36

- Own performance more important with high heritabilityand smaller amount of family info
- Otherwise, family information more important

Can use STSELIND

Single Trait selection index calculation

Parameters			
0.1			
0			
0.15			
	0.732	Accuracy	
	Index	value of	
Nr.Records	weight	variate:	percent decrease of accuracy by c
1	0.000	0.000	
1	0.000	0.000	
1	0.000	0.000	KUN
0	0.000	0.000	
20	0.000	0.000	
45	1.071	1.000	
	0.1 0 0.15 Nr.Records 1 1 1 1 0 20 45	0.100.150.150.732IndexIndexNr.Records0.00010.00010.00000200.00045	0.1 0 0.15 0.15 0.732 Accuracy Index Value of Nr.Records Weight 1 0.000 1 0.000 0 0 1 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0.0000 0.0000 0.0000

Accuracy of selection index

 r_{IA} = correlation between Index (=EBV) and A

$$= \underline{\operatorname{cov}(I,A)} = \underline{\sigma_{I}^{2}} = \underline{\sigma_{I}} / \sigma_{A} = \sqrt{(b'Pb/V_{A})}$$

$$\sigma_{I} \sigma_{A} = \sigma_{I} \sigma_{A}$$

$$cov(I,A) = cov(bX,A) = b'cov(X,A)$$
$$= b'G = b'Pb = b'var(X) = var(bX) = var(I) \qquad b = P^{-1}G$$

remember from Lecture 2: Note: I = EBV A = BV $\rightarrow r_{IA} = sqrt(var(EBV) / V_A) = accuracy$

This is reference only, not to memorize

or: Pb = G

Summary of this lecture

- Selection Index Theory can be used to work out weights and accuracy for a given set of information about an particular EBV
- Quantitative Genetic Theory and matrices (P, G) are used to work out such index weights (b) and accuracies
- In Genetic Evaluation we use BLUP where this all occurs 'automatically'
- Selection Index Theory still useful to predict what happens
 - Accuracy for a given amount of information
 - Accuracy if using genetic marker information
 - Importance of own vs family information for given situations